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Precise pooling and dispensing of microfluidic 
droplets towards micro- to macro-world interfacing 

Eric Brouzesa,*, April Carniola, Tomasz Bakowskia and Helmut H. Streya 

Droplet microfluidics possesses unique properties such as the ability to carry out multiple independent 

reactions without dispersion of samples in microchannels. We seek to extend the use of droplet 

microfluidics to a new range of applications by enabling its integration into workflows based on 

traditional technologies, such as microtiter plates. Our strategy consists in developing a novel method to 

manipulate, pool and deliver a precise number of microfluidic droplets. To this aim, we present a basic 

module that combines droplet trapping with an on-chip valve. We quantitatively analyzed the trapping 

efficiency of the basic module in order to optimize its design. We also demonstrate the integration of the 

basic module into a multiplex device that can deliver 8 droplets at every cycle. This device will have a 

great impact in low throughput droplet applications that necessitate interfacing with macroscale 

technologies. The micro- to macro- interface is particularly critical in microfluidic applications that aim at 

sample preparation and has not been rigorously addressed in this context. 

Introduction 

We present the design of a microfluidic device that accurately 
and automatically pools and delivers a precise number of 
droplets. It will permit the interfacing of the microfluidic world 
to the macrofluidic world (e.g. microtiter plates) and will allow 
the seamless integration of droplet microfluidics into already 
developed robotic workflows. The approach combines passive 
droplet trapping1, 2 and on-chip valves3-5, two robust 
microfluidic technologies which have rarely been combined 
together6-8. The novel aspect of our design is that the valves are 
an integral part of the traps themselves. 
The benefits of microfluidic techniques stem from the low 
reaction volumes used that allow for better control of reaction 
conditions such as flow patterns or reactant concentrations. In 
contrast to analytical assays where detection can be performed 
on-chip, some methods that benefit from microfluidic format 
necessitate the transfer of products to macroscale technologies 
for the analysis of samples. This is particularly true for single-
cell analysis techniques that clearly benefit from reduced 
reaction volumes and microfluidic handling techniques. For 
instance, the droplet format is ideal for manipulating or 
processing single-cells since it allows multiplexed sample 
processing in isolated and independent reactors that can be 
displaced and retrieved without any loss of material9-14. In 
addition, an automated micro- to macro- interface for droplet 
microfluidics would be attractive for simply depositing single-
cells encapsulated in droplets15, 16 into microplates for further 
analysis by ELISA, or processing for single-cell genomics, 

proteomics or metabolomics. Such an automated system would 
replace the use of expensive and high-maintenance FACS 
machines currently used to perform such tasks.  
In the case of single-cell genomics, nucleic acids extraction 
amplification and possibly barcoding can be prepared in 
droplets. The low volume of droplets has a decisive advantage 
to perform high-quality amplification of the minute amount of 
DNA present in single-cells, because it allows maintaining 
single-cell genomic DNA at concentrations that are in the range 
of efficient molecular reactions. However, the synthesis of the 
sequencing library necessary to analyse the genomic content of 
the sample would require transferring the amplified material 
into microtiter plates. These methods become highly significant 
as single-cell genomics technologies mature into a viable 
clinical tool for cancer diagnostics17, 18.  
From these examples, it is clear that there exists a need for a 
robust method to allow precise control and routing of droplets 
and their interfacing with a microtiter plate format in order to 
fully exploit the advantages of droplets in sample preparation 
applications such as single-cell genomics. Currently, except for 
electrowetting techniques19-21 that require intricate 
microfabrication and control, there is no method to manipulate 
a precise and intermediate number of droplets. The droplet 
manipulation presented herein is based on robust principles and 
can be easily automated. Our approach permits to optimize the 
efficiencies of molecular reactions by keeping reactant 
concentrations in their optimal ranges by using either small 
volume or bulk formats where most appropriate. The micro- to 
macro- interface is particularly critical in microfluidic 
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applications that aim at sample preparation and has not been 
rigorously addressed in this context before.  

Material and methods 

Microfluidic chip fabrication 

Chips are PDMS/glass hybrids fabricated using soft-lithography 
and off-stoichiometry as already described8, 27. In brief, we 
designed microfluidic circuits with the DraftSight software 
(Dassault Systems, Paris) and had them printed at 25,400 dpi 
resolution onto a Fuji transparency mask (CAD/Art Services 
Inc., Bandon, Or). Using the mask, we fabricated a master 
using a negative photoresist SU8-2025 (Microchem, MA) that 
is evenly spun onto a 3 inch silicon wafer and patterned by 
photo-litography (Newport 500W UV-illumination system). 
This procedure creates rectangular channels.  
Masters to make rounded channels are generally fabricated 
using a positive photoresist that generates rectangular channels 
that can be rounded by a heat treatment8, 28. Raising the 
temperature above the glass transition temperature of the 
photoresist allows it to relax into a rounded shape that 
minimizes surface energy. Here, we developed an alternative 
method to create the rounded channels that we use to prevent 
valve leakage (Fig. 4c). We spin-coated a solution of negative 
photoresist SU8-2007 to create a 7 m layer on top of the 
already developed rectangular channels. The shallow and low 
viscosity layer relaxes to minimize surface energy and creates a 
rounded dome on top of otherwise square 35 m deep channels. 
We then used a mask to limit the rounding of channels to 
specific locations. Valves were in “push-up” configuration with 
the microfluidic layer on top of the valve control layer.  
We used PDMS (Sylgard 184, Corning) at 1:5 weight ratio of 
curing agent: polymer base for molding the microfluidic layer, 
and at 1:17 weight ratio for the valve control layer. After 
mixing, the 1:17 PDMS solution was degassed for 10 minutes, 
and the 1:5 PDMS solution poured on the microfluidic master 
before degassing for 25 minutes. After 10 minutes, the 1:17 
PDMS solution was poured on the valve control master and 
further degassed for 15 minutes. The 1:17 PDMS solution was 
then spin-coated at 1,500 rpm for 50 seconds. Both masters 
were cured in an 80°C oven for about 9 minutes and 12 minutes 
for the microfluidic layer and the valve control layer 
respectively.  
We noticed a great variation in the curing time required based 
on the lot of the PDMS components. Our rule of thumb is to 
cure each layer until they just lose their “stickiness” upon a 
gentle touch with a glove. Once cured, the microfluidic layer 
was unmolded, mounted on a glass slide with channels up by 
capillarity and aligned on top of the control layer using a mask-
aligner (Newport 500W UV-illumination system) equipped 
with an inspection monocular microscope, camera and coaxial 
illumination (Amscope). Once aligned, the microfluidic layer 
and the valve control master were clamped between a glass 
slide and an aluminum plate with two binder clips. This 
sandwich was then degassed for 10 minutes before being cured 

at 80°C for 2 hours. After curing, we punched the access holes 
into the PDMS (Syneo, US), and bonded it to a glass slide by 
oxygen plasma activation (PDC-32G, Harrick plasma). The 
assembled chip was sandwiched between aluminum plates held 
by binder clips. After a 80°C overnight baking, channels were 
treated with a fluorinated tri-chloro silane reagent29 
(heptadecafluoro-1,1,2,2-tetrahydrodecyl)trichlorosilane, 
Gelest, PA) diluted at 1% wt in FC3280 oil (3M). The solution 
was injected into channels with a disposable syringe, through a 
hydrophobic 0.2 m disc filter and a blunt needle, and flushed 
out with FC 3283 oil after a few minutes of incubation.  
We created the electrodes using dedicated channels that we 
injected with low-melting solder (Cerrolow-117, 47°C melting 
temperature). The connections are assured by inserting electric 
wires into the channel inlets reinforced with a short piece of 
1/16” OD x 0.04” ID peek tubing (Idex). 
Scanning Electron Microscope images of photoresist masters 
(Fig. 4c) were taken using a Hitachi S-4800 SEM (JEOL, USA, 
Inc., Peabody Massachusetts). Images were acquired using a 5 
kV accelerating voltage, 10 µA beam current, 40-57 mm 
working distance, and a stage tilt angle of 45-57 degrees. 
Because of the relatively large size of the structures under 
observation, only the low magnification setting was used (< 
350X).   

Designs with dimensions 

All channels were 35 m deep as measured with a stylus 
profilometer (Dektak 150) using a 2 m radius tip. In all 
designs, the bypass channel was 2,050 m long and 70 m 
wide. The rectangle trap was 135 m long and 110 m wide 
and its leak channel is 110 m long and 20 m wide; the 
Laplace channel was 195 m long, its wide base was 110 m, 
its narrow base was 25 m and its leak channel was 97.5 m 
long and 20 m wide. Microfluidic anchors that sit on top of 
each trap had a diameter of 50 m and were 35 m deep. To 
design the pooling-fusing delivery droplet module, we added a 
1,095 m long and 90 m wide chamber that was lined up with 
5x 60 m long and 25 m wide side channels with an 
additional 6th side channel closest to the chamber that was 85 
m long and 30 m wide.  
We designed the multiplex system as a series of pairs of 
trapping-delivery modules because it was practically impossible 
to design delivery channels such that the flow was equal in all 
branches when delivery valves were open (Supp. Fig. 4 for an 
equivalent electric circuit). Using equations 1 and 2 below to 
estimate the hydrodynamic resistance of channels30, we 
designed delivery channels as 1,200 m long, 80 m wide for 
the first delivery channel and 147 m wide for the second 
channel. Adding small corrections to account for the complete 
design we estimate a 53:47 flow split between the two delivery 
channels when the valve was open.  
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where Q is the flow rate and l, w and h represent the length, 
width and height of the channel and  is the fluid viscosity. We 
used these equations as a guideline here, being aware that the 
use of rectangular channels and of a bi-phasic system limits 
their accuracy. 

Microfluidic set-up 

 The microfluidic station is based on an inverted microscope 
(Motic, AE31) equipped with a custom stage. The microscope 
is equipped with a Firewire camera (Scout scA640-120fm, 
Basler), and the illumination is provided by a high power LED 
(Luxeon) driven by a MOSFET circuit connected to one of the 
digital output pins of a multifunction data acquisition card (NI 
PCIe-7841R, National Instruments). Using this setup, we can 
control the camera and synchronize the image acquisition and 
illumination using an application developed under Labview 
environment (National Instruments). The system permits 
stroboscopic exposure in which an image can be captured over 
the period of 2 illumination pulses. This feature allows the 
experimental measurement of droplet velocity. 
Fluids are actuated by a set of pressure controllers with a 0-15 
psi pressure range (MPV1, Proportion Air) mounted in parallel 
onto a manifold. They are controlled by a Labview (National 
Instruments, TX) application via a microprocessor-based 
(Arduino) interface by serial communication. Fluids are loaded 
into 1mL or 15mL tubes equipped with custom designed teflon 
caps that serve as ports to connect 1/32” peek tubing (Idex). 
1/32” peek tubing is directly inserted in chip inlets and outlets.  
We injected valves with FC40 oil which was surmounted in the 
reservoir by mineral oil to isolate fluorinated oil from 
pressurized air. Valves were actuated by a manifold valve 
controller (Model EMC-08, Clippard), controlled by a custom 
software developed under Labview via an Arduino 
microprocessor. We used a nominal pressure of 35 psi to 
actuate on-chip valves. 
We used PBS and 1% PEG-based fluorinated surfactant31 
dissolved in HFE 7500 oil to generate emulsions of 0.6 nL 
droplets employing a flow-focusing nozzle1. Droplets were 
collected into a vessel made of a 3 inch long and 15 mm 
diameter Trubore glass tubing (Ace glass Inc, NJ) capped by 2 
custom designed teflon inserts that serve as ports to connect 
1/32” peek tubing (Idex). The glass tubing was treated with the 
same fluorinated tri-chlorosilane solution used for channels to 
ensure good emulsion stability. We used a solution of 1% PEG-
based fluorinated surfactant dissolved in FC40 to space droplets 
during re-injection into the delivery chip. We used HFE7500 
fluorinated oil to generate, collect and store droplets that have 
lower interfacial tension which assures higher droplet stability; 
and we used FC40 fluorinated oil to space droplets during 
reinjection to increase their interfacial tension for improved 
trapping. 
Interfacial tensions were measured using the pendant drop 
method. Dark droplets contain Bromophenol blue at 0.05% 

weight in PBS. Colored channels in the central panel of Figure 
5 were obtained by injecting a solution of food icing color 
(Wilton Industries, IL) diluted 1:4 with water. 
All videos, except Supp. Movie 4, were generated from stacks 
of images taken with the microfluidic set-up at 10x 
magnification and saved as avi-files using Fiji software, and 
further compressed using Avidemux 
(http://avidemux.sourceforge.net/). Supp. Movie 4 was taken 
under a stereomicroscope (Stemi SV6, Zeiss) mounted with a 
Casio EX-F1 onto one of the oculars via an adapter (Zarf 
Enterprises). Supp. Movie 6 has been edited using Movie 
Maker (Microsoft). 

Image processing 

Images used in figures have been minimally manipulated using 
Fiji (http://fiji.sc/Fiji) and Photoshop (Adobe) softwares. To 
correct for uneven illumination, we corrected the background 
using the “Subtract Background“ function in Fiji. We adjusted 
the contrast and sharpness of images using the “curves”, the 
“exposure”, and the “smart sharpen” functions in Photoshop. In 
rare cases we used the “Clone Stamp Tool” from Photoshop to 
erase a contaminant that did not interfere with the functioning 
of the chip but would have been distracting in the figure. This is 
the case in Fig. 5b where a fiber was trapped between the 
PDMS slab and the glass slide. The videos have been edited 
only for length and image size, and the aforementioned fiber 
can be seen in supplemental video Supp. Movie 3. 

Optimization of trapping efficiency  

Droplets (0.6 nL) were generated on chip by encapsulating PBS 
into 1% PEG-based fluorinated surfactant dissolved in FC40 
oil. Droplets were stored in an on-chip reservoir and further 
pushed into the traps. After one droplet was trapped, we 
injected droplets at different pressures and recorded a series of 
images using the stroboscopic system to measure droplet 
velocity. For our analysis, we selected cases for which no 
droplets are present in the bypass system in order to ensure 
consistent resistance of the bypass. We used droplet velocity 
because pressure values were dependent on the overall number 
of droplets present in the reservoir. For all velocity 
measurements, we measured droplet velocity at the same 
location before the trap (described in Supp. Fig. 3). We used the 
Fiji software to measure the distance travelled by droplets 
between two illumination flashes by employing ruler marks on 
the chips for calibration.   

Results and discussion 

To interface droplet microfluidics with macro-scale 
technologies, our strategy consists in developing a microfluidic 
device that accurately pools and delivers a precise number of 
droplets. The device relies on a basic module that first traps and 
then delivers droplets. Each cycle consists of a trapping, 
clearing and delivery phases. We proceeded to derive another 
module that allows droplet pooling before delivery. We then 
sought to improve the basic module by: 1) optimizing its 
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