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Graphical Abstract 

 

Classification Study of Solvation Free Energy of Organic Molecules with 

Machine Learning Techniques 

 

N.S. Hari Narayana Moorthy*, Silvia A. Martins, Sergio F Sousa, Maria J. Ramos, Pedro A. 

Fernandes 

 

Classification models to predict the solvation free energies of organic molecules were 

developed using different machine learning approaches (decision tree, random forest and 

support vector machine). MACCS fingerprints, MOE descriptors and PaDEL descriptors 

were used to construct the models. 
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Abstract: 

In this work, we have developed a list of classification models to categorize the organic 

molecules with respect to their solvation free energies using different machine learning 

approaches (decision tree, random forest and support vector machine). Those solvation free 

energy values (experimental values obtained from literatures) were splitted into highly 

favourable (<-3 kcal/mol) and less favourable (>-3 kcal/mol) solvation free energies of 

molecules, which was set as threshold value for the classification model development. The 

MACCS fingerprint along with a category of physicochemical descriptors such as atom 

count, topological, vdW surface area (volsurf) and subdivided surface area were contributed 

in the classification models. The validation studies by test set and 10-fold cross-validation 

methods provide statistical parameters such as accuracy, sensitivity and specificity with 

>90% significance. The sum of ranking difference (SRD) analysis reveals that the support 

vector machine models are comparatively significant, while the MACCS fingerprints 

possessed models are ranked as good models in all approaches. The MACCS fingerprints 

explained that the presence of halogen atoms causes less favourable solvation free energy 

generation. However, the presence of polar atoms/groups and some functional groups such as 

heteroatoms, double bonded branched aliphatic chains, C=N, N-C-C-O, NCO, >1 

heterocyclic atoms, OCO, etc cause highly favourable solvation free energy generation. The 

results derived from these investigations would be used along with some quantitative models 

for the prediction of solvation free energies of organic molecules and to design novel 

molecules with acceptable solvation free energies. 

Key words: Solvation free energy, MOE descriptors, MACCS fingerprints, random forest, 

support vector machine, decision tree. 

Introduction: 

Solvent accessible surface area is an important analysis tool for biologists to characterize the 

hydrophobic and/or hydrophilic nature of the exposed molecular surface. These surface area 

properties are used to calculate the solvation free energy of the molecules1. The majority of 

the biological processes take place in solution. The solvation effects are thus an essential part 

in the analysis of reactions that occurs in liquid phase, the water being the solvent par 

excellence. Solvation free energy (∆Gsolv) is the amount of energy necessary to transfer a 

molecule from gas to a solvated environment2,3. 

Protein-ligand binding and the transport of drugs across membranes are closely connected to 

the solvation free energy as it is an important component of binding free energy. The 
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molecules with importance to chemical, biological and pharmaceutical sciences are usually 

polyfunctional (ex. drug molecules). The exposure or protection of chemical groups from 

solvent influences the binding process and this involves desolvation of the ligand in the 

thermodynamic process. Therefore, the determination of ∆Gsolv is a valuable objective, with 

major weight in the study of chemical/biochemical processes, pursued since the beginnings of 

computer-aided drug design4,5. The free energy of solvation (∆Gsolv) is an important 

thermodynamical property and the free energy created in the molecules from effect of the 

constitution of groups and the physicochemical features of the molecules2. Earlier 

experiments explained that the contribution of the electrostatic and the nonpolar parts of the 

molecules cause the solvation free energy of a molecule6-11. The nonpolar contribution is 

usually modelled as proportional to the solvation surface area. The electrostatic term 

dominates the total solvation free energy of the molecules, while it does not always mean a 

high affinity12. This showed that the physicochemical features in the molecules cause 

variation in the free energy of solvation for the molecules. Hence, the analysis was carried 

out to investigate the important physicochemical properties and topological structural features 

responsible for the formation of free energy of solvation. Further, the classification analysis 

(qualitative analysis) is used to categorize the molecules with their solvation free energy 

using different machine learning approaches (the quantitative analysis needs more 

computational cost, time consuming, precise experimental activities, etc). The reported 

quantitative models on the solvation free energy prediction were developed with high 

computing powers13,14. In order to simplify the analysis, the initial qualitative models 

developed with the same data set, can support the development of quantitative models with 

less time and precision.  

Machine learning is a field of artificial intelligence, extract characteristic of interest from the 

data set of their unknown underlying probability distribution. Machine learning focuses on 

prediction, based on known properties learned from the training data15. These methods use 

different algorithms for the classification and are evaluated on its generalization capability, 

which is its ability to apply successfully the learnt knowledge to unseen data. Generally, 

supervised and non-supervised machine learning methods are available for classification 

analysis16. In the present study, we have used some supervised machine learning methods to 

classify highly favourable and less favourable solvation free energy of the organic molecules.  

Computational methods 

Data set  
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A data set comprised of 241 organic molecules with their experimental solvation free energy 

was retrieved from the literatures (Table S1)3,4,12,13,17-22. The Molecular Operating 

Environment (MOE) software was used to calculate the physicochemical descriptors of the 

molecules. The semi-empirical MOPAC program with Hamiltonian Austin Model 1 (AM1) 

force field with 0.05 RMS gradients of MOE software was used to optimize the molecules for 

vsurf descriptors calculation23,24. Additionally, 2D descriptors of the molecules were 

calculated using the PaDEL software25. 

MACCS fingerprints 

MACCS fingerprints for the data set compounds were calculated using PaDEL software. It 

indicates one of the 166 MACCS structural keys computed from the molecular graph and it 

represents as a spare list of keys present in the molecules. 

Machine learning methods 

In this study, the support vector machine, random forest and decision tree approaches were 

used for the classification analysis with the help of Weka software26. Decision tree is one of 

the predictive modelling approaches used in statistics, data mining and machine learning. It is 

a classification method, which predicts the value of a dependent attribute (variable) through 

the given values of the independent (input) attributes (variables). Decision tree classifies 

instances by sorting them down the tree from the root to some leaf node. 

Breiman (2001) proposed an ensemble learning method for classification (and regression) is 

called random forests that operated by constructing a multitude of decision trees at training 

time. Random forests change how the classification or regression trees are constructed using 

different bootstrap samples. In standard trees, each node split using the best split among all 

variables. In a random forest, each node split using the best among a subset of predictors 

randomly chosen at that node27,28. 

Support vector machines are supervised learning models with associated learning algorithms 

for classification study, which are based on the concept of decision planes that define 

decision boundaries. A decision plane is one that separates between a set of objects having 

different class of memberships29.  

Sum of ranking difference (SRD): 

The ranking analysis was performed using the softwares named CRRN_DNA and SRDrep 

(SRD with ties) (downloadable from: http://aki.ttk.mta.hu/srd or 

http://goliat.eik.bme.hu/~kollarne/CRRN. The calculated performance parameters (statistical 
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parameters) such as specificity, sensitivity, precision, accuracy, G-mean, F-measure and 

MCC were used for the SRD analysis of the developed models30,31.  

Results and Discussion: 

Classification models 

The ability to predict the solvation free energy of the molecules, classification models were 

developed on a data set comprised of 241 molecules using different approaches such as 

decision tree, random forest and support vector machine. The physicochemical descriptors 

calculated from MOE and PaDEL softwares and the MACCS fingerprints of the molecules 

were used as independent variables in the classification studies. There are 5 classification 

models using each approach (algorithm) and each model comprised of different descriptors 

such as MOE descriptors in model 1, fingerprints in model 2, PaDEL descriptors in model 3, 

fingerprint and MOE descriptors in model 4 and all the descriptors (MOE, PaDEL and 

fingerprints) in models 5 were developed. Initially, the descriptor pool was reduced using 

stepwise regression and principal component analysis methods. The pruned descriptors were 

used for the classification studies and the descriptors contributed in the models are provided 

in Table 1. Many models were constructed with different descriptors and approaches, because 

single model/method does not give best result for any data set, hence multiple 

models/methods are needed to construct classification models and also required to compare 

their results. 

In this analysis, solvation free energy values such as <-3 kcal/mol as highly favourable and >-

3 kcal/mol as less favourable of the molecules were set as threshold values for the 

classification studies. The results derived from all three approaches are provided in Table 2 

and 3. However, the analysis also performed with other threshold values (<-1 kcal/mol and >-

1 kcal/mol), unfortunately that data set did not provide balanced number of compounds as 

highly favourable and less favourable solvation free energies. The abovementioned threshold 

value (<-3 kcal/mol and >-3 kcal/mol) have yielded better classification models with 

significant statistical parameter, hence those models are discussed here. The physicochemical 

descriptors contributed in the models significantly classified the solvation free energies of 

molecules as highly favourable and less favourable.  

All the developed classification models were validated by 10 fold cross-validation and test set 

methods. In test set method, 30% and 40% of the molecules in the data set were considered as 

test set to validate the models. The classification performances of the models constructed 

through all the methods were observed through the confusion matrix. These models classified 

>95% of the molecules exactly as highly favourable and less favourable solvation free 
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energies containing molecules. The true positives (TP), true negatives (TN), false positives 

(FP) and false negatives (FN) of the classified molecules are provided in Table 3-4. The 

statistical parameters such as sensitivity, specificity, precision and negative predicted values 

calculated from the confusion matrix are >0.9 for all the models in response to the training 

set, the test set and the 10 fold cross-validation analyses. Matthew’s correlation coefficient 

(MCC) measures the quality of a classification model by calculating the value between -1 and 

+1. MCC value 0 is average or random prediction, -1 is worst prediction, and +1 is perfect 

prediction32,33. An MCC value above 0.4 is considered to be predictive in classification 

studies. In our analysis, the MCC values are >0.95 for all the models (through all the 

methods) reveal that the models are significant. In random forest method, some models 

provided the MCC values are 1 represent that those models classified the molecules perfectly. 

The G-mean is a statistical parameter measures the overall performance of models and used 

to check the balanced prediction of highly favourable and less favourable solvation free 

energy of the molecules. These models yielded the G-mean values >0.95 explain that the 

models predict the molecules in balanced way. As the discussed statistical parameters, the 

models provided significant accuracy of >0.95 against all the studied classification methods. 

These results reveal that the developed models with the physicochemical descriptors and 

fingerprints have classified the molecules perfectly as highly favourable and less favourable 

solvation free energies of the molecules. 

In order to compare the performance of each method (and models), the SRD values was 

calculated for all the models. This ranking is intended to compare models, methods, 

techniques, etc with some scaled (calculated) variables. SRD values provide a refined scale 

for ranking even with very small differences among the results (methods, models, etc). A 

value closer to zero (golden standard) indicates the better is the model, when it has proximity 

value indicates similarity of the variables. The results derived from the SRD analysis are 

provided in Table 4 and graphically represented in Figure 1. These results reveal that the 

support vector machine approach provided significant results and these models ranked as 

better models. It is interesting that the models developed with only fingerprint descriptors 

provided better SRD values (with all the studied approaches). Hence, it is important to 

investigate the kind of fingerprints (substructures, atoms, groups, etc) present in highly 

favourable and less favourable solvation free energy containing molecules, which are useful 

to design novel molecules with appropriate solvation free energies. 

MACCS fingerprint analysis: 
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In order to understand the structure property relationship, the MACCS fingerprint was 

calculated for all the molecules based on their molecular structure. The frequency of each 

fingerprints (substructure) appearing in the molecules with highly favourable and less 

favourable solvation free energy was calculated. This provides the important 

substructure/functional group/atoms responsible for the observed (increased and decreased) 

variation of solvation free energies of the molecules. Some substructures are present in both 

kind of molecules (highly favourable and less favourable), while limited fingerprints present 

in highly favourable or the less favourable solvation free energies pertaining molecules. The 

details of those fingerprints present in the molecules with different solvation free energies 

(threshold) are graphically represented in figure 2. The graphs explained that the molecules 

have the solvation free energy of <-5 kcal/mol exhibited specifically the following 

substructures such as heteroatoms, double bonded branched aliphatic chains, C=N, N-C-C-O, 

NCO, >1 heterocyclic atoms, OCO, etc. These substructures are absent in those molecules 

have the free energy values >-5 kcal/mol. 

Interestingly, it has been observed that the presence of halogen atom in the molecules cause 

increased solvation free energies (>-3 kcal/mol) to the molecules. The presence of aliphatic 

long chains in the molecules has high solvation free energy than aromatic or aliphatic ring 

containing compounds. These results described that the presence of these substructures in the 

molecules have variation of solvation free energies. 

 

Description of the contributed descriptors 

The classification models generated in this analysis possessed descriptors from different 

categories to classify molecules according to their highly favourable and less favourable 

solvation free energies. Those descriptors are categorized below. 

Atom count descriptors (a_nH, A_nN and nN): These atom count descriptors count number 

of nitrogen and hydrogen atoms in the molecules24.  

Topological descriptors (KierA3, SHdsCH and ETA_AlphaP): The KierA3 descriptor 

describes shape of the molecules with third alpha shape index. It calculated by (s-1)(s-3)2/p3
2 

for odd n and (s-3)(s-2)2/p3
2 for even n, where s = n+a. However, Kier and Hall kappa 

molecular shape indices compare the minimal and maximal molecular graphs and are 

intended to capture different aspects of molecular shape24.  

The electrotopological state descriptors are designated through E-state symbol that composite 

of three parts. The first part is “S” which stands for the sum of E-state values for all atoms of 

the same type in the molecule. The second part is a string representing the bond types 
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associated with that atom (“s” for single bond, “d” for double, “t” for triple and “a” for 

aromatic). Finally, there is a symbol for the set of atoms in the hydride group, such as CH3, 

CH2, OH, Br, or NH. The SHdsCH is the atom-type hydrogen electrotopological state index 

for =CH- groups34-36. Another descriptor present in this category is ETA_AlphaP, an 

extended topochemical atom (ETA) indices, which are a group of topological descriptors 

from modification and refinement of the topologically arrived unique (TAU) scheme 

parameters of the 1980s37,38.  

Polar descriptors (Lip_acc, Lip_don, nHBAcc_Lipinski, nHBDon, TopoPSA and Vsa_pol): 

These descriptors explain the number of hydrogen bond acceptor and hydrogen bond donor 

atoms/groups present in the molecules. The TopoPSA and Vsa_pol descriptors describe the 

polar properties on the van der Waals (vdW) surface area of the molecules24. 

Subdivided surface area descriptors (SlogP_VSA0, SMR_VSA1 and SMR_VSA7) 

The subdivided surface area descriptors are based on an approximate accessible vdW surface 

area (VSA) calculation (in Å2) for each atom, vi along with other atomic property, Pi (either 

partition coefficient or molar refractivity). The vi values are calculated using a connection 

table approximation. The properties (Pi) of small molecules can be calculated as the sum of 

the contributions of each of the atoms in the molecule as per (1). 

P_VSAk = ∑Viδ(PiΣ(ak-1, ak))  k = 1,2,3, …, n.   (1) 

where ao<ak<an are interval boundaries such that (ao, an) bound are values of Pi in any 

molecule. Each VSA type descriptor can be characterized as the amount of surface area with 

P in a certain range. SlogP_VSA and SMR_VSA descriptors explain the partition coefficient 

and molecular refractivity respectively on vdW surface area of the molecules. These are 

defined to be the sum of the vi over all atoms i. Pi denotes the contribution to partition 

coefficient molar refractivity for atom i as calculated in the SlogP or SMR descriptor, 

calculated in a specified range24,39. 

Volsurf descriptors (Vsurf_CW1, Vsurf_CW2, Vsurf_CW3, Vsurf_W2, Vsurf_Wp3, 

Vsurf_EWmin1 and Vsurf_A): The vsurf like descriptors depend on the structural 

connectivity and the conformation (dimensions are measured in Å) of the molecules. It 

generally describes the hydrophobic and hydrophilic properties mediated by surface 

properties such as shape, electrostatic, hydrogen-bonding and hydrophobicity. The vsurf_CW 

descriptor describes the capacity factor of the molecules and is calculated in different energy 

levels. It provides information on the amount of hydrophilic regions per unit surface40,41. 
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The vsurf_Wp descriptor describes the polar volume (either polarizability and dispersion 

forces or hydrogen bond acceptor-donor regions) of the molecule and are calculated at eight 

different energy levels (-0.2, -0.5, -1.0, -2.0, -3.0, -4.0, -5.0 and -6.0 kcal/mol) and may be 

defined as the molecular envelope accessible by solvent (water) molecules. Other vsurf 

descriptors such as Vsurf_A and vsurf_EWmin1 represent the amphiphilic moment and 

lowest hydrophilic energy of the molecules respectively. 

MACCS fingerprints: The MACCS fingerprints explain the presence or absence of particular 

functional groups, atom or fragments on different molecules. Those contributed fingerprints 

explain the following structural information of the compounds. MACCSFP49 (charge on the 

molecule), MACCSFP88 (presence of sulphur atoms), MACCSFP103 (presence of chlorine 

atom), MACCSFP104 (hetero atom with hydrogen and connected with CH2 through any 

other atom), MACCSFP107 (halogen atom connected with branched atoms (any atom (any 

atom)+ any atom)), MACCSFP121 (nitrogen containing heterocycles), MACCSFP127 (any 

atom+ ring bond + any atom + non ring bond connected with O2), MACCSFP134 (halogens), 

MACCSFP139 (hydroxyl group), MACCSFP151 (-NH group), MACCSFP156 (N connected 

with branched atom as any atom (any atom)+ any atom), MACCSFP157 (C-O) and 

MACCSFP161 (nitrogen atom) 

Conclusion: 

This study concluded that all the developed models provided >90% significance on the 

statistical parameters such as sensitivity, specificity, MCC, accuracy, G-mean, etc. The 

frequency of appearance of MACCS fingerprints in the molecules explained the 

substructures/groups/atoms responsible for the change of solvation free energy of the 

molecules. Multiple methods and models are reported in the study because a single 

method/model can’t provide significant prediction. The SRD values showed that all the 

models have similar performance on the dataset classification, however, the support vector 

machine showed slightly better performance than other methods.  

Our analysis has performed with easily calculable descriptors and freely available modelling 

tools. Earlier report for the prediction of solvation free energies of the molecules are 

quantitative models, which was calculated with high computational algorithms13,14. The 

results obtained from our studies are also significant and can be improved with sophisticated 

methods and algorithms, which will be used along with other quantitative studies to reduce 

the computing power and time consumption. Further, it supports the investigation of 

quantitative models for the prediction of solvation free energies of organic molecules and to 

design novel molecules with acceptable solvation free energies. 
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Figure 1: SRD-CRRN results of the of the classification models 

1-5=Decision Tree models 1-5; 6-10=Support Vector Machine Models 1-5; 11-15=Random 

Forest models 1-5; XX1—first icosaile (5%), Q1—first quartile, Med—median, Q3—last 

quartile, XX19—last icosaile (95%). 

 

 

 

 

 

Figure 2: Graphical representation of frequency of fingerprints on the molecules 
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Table 1: Physicochemical and fingerprint descriptors contributed in each models 

Model 1 Model 2 Model 3 Model 4 Model 5 

a_nH MACCSFP49 nN MACCSFP134 nN 

a_nN MACCSFP88 SHdsCH MACCSFP161 nHBAcc_Lipinski 

KierA3 MACCSFP103 ETA_AlphaP a_nN nHBDon 

Lip_acc MACCSFP104 nHBAcc_Lipinski Lip_acc MACCSFP134 

Lip_don MACCSFP107 nHBDon Lip_don MACCSFP161 

SlogP_VSA0 MACCSFP121 TopoPSA SlogP_VSA0 SlogP_VSA0 

SMR_VSA1 MACCSFP127  SMR_VSA7 SMR_VSA7 

Vsurf_CW3 MACCSFP134  Vsurf_EWmin1 Vsa_pol 

Vsurf_W2 MACCSFP139  Vsurf_W2 Vsurf_A 

 MACCSFP151  Vsurf_Wp3 Vsurf_CW1 

 MACCSFP156   Vsurf_CW2 

 MACCSFP157    

 MACCSFP161    
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Table 2: Confusion matrix of the classification models 

Mod

el 

No Dataset Total 

Decision Tree Support vector Machine Random Forest 

Total P 

(TP/FN) 

Total N 

(TN/FP) 

Total P 

(TP/FN) 

Total N 

(TN/FP) 

Total P 

(TP/FN) 

Total N 

(TN/FP) 

1 

  

  

  

Training  241 129 (128/1) 112 (111/1) 129 (122/7) 112 (110/2) 129 (129/0) 112 (112/0) 

Test 30% 72 41 (40/1) 31 (31/0) 41 (39/2) 31 (30/1) 41 (41/0) 31 (31/0) 

Test 40% 96 53 (51/1) 43 (43/0) 53 (51/2) 43 (42/1) 53 (52/1) 43 (42/1) 

10-fold 241 129 (124/5) 112 (109/3) 129 (122/7) 112 (110/2) 129 (123/6) 112 (109/3) 

2 

  

  

  

Training  241 129 (122/7) 112 (110/2) 129 (122/2) 112 (110/2) 129 (121/8) 112 (111/1) 

Test 30% 72 41 (39/2) 31 (30/1) 41 (39/2) 31 (30/1) 41 (39/2) 31 (30/1) 

Test 40% 96 53 (51/2) 43 (42/1) 53 (51/2) 43 (42/1) 53 (51/2) 43 (42/1) 

10-fold 241 129 (122/7) 112 (110/2) 129 (122/7) 112 (110/2) 129 (121/8) 112 (111/1) 

3 

  

  

  

Training  241 129 (127/2) 112 (110/2) 129 (122/7) 112 (110/2) 129 (127/2) 112 (112/0) 

Test 30% 72 41 (41/0) 31 (30/1) 41 (39/2) 31 (30/1) 41 (40/1) 31 (30/1) 

Test 40% 96 53 (53/0) 43 (42/1) 53 (51/2) 43 (42/1) 53 (53/0) 43 (42/1) 

10-fold 240 129 (127/2) 111 (109/2) 129 (123/6) 112 (107/2) 129 (125/4) 112 (109/3) 

4 

  

  

  

Training  241 129 (129/0) 112 (110/2) 129 (122/7) 112 (110/2) 120 (120/0) 112 (112/0) 

Test 30% 72 41 (39/2) 31 (30/1) 41 (39/2) 31 (30/1) 41 (40/1) 31 (31/0) 

Test 40% 96 53 (52/1) 43 (40/3) 53 (51/2) 43 (42/1) 53 (52/1) 43 (41/2) 

10-fold 241 129 (124/5) 112 (106/6) 129 (122/7) 112 (110/2) 129 (123/6) 113 (110/3) 

5 Training  241 129 (127/2) 112 (109/3) 129 (122/7) 112 (110/2) 129 (129/0) 112 (112/0) 

  Test 30% 72 41 (39/2) 31 (30/1) 41 (39/2) 31 (30/1) 41 (41/0) 31 (30/1) 

  Test 40% 96 53 (51/2) 43 (41/2) 53 (51/2) 43 (42/1) 53 (52/1) 43 (43/0) 

  10-fold 241 129 (125/4) 112 (103/9) 129 (122/7) 112 (110/2) 129 (125/4) 112 (107/5) 

Total P : Total Positives, Total N: Total Negatives, TP: True Positives, TN: True Negatives, 

FP: False Positives, FN: False Negatives 
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Table 3: Statistical parameters calculated through classification analysis 

Model 

No 

Data 

set 

Specificity Sensitivity Accuracy Precision G-mean F-measure MCC 

DT SV RF DT SV RF DT SV RF DT SV RF DT SV RF DT SV RF DT SV RF 

1 
Traini

ng  0.99 0.98 1.00 0.99 0.94 1.00 0.99 0.96 1.00 0.99 0.98 1.00 0.99 0.96 1.00 0.99 0.96 1.00 0.98 0.93 1.00 

  
Test 

(30%) 0.97 0.98 1.00 1.00 0.94 1.00 0.99 0.96 1.00 1.00 0.97 1.00 0.99 0.96 1.00 0.99 0.96 1.00 0.97 0.92 1.00 

  
Test 

(40%) 0.98 0.98 0.98 1.00 0.95 0.98 0.99 0.97 0.98 1.00 0.98 0.98 0.99 0.97 0.98 0.99 0.97 0.98 0.98 0.94 0.96 

  
10-

fold 0.96 0.98 0.95 0.98 0.94 0.98 0.97 0.96 0.96 0.98 0.98 0.98 0.97 0.96 0.96 0.97 0.96 0.96 0.93 0.93 0.93 

2 
Traini

ng  0.94 0.98 0.93 0.98 0.94 0.99 0.96 0.96 0.96 0.98 0.98 0.99 0.96 0.96 0.96 0.96 0.96 0.96 0.93 0.93 0.93 

  
Test 

30% 0.94 0.98 0.94 0.98 0.94 0.98 0.96 0.96 0.96 0.97 0.97 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.92 0.92 0.92 

  
Test 

40% 0.95 0.98 0.95 0.98 0.95 0.98 0.97 0.97 0.97 0.98 0.98 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.94 0.94 0.94 

  
10-

fold 0.94 0.98 0.93 0.98 0.94 0.99 0.96 0.96 0.96 0.98 0.98 0.99 0.96 0.96 0.96 0.96 0.96 0.96 0.93 0.93 0.93 

3 
Traini

ng  0.98 0.98 0.98 0.98 0.94 1.00 0.98 0.96 0.99 0.98 0.98 1.00 0.98 0.96 0.99 0.98 0.96 0.99 0.97 0.93 0.98 

  
Test 

30% 1.00 0.98 0.97 0.98 0.94 0.98 0.99 0.96 0.97 0.98 0.97 0.97 0.98 0.96 0.97 0.99 0.96 0.98 0.97 0.92 0.94 

  
Test 

40% 1.00 0.98 1.00 0.98 0.95 0.98 0.99 0.97 0.99 0.98 0.98 0.98 0.99 0.97 0.99 0.99 0.97 0.99 0.98 0.94 0.98 

  
10-

fold 0.98 0.96 0.96 0.98 0.95 0.98 0.98 0.95 0.97 0.98 0.96 0.98 0.98 0.95 0.97 0.98 0.96 0.97 0.97 0.91 0.94 

4 
Traini

ng  1.00 0.98 1.00 0.98 0.94 1.00 0.99 0.96 1.00 0.98 0.98 1.00 0.99 0.96 1.00 0.99 0.96 1.00 0.98 0.93 1.00 

  
Test 

30% 0.94 0.98 0.97 0.98 0.94 1.00 0.96 0.96 0.99 0.97 0.97 1.00 0.96 0.96 0.99 0.96 0.96 0.99 0.92 0.92 0.97 
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Test 

40% 0.98 0.98 0.98 0.95 0.95 0.96 0.96 0.97 0.97 0.94 0.98 0.96 0.96 0.97 0.97 0.96 0.97 0.97 0.92 0.94 0.94 

  
10-

fold 0.95 0.98 0.95 0.95 0.94 0.98 0.95 0.96 0.96 0.95 0.98 0.98 0.95 0.96 0.96 0.96 0.96 0.96 0.91 0.93 0.93 

5 
Traini

ng  0.98 0.98 1.00 0.98 0.94 1.00 0.98 0.96 1.00 0.98 0.98 1.00 0.98 0.96 1.00 0.98 0.96 1.00 0.96 0.93 1.00 

  
Test 

30% 0.94 0.98 1.00 0.98 0.94 0.98 0.96 0.96 0.99 0.97 0.97 0.98 0.96 0.96 0.98 0.96 0.96 0.99 0.92 0.92 0.97 

  
Test 

40% 0.95 0.98 0.98 0.96 0.95 1.00 0.96 0.97 0.99 0.96 0.98 1.00 0.96 0.97 0.99 0.96 0.97 0.99 0.92 0.94 0.98 

  
10-

fold 0.96 0.98 0.96 0.93 0.94 0.96 0.95 0.96 0.96 0.93 0.98 0.96 0.94 0.96 0.96 0.95 0.96 0.97 0.89 0.93 0.92 

DT: Decision Tree, SV: Support Vector Machine, RF: Random Forest
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Table 4: Sum of ranking difference (SRD) and p% interval of the variables of the 

classification analyses 

Ranking results %p 

Model No 

(Original) 

Model code SRD x < SRD > =x 

SV-3 8 68 6.46E-08 7.69E-08 

DT-2 2 93 6.01E-06 7.22E-06 

SV-1 6 93 6.01E-06 7.22E-06 

SV-2 7 93 6.01E-06 7.22E-06 

SV-4 9 93 6.01E-06 7.22E-06 

SV-5 10 93 6.01E-06 7.22E-06 

DT-1 1 97 1.18E-05 1.41E-05 

RF-2 12 100 1.96E-05 2.28E-05 

DT-5 5 117 2.73E-04 3.20E-04 

RF-3 13 127 1.14E-03 1.32E-03 

RF-5 15 151 2.43E-02 2.75E-02 

RF-4 14 152 2.75E-02 3.06E-02 

DT-4 4 158 5.40E-02 6.00E-02 

RF-1 11 183 0.63 0.70 

 XX1 209 4.94 5.25 

DT-3 3 227 13.08 13.76 

 Q1 240 24.61 25.61 

 Med 262 49.91 51.15 

 Q3 284 74.25 75.26 

 XX19 315 94.70 95.02 

 

DT: Decision Tree, SV: Support Vector Machine, RF: Random Forest, XX1—first icosaile 

(5%), Q1—first quartile, Med—median, Q3—last quartile, XX19—last icosaile (95%). 
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