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A unified model by combining the Rolie-Poly constitutive model and the Flory-Huggins mixing free energy functional through a
two fluid approach is presented for studying flow-induced phase separation in polymer mixtures. It is numerically solved in two-
dimensional flow with monotonic and non-monotonic constitutive behaviour. The results are analyzed and show that this model
can capture the essential dynamic features of viscoelastic phase separation reported in literature. The steady-state shear-banding
and interface instabilities are reproduced. In the case with a non-monotonic constitutive behaviour, It is observed that the band
structures are strongly unstable both in time and in space. The correlations between the microstructure evolution and chaotic
rheological responses have been identified. A vortex structure emerges within the central band. Numerical results obtained
from this study suggest that the dynamic features of rheochaos can be captured by the proposed model without introducing extra
parameters.

1 Introduction

Shear-induced phase separation in complex fluids has attract-
ed great attention over the last decade. Nearly 60 years ago, it
was observed1 that phase transitions of polymer solutions are
influenced by flow. Since then there have been many report-
s on shear-induced phase separation of polymer mixtures and
other complex fluids2–7. As a closely related phenomenon,
shear-banding was also observed in numerous publications,
recent experiments include wormlike micelles8,9, telechelic
polymers10,11 , dispersions12 and entangled DNA solution-
s13–15.

A typical experimental system targeted by this work is the
Couette cell described in Ref8. Fluids are contained in the
gap between the stationary inner cylinder and the rotating out-
er cylinder. Various shear rates are applied by superimposing
different angular velocities to the rotating cylinder. Focused
on the bulk fluid behaviour, we simulate the shear flow in a
rectangular region. A commonly accepted idea is that the flow
field can cause stress imbalance between different components
of polymer mixtures and relative motion can thus take place.
By an adequate formulation of polymer blends, and careful
control of temperature and flow fields, it is possible to ma-
nipulate the morphology of materials in micromorphological
engineering.
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Phase separations in classical binary fluids have been ex-
tensively studied both experimentally and theoretically over
several decades16. Theoretical frameworks for modelling the
effect of flow on phase transitions in polymer mixtures must
incorporate both thermodynamic and viscoelastic forces into
dynamic equations. Most theoretical research are based on the
two fluid model, which combines thermodynamics, hydrody-
namics, and viscoelasticity in a natural, physical way.

Few numerical results were presented for the two fluid mod-
el, especially regarding the effects of flow on phase diagram.
Most of the early solutions of the two fluid model were ob-
tained from approximations to the model, such as linearization
of the diffusive equation and the adiabatic approximation17–19,
in which time dependence of the viscoelastic stress tensor was
not considered to seek a possible steady state solution. Some
recent research20–22 aim to numerically study the phase sepa-
ration in a binary fluid, and large scale 2D and 3D simulations
are carried out, but in absence of a realistic constitutive model,
all of them can not accurately capture the viscoelastic effects.
Modeling the phase separation in viscoelastic complex fluids
with a realistic model remains elusive.

Jupp and Yuan23–25 presented a two fluid model (FH-
JS model) to investigate the flow-induced phase mixing and
demixing of polymer mixtures, which coupled the Flory-
Huggins mixing free energy function and the Johnson-
Segalman constitutive model in a unified way. The numerical
results were obtained by solving the time-dependent two fluid
model without any simplification used widely in early stud-
ies. Fielding and Olmsted26,27 proposed a different version of
the two fluid model for the coupling between shear banding
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and shear-induced demixing, which still retained a diffusive
stress term in the J-S constitutive equation. It is questionable
whether or not such an ad-hoc treatment for mechanical inter-
face is justifiable as the origin of the diffusive stress is molec-
ular diffusion across the streamlines and has aleardy been con-
sidered in a thermodynamically consistent way in the original
two fluid model.

Moreover, the J-S model is a phenomenological constitutive
model. The Rolie-Poly model28 is a simplifed version of the
full molecular model based on the tube dynamics29, yet still
includes all dynamic modes considered in the full theory, in-
cluding the reptation, chain stretch, contour length fluctuation,
and thermal/convective constraint releases (CCR). Many nu-
merical results30–33 were carried out using a diffusive Rolie-
Poly model, which verified that the Rolie-Poly constitutive
model has the capability to accurately capture the rheologi-
cal responses in a complex fluid. Recently, Cromer34 predict-
ed the steady-state shear-banding with Rolie-Poly constitutive
model for a monodisperse polymer solution, which coupled
the concentration/stress through a two-fluid approach, but only
one-dimensional calculations had been presented. To the best
of our knowledge, this is the first attempt to couple the Rolie-
Poly constitutive model with a two fluid model without adding
a diffusive stress term. However, compared to Cromer’s mod-
el, the framework of FH-JS model23–25 is more general and
can model not only the polymer solutions with a reduced for-
mulation but also the binary polymer mixtures in which both
of components are viscoelastic.

In this study, the FH-JS model is modified by replacing
the J-S constitutive model with the Rolie-Poly model. It is
not only inherent all the advantages of the original model,
but also can accurately capture polymer dynamics in flow-
induced phase separation. Simulation work focuses on the
shear-induced phase transition of polymer mixtures in which
the volume fractions of the two components are equal. Both of
transient and steady-state phase transition behaviour and cor-
responding rheological responses will be presented. In some
cases, rather than reaching a steady state, the numerical results
show erratic fluctuations. This phenomenon, often named as
rheochaos, has been observed in many complex fluids, includ-
ing wormlike micelles35–37, associative polymer networks11

and lamellar phase systems38,39. In order to capture the key
features of chaotic flows, serveral models40,41 have been stud-
ied by introducing some coupling parameters between flow
and microstructure. Numerical results presented in this study
demonstrate that the dynamic features of rheochaos can be
captured by our model without introducing any extra param-
eters. The correlations between microstructure evolution and
chaotic rheological responses are also identified.

The remainder of the paper is organized as follows. In the
next section a detailed description of the two fluid model in-
tegrated with the Rolie-Poly constitutive model is presented.

Numerical Simulation results and discussions are provided in
Section 4, in which the dynamic phase separation and rheolog-
ical behaviour for both monotonic and non-monotonic con-
stitutive relationships are analyzed through numerical simu-
lations implemented using finite volume method. Section 5
contains our conclusions.

2 A two-fluid model integrated with Rolie-Poly
constitutive model

Here we focused on the strong flow regime, as in such regime
the viscoelastic and hydrodynamic forces completely domi-
nate over the forces originated from the thermal fluctuations,
it is therefore justifiable to neglect the effects of the thermal
fluctuations as we did in the previous work23–25.

To establish a theoretical framework for describing the
phase separations of polymer blends, we coupled the Flory-
Huggins free energy function with the Rolie-Poly constitutive
model. The two-fluid model provides a physical approach to
capture the inhomogeneous polymer dynamics. In the stan-
dard framework of the two-fluid model, the system consist of
two components: the polymer and the solvent. A constitutive
equation is required to describe the viscoelastic stress of the
polymer component, and the solvent is pure Newtonian.

Compared to the original two-fluid approach19,42,43, there
are two main distinctions in our model. Firstly, both compo-
nents are viscoelastic, and some mixing rules are introduced
for calculation of the viscoelastic stress. This general formu-
lation for binary polymer mixtures can be easily reduced to
the standard two-fluid framework. Secondly, we replace the
phenomenological constitutive model with a molecular-based
model: Rolie-Poly model, which can provide more realistic
predictions of the viscoelastic response under flow.

For polymer blends with two components, let ϕA (⃗r, t) and
ϕB (⃗r, t) be the volume fractions of the component A and com-
ponent B at some point r⃗ and time t, and let v⃗A (⃗r, t) and
v⃗B (⃗r, t) be their velocities, respectively.The volume average
velocity v⃗ is given by v⃗ (⃗r, t) = ϕA⃗vA (⃗r, t) + ϕB⃗vB (⃗r, t). The
evolution equation for the volume fraction follows is given by
the conservation law of mass , and may be written in terms of
the volume average velocity:

∂ϕA (⃗r, t)
∂ t

= −⃗v · ∇⃗ϕA + ∇⃗ ·
[

ϕ 2
Aϕ 2

B
ς

(
∇⃗µ −α∇⃗ ·σσσve

)]
(1)

The essential term of Eq. (1) can be expressed by the veloc-
ity difference between the two components, which depends on
the osmotic force, ∇⃗µ and the force due to inhomogeneity in
polymer viscoelatic stress, ∇⃗ ·σσσve:

v⃗A − v⃗B =
ϕAϕB

ς

[
−∇⃗µ +α∇⃗ ·σσσve

]
(2)
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where ς = ςAςB/(ςA + ςB) is a frictional coefficient. Follow-
ing the Doi and Onuki ’s argument42 in their two fluid mod-
el for polymer mixtures, the friction coefficient may be ex-
pressed as ςi = ϕiς0iMi/Mei (i ∈ {A,B}, ς0i and Mei are the
microscopic friction constant and the entanglement molecu-
lar weight for component i, respectively). For simplicity, we
assume ς0i = ς0.

For the polymer inhomogeneity, we introduce a dimension-
less coefficient α , and different from the previous work, the
ratio of relaxation times is replaced by the ratio of the entan-
glements number,

α =
1−G′Z′

ϕA +G′Z′ϕB
(3)

where the coefficient is related to the ratio of the
modulus(G′ = GB/GA) and the ratio of the entanglements
number (Z′ = ZB/ZA). Zi = Mi/Me

i is the number of entangle-
ments of each component polymer, and can be calculated by
Rouse relaxation time τR

i and disentanglement relaxation time
τd

i as Zi = τd
i/(3τR

i). This coefficient vanishes for G′Z′ = 1
, which includes the special case of a rheologically homoge-
neous system, where G′ = 1 and Z′ = 1 . The viscoelastic
force term, with the dimensionless coefficient α , can work ei-
ther to oppose or to reinforce the thermodynamic force in the
diffusive dynamics.

The osmotic force can be computed by the chemical poten-
tial difference µ , which is defined as the functional derivative
of the mixing free energy with respect to local volume frac-
tion,i.e.,

µ =
δFmix [ϕA (⃗r)]

δϕA (⃗r)
=−δFmix [ϕB (⃗r)]

δϕB (⃗r)
. (4)

Here we take the first order approximation of Flory-
Huggins free energy function form44,45 as

Fmix [ϕA (⃗r)]/kBT =
∫

d⃗r
{

fmixkBT +(Γ/2) [∇ϕA]
2
}

(5)

where Γ is the interfacial tension coefficient and any depen-
dence of Γ on ϕA is ignored, and the equilibrium phase be-
havior can be defined by the Flory-Huggins mixing free en-
ergy, fmix/kBT = (1/MA)ϕA lnϕA +(1/MB)ϕB lnϕB +χϕAϕB,
where Mi is the molecular weight of each component polymer
and χ is the Flory-Huggins interaction parameter.

Apart from the osmotic force, another force the polymer ex-
periences is the viscoelastic stress σσσve (⃗r, t), which can be cal-
culated by constitutive equations. In our model, we replace the
original JS model with the Rolie-Poly model. As the stress in
entangled polymer systems is supported by chain molecules, a
stress gradient would create a net force on the chains resulting
in their relative migration. Thus ∇⃗⃗vT should be used in the
viscoelastic constitutive equation rather than ∇⃗⃗v.

The tube velocity given by v⃗T = (ςAv⃗A + ςBv⃗B)/(ςA + ςB) ,
may be expressed in terms of the volume average velocity by

v⃗T = v⃗+ϕAϕBα (⃗vA − v⃗B) (6)

where (⃗vA − v⃗B) is defined by Eq. (2).
The relaxation modulus of a binary viscoelastic fluid must

depend on its composition. For polymer linear blend, the re-
laxation modulus may be described as G(t) = GR(t)+Gd(t),
where GR(t) describes the high-frequency polymer relaxation
(Rouse process) and Gd(t) describes the disentanglement pro-
cess of the chains. For the Rouse process, the linear mixing
rule46 is adopted as,

GR(t) = ∑
i=A,B

ϕigi
R(t) (7)

The ’double reptation’ rule offers much better agreement with
experimental data than the ’linear mixing rule’ for disentan-
glement process, hence a quadratic mixing rule is suggested
in the form47 48 of

Gd(t) = ( ∑
i=A,B

ϕi

√
gi

d(t))
2 (8)

where gR
i(t) and gd

i(t) are the linear-viscoelastic relaxation
moduli of different components, which may be expressed by
the exponential functions of the elastic modulus ( GR

i,Gd
i )

and the relaxation times ( τR
i,τd

i)48. After this treatment, the
viscoelastic stress σσσve (⃗r, t) is calculated from the sum of three
parts, the contribution of the component A and B, and a mix-
ing term representing the interaction of both components:

σσσve = ∑
i=AA,BB,AB

GiWWW i (9)

In this representation the quantity WWW i is the viscoelastic s-
train and stress GiWWW i is parameterized by the elastic modulus
Gi. According to the mixing rules, the elastic modulus can be
expressed as GAA = ϕAGA

R +ϕ 2
AGA

d , GBB = ϕBGB
R +ϕ 2

BGB
d and

GAB = 2ϕAϕB

√
GA

d GB
d . Accordingly the relaxation times can

be written as τAA
d = τA

d , τBB
d = τB

d and τAB
d = 2τA

d τB
d /(τ

A
d +τB

d ).
For the Rouse time, there is no interactive part, so τAA

R = τA
R ,

τBB
R = τB

R and τAB
R = 0.

After applying the mixing rules to the Rolie-Poly consti-
tutive model, the evolution equation of viscoelastic strain WWW i
may be written as33,

DWWW i

Dt
= 2D+(∇v⃗T )

T ·WWW i +WWW i · (∇v⃗T )

− 1
τ i

d
WWW i − f i

1(I +WWW i + f i
2WWW i)

(10)

where D= 1
2 (∇v⃗T +(∇v⃗T )

T ) and the material derivative, DWWW i
Dt ,

is defined in terms of the tube velocity as DWWW i
Dt = ∂WWW i

∂ t + v⃗T ·
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∇WWW i; the coefficients involving the trace of the strain tensor
are defined by

f i
1 =

2
τ i

R
(1− (1+

tr(WWW i)

3
)−

1
2 ) f or i = AA,BB (11)

f i
2 = β (1+

tr(WWW i)

3
)δ f or i = AA,BB (12)

for WWW AB, as τAB
R → 0 leading to a non-stretching limit28, the

expressions are given by

f AB
1 =

2
3
[(∇v⃗T ) · tr(WWW i + I)] (13)

f AB
2 = β (14)

We assume, for simplicity, that the components are of equal
density, ρ . The motion of an incompressible, isothermal vis-
coelastic binary fluid is governed by the continuity equation

∇⃗ · v⃗ = 0 (15)

and the osmotic pressure and the viscoelastic stress are
brought into the momentum balance equation,

η0∇2⃗v− ∇⃗p− (ϕA −ϕB) ∇⃗µ + ∇⃗ ·σσσve (⃗r, t) = 0 (16)

where p is the pressure field, and the Newtonian stress with
viscosity η0 can be a contribution from the solvent or from
energy dissipation processes much faster than the slowest vis-
coelastic dynamics governed by the time-dependent viscoelas-
tic stress tensor σσσve (⃗r, t).

The equations above complete the Flory-Huggins-Rolie-
Poly(FH-RP) fluid model in this study. The parameter β is the
CCR magnitude coefficient and δ is an exponent to quantify
the CCR. For simplicity, but without much loss of generality,
the same value for β and δ for the three parts of σσσve is as-
sumed. By exploring the parameter space of the FH-RP model
in terms of η0, τA

R , τA
d , τB

R , τB
d , GA

R, GB
R, GA

d , GB
d (Gi = Gi

R+Gi
d)

and shear rate, the details of nonlinear dynamic behaviour in
shear-induced phase transition of polymer mixtures could be
systematically studied.

3 Numerical Methods

The governing equations of the FH-RP model are discretized
through finite volume method (FVM) using an open source
OpenFOAM CFD toolbox released by OpenCFD Ltd. The
finite volume method ensures that the physical conservation
laws are locally satisfied, through computing each term of the
governing equations by volume integral over a control volume.
For those terms involving divergence operators, volume inte-
gral can be converted to surface integral over the surfaces of

the control volume by applying the Gauss theorem. The re-
sulting expressions are then discretised using appropriate dif-
ferencing schemes. Gauss MINMOD and Gauss linear are ap-
plied in the discretisation scheme for the spatial discretization
terms, and the temporal term is discretised using the simple
Euler scheme. The above discretisation produces a system of
linear equations to relate the cell face values of the unknown
field variables at current time to their values at previous time
and at the neighbouring cell centres. The system can be solved
by one of the iterative matrix solvers, including the conjugate
(PCG) and bi-conjugate gradient (PBiCG) methods, available
in the OpenFOAM toolbox. The details on how to use it can
be found in the OpenFOAM manual49.

The iterative solution algorithm used in this paper is a
PISO-based algorithm, which have been well tested in a nu-
merical study for the dynamics of polymer solutions in con-
traction flow50. The numerical method involves a modifica-
tion to the standard PISO algorithm by introducing polymer
stress and the chemical potential unknowns into the momen-
tum equation, as a part of the source term. In the absence flow,
our simulation could reproduce the equilibrium phase behav-
ior defined by the Flory-Huggins mixing free energy function-
al. Also the simulation results of homogeneous fluids under
shear flow converge to the solution of the constitutive model
with satisfactory accuracy. Moreover a similar OpenFOAM
based viscoelastic flow solver has been critically validated un-
der benchmark flow problems50.

We summarised the key procedure of the iterative algorithm
as follows:

Step 1 Assuming vn+1 = vn, integrate the constitutive equa-
tions implicitly to get the polymer viscoelastic stress
components, σσσve (⃗r, t)

n+1.

Step 2 Compute the force field ∇⃗µ and ∇⃗ · σσσve, then solve
Eq. (1) to get ϕ n+1

A .

Step 3 Solve the momentum equation without the contribu-
tion of the pressure gradient term to obtain the estimated
velocity components Un+1.

Step 4 Use the estimated velocity Un+1 to solve the pressure-
correction equation of PISO algorithm, get the pressure
field pn+1.

Step 5 Use the estimated pressure field pn+1 to calculate the
corrected velocity field vn+1.

Step 6 Use the corrected velocity field vn+1 to solve the con-
stitutive equation and the composition field evolving e-
quation (Eq. (1)) again to get the corrected stress field
and the corrected composition field.

Step 7 Repeat the steps 3-6, using the corrected variable vn+1,
pn+1, σσσve (⃗r, t)

n+1 and ϕ n+1
A as improved estimates until
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all corrections are negligibly small for the solutions at the
present time.

Step 8 Repeat from the step 1 and advance to the next time
step.

Here the superscript n and n+1 represent the past and the
present times, respectively. The numerical scheme solves the
non-linear governing equations in time and it is capable of
modeling the unsteady flow.

4 Results and discussions

The maximum lattice size of two-dimensional simulation box
in square shape is set to 2562. The top and bottom boundaries
are physical walls and periodic boundary condition is applied
to the other two sides of the box. Care has been taken in all
simulations to ensure that there are sufficient lattice sites (sev-
en at least) across the sharpest interfaces and also that the sim-
ulation results are independent of any further refinement of
lattice density. Note also that these simulations cannot repro-
duce any physical structure with length scale larger than the
simulation box.

For simplicity but without much loss of generality, the pa-
rameters are set as: MA = MB = 1, kBT = 1.3, Γ = 1, ς = 0.1,
η0 = 0.1. Thus the equilibrium phase diagram is always sym-
metric with respect to ϕA = 0.5. The critical point is at χ = 2.
Therefore, χ = 1.0 for the FH-RP fluid means far away from
the phase-coexistent region at equilibrium and the fluid is ho-
mogeneous for the entire composition range at this tempera-
ture.

A Gaussian random noise with an intensity of 10−3 was su-
perimposed on a specified initial uniform composition field
ϕ 0

A = 0.5 in all simulations reported here. Each component of
the viscoelastic stress tensor σσσve, including σσσ i, i = 1,2,3, are
initially set to zero. A wall velocity of U0 = γ̇(L/2) is applied
to the top and bottom walls in equal speed and opposite direc-
tion to achieve a required shear rate γ̇ , where L is characteristic
length (distance between the walls).

By choosing appropriate values for the parameters β , δ , Gi,
τ i

d and τ i
R, the FH-RP model exhibits different constitutive be-

haviour. Both of the monotonic and non-monotonic constitu-
tive relationships will be analyzed in the following sections.

4.1 Interface instabilities with a monotonic constitutive
equation

The CCR magnitude coefficient β is a control parameter on
the monotonicity of the constitutive equation and can be fit-
ted from experimental data. In comparison with the prediction
of the full molecular theory for polymer melts, Likhtman and
Graham28 used β = 0.5 for the transient data and β = 1 for the
steady state data. However in order to obtain a good fit of the

experimental data, they suggest that a small value for the CCR
parameter β should be used. Adams and Olmsted tune the pa-
rameter between 0.5 and 1 to generate either non-monotonic
or monotonic constitutive behaviour30,33. They usually set
Z = τd

3τR
> 260, which is much higher than the values need-

ed to observe phase separation experimentally, and β > 0.5 to
obtain constitutive curve with a broad plateau.

Kabanemi and Chung31,32 set a much lower value of β , and
in some cases β = 0 to produce non-monotonic constitutive
curve. In general, the value of β should be determined from
experimental data, hence allow the FH-RP model to capture
various physical features of complex fluids.

10
0

10
1

10
2

10
0

W
e

T
xy

/G
A

 

 

φ
A
=0.1

φ
A
=0.3

φ
A
=0.5

φ
A
=0.7

φ
A
=0.9

Simulation

Fig. 1 The scaled steady-state shear stress Txy versus We = γ̇τd
A

calculated by the homogeneous FH-RP model of various ϕA, as

indicated, with parameters β = 0.2, GA = 1.0 , GB = 4.0, τA
d

τA
R
= 20

and τB
d

τB
R
= 200.

The simulation results presented in this section are obtained
by setting the model parameters β = 0.2 and δ =−0.5, GA =
1.0 (GA

R = 0.1,GA
d = 0.9), GB = 4.0 (GB

R = 0.2,GB
d = 3.8),

τA
R = 1.0, τB

R = 0.01, τA
d

τA
R
= 20, and τB

d
τB

R
= 200 (i.e., ZA = 6.67,

ZB = 66.67). Those parameters give a strictly monotonic con-
stitutive equation for all values of ϕA, and define a binary poly-
meric system which is miscible under equilibrium condition
and shows shear-induce phase separation in a range of shear
rates. The steady state solutions of the model are calculated
by solving Eq.(9) to Eq.(14) under a fixed composition field
ϕA using the pre-defined ODE solvers available in MATLIB
and are shown in Fig. 1. The absolute differences between the
numerical results obtained from the OpenFOAM solver and
the MATLAB calculation for a homogenous Rolie-Poly fluid
are less than 0.003.

With this set of the parameters, all the constitutive curves
of homogenous fluid under various ϕA are monotonic as in-
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dicated in Fig. 1. There is no intrinsic constitutive instabil-
ity. Under low shear rate (We . 6.0), the calculated shear
stress and first normal stress difference exactly match the cor-
responding analytical results of homogeneous fluid (ϕA = 0.5).
The phase separation only occurs in a range of shear rates:
7.0 .We . 38.0, in which the homogeneous phase with initial
small composition fluctuation separates into A-component-
rich and B-component-rich phases in a form of shear bands.
In the higher shear rate region of We & 40.0, the simulation
results again coincide with the analytical calculations for a ho-
mogeneous fluid and no phase separation is observed over the
duration of our simulations. Fig. 1 shows that no stress plateau
exists. It was also reported in the previous study of the FH-JS
model24,25 and a liquid crystalline model51.

The transient behaviour corresponding to several points in
Fig. 1 are presented in Fig. 2(a) for shear stress and Fig. 2(b)
for first normal stress difference. Within the phase separation
region, the numerical results of the shear stress and the first
normal difference coincide with the theoretical solution of a
homogeneous FH-RP fluid but then turn into a two-phase so-
lution as a significant drop (the second drop in shear stress) of
Txy and N1 appears. It takes as long as 70τA to reach a steady
state.

Snapshots of the composition field at several instant during
phase separation for the case of We = 20.0 have been shown
in Fig. 4. The evolution of the shear rate field and the stress
field follow the same pattern as that of the composition field
shown in the figure. The letters a to j mark the points along
the transient stress curves in Fig. 2 which refer to the individ-
ual images in Fig. 4, respectively. From the evolution of com-
position field, there are two dynamical mechanisms by which
the shear bands reach to a steady state: diffusive mechanism
and convective through wave instability. They have also been
observed in a 30/70 polymer mixture24, but only a purely d-
iffusive mechanism was seen in 50/50 polymer mixtures25.
At t = 0, the composition is homogeneous. The significant-
ly stress dropping between points b and d in Fig. 2, corre-
sponding to Fig. 4(b)-4(d), shows the direct formation of fine
composition bands by nucleation and unstable wave structure
interacting with each other. At point d, the stress has reached
a low plateau but the composition field is still unstable. As
approaching to the steady state, there is an interesting dynam-
ical process observed between point e and g referring to the
snapshots shown in Fig. 4(e)-4(g): a wave structure breaks up
forming droplet, then the droplet interacts with the remaining
bands and subsequently forms into a coarser band. This phe-
nomenon explains the stress fluctuations in Fig. 2; It is not
only seen in this specific case for We = 20.0, but also for al-
l the cases shown in Fig. 2, fluctuations always appear along
with a process breaking wave into droplet then to much coars-
er band. From t = 30τA, the band structures gradually grow
via diffusive mechanism, and shortly after the small oscilla-

0 20 40 60 80 100

1

1.2

1.4

1.6

a b c

d e f g
h

i j

t/τ
d
A

T
xy

/G
A

 

 

W
e
=10.0

W
e
=20.0

W
e
=30.0

W
e
=35.0

0 1 2 3
0.6
0.8

1
1.2
1.4

90 92 94 96 98 100
0.8

1

1.2

(a) Transient shear stress

0 20 40 60 80 100

1.5

2

2.5

3

3.5

4

4.5

a b
c

d
e f g h i j

t/τ
d
A

N
1/G

A

 

 

W
e
=10.0

W
e
=20.0

W
e
=30.0

W
e
=35.0

0 1 2 3
1

2

3

90 92 94 96 98 100
1

2

3

(b) Transient f irst normal stress di f f erence

Fig. 2 Transient shear stress and first normal stress difference for
various values of the Weissenberg number We with parameters:

β = 0.2, GA = 1.0, GB = 4.0, τA
d

τA
R
= 20 and τB

d
τB

R
= 200

tion around t = 85τA corresponding to another wave to droplet
process, the shear bands get much coarser and far away from
each other. From t = 100τA, the remaining bands change very
little and reach the steady state.

It is worth to note that our numerical results show a dynam-
ic steady state, unlike the previous studies presenting a strictly
smooth shear bands with J-S model24,25, there are wavy band
structures moving with the flow without further coarsening.
Fig. 3 shows the composition profiles across the simulation
box. As seen in the top figure, the fluid formed into band struc-
tures and the maximum value of ϕA is less than 0.8 in steady
state. In order to reveal structural evolution of the unstable
interfaces, we plot the composition profile along the flow di-
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(a) t = 0 (b) t = 3.0τd
A (c) t = 5.0τd

A (d) t = 10.0τd
A (e) t = 21.4τd

A

(f) t = 22.4τd
A (g) t = 24.5τd

A (h) t = 30τd
A (i) t = 90τd

A (j) t = 100τd
A

Fig. 4 Snapshots of the composition field ϕA at various instant t for an initially homogeneous viscoelastic binary fluid of We = 20.0, β = 0.2,

GA = 1.0, GB = 4.0, τA
d
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Fig. 3 The composition profiles across the simulation box for a

binary fluid of We= 20.0 with β = 0.2, GA = 1.0, GB = 4.0, τA
d

τA
R
= 20

and τB
d

τB
R
= 200. (Top) Snapshots of composition along the shear

gradient(y) direction; (Bottom) Snapshots of composition along the
flow direction(x) near the band interface(y = 64) in the steady state

rection near the band interfaces, as shown in the bottom figure
of Fig. 3, which presents a typical moving pattern: a wavy
structure moves along the flow direction.

Recently, a growing body of data reveals that the shear
bands can fluctuate. Most of the observations suggest a wavy
structure oscillating between two bands. Many experimental
results identify such fluctuations in complex fluids9,52–57 and
the interface instabilities have also been observed in numeri-
cal studies with a diffusive J-S model27,55,58 and a two-species
model59. The simulation results demonstrate that the pro-
posed FH-RP model can capture the essential instabilities in
complex fluids through a thermodynamically consistent way.

4.2 Chaotic rheological responses with a non-monotonic
constitutive equation

In this section, we numerically study the dynamic phase sep-
arations in polymer mixtures with a typical non-monotonic
constitutive equation. To generate a non-monotonic consti-
tutive curve with a wide range of ϕA, the model parameters
are set as: β = 0 and δ = −0.5, GA = GB = 2.5, τA

R = 0.2,

τB
R = 0.01, τA

d
τA

R
= 100 and τB

d
τB

R
= 250. This defines a binary poly-

meric system with a non-monotonic constitutive behaviour. It
is miscible under equilibrium condition.

The intrinsic constitutive curves of various values of ϕA
have been presented in Fig. 5, all of which are non-monotonic.
The numerical simulation results of the shear stress have also
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Fig. 5 (Vertical bars) Fluctuation range of Txy versus scaled shear
rate We = γ̇τd

A for shear-induced phase separation with parameters

β = 0, GA = GB = 2.5, τA
d

τA
R
= 100 and τB

d
τB

R
= 250, along with the

corresponding constitutive curves for homogeneous FH-RP fluids of
various values of ϕA, as indicated.

been plotted in this figure. In the homogeneous range for low
shear rate (We . 7.0) and high shear rate (We & 80), the sim-
ulation results exactly coincide with the FH-RP constitutive
curve in a homogenous state, which are indicated by the cir-
cles in Fig. 5. Similar to the monotonic case, in the region of
8 . We . 77, flow-induced phase separation takes place and
the stress deviation is observed. Different from previous cases
in which the shear stress always can reach a steady state, in
this system the stress does not reach a steady value, but con-
tinuously fluctuates. The fluctuation range of the shear stress
is indicated with the vertical error bars in Fig. 5. Another sig-
nificant difference is that the flow curve of shear stress versus
shear rate is not linear as the monotonic case , but exhibits
some wavy structure within the phase separation region. This
may attribute to the large fluctuations in the simulations. In
order to check whether or not the final state achieved here, it
is necessary to use a much larger simulation box and this will
form part of our future research. However, in an experimental
study of associative polymer networks, Sprakel11 presented
similar fluctuations of the flow curves and their work revealed
rheochaos of the transient stress response, which is similar to
our simulation results.

The transient behaviour of the stress components at various
shear rates corresponding to several points in Fig. 5 are shown
in Fig. 6(a) for shear stress Txy and Fig. 6(b) for first normal
stress difference N1. Under low shear rate (We = 10), the mag-
nitude of the fluctuation is small. In the middle of the phase
separation region, such as We = 20 and We = 30, the fluctua-
tions become much larger. In even higher shear rate region, the
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Fig. 6 Transient shear stress and first normal stress difference
revealing rhechaos for various values of the Weissenberg number We

with parameters: β = 0, GA = GB = 2.5, τA
d
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R
= 100 and τB

d
τB

R
= 250

stress oscillation reduces as shown in the case of We = 40. If
looking into the detailed evolutions of the transient behaviour
of the stresses, it reveals some special patterns. For We = 40,
the stress continuously oscillates with the same amplitude and
periodically repeats similar patterns. Surprisingly, the case of
We = 20 shows a quite difference behaviour. Except for the
larger fluctuations, there is a quiet region in which the stress
oscillation vanishes.

Snapshots of the composition field during phase separation
for the case of We = 20 with a non-monotonic constitutive
curve are shown in Fig. 7. The letters a− j marked in Fig. 6
refer to the individual images in Fig. 7 and indicate the points
along the transient stress curves corresponding to each image.
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(a) t = 0 (b) t = 0.95τd
A (c) t = 2.37τd

A (d) t = 17.16τd
A (e) t = 17.51τd

A

(f) t = 19.05τd
A (g) t = 20.7τd

A (h) t = 61.36τd
A (i) t = 70.95τd

A (j) t = 100τd
A

Fig. 7 Snapshots of the composition field ϕA at various times t for an initially homogeneous viscoelastic binary fluid of We = 20.0, with

parameters: β = 0, GA = GB = 2.5, τA
d

τA
R
= 100 and τB

d
τB

R
= 250

At t = 0, the composition is homogeneous with a small ran-
dom noise. After the initial stress overshoot, at t = 0.95τA

d ,
the composition field forms smooth band structures. Short-
ly it is found that the flat bands have been broken as shown
in Fig. 7(c). From here, the chaotic stress response emerges,
and typical phase transitions corresponding to the rheochaos
can be seen in Fig. 7(d) to 7(g). At the beginning, the bands
stay with unstable interfaces, then a vortex structure emerges
within the central band, and this turbulence gradually subsides
at t = 20.7τA

d . We plot the snapshots of streamlines in Fig. 8
between t = 17.16τd

A and t = 20.7τd
A, from which we can

find a symmetric vortex clearly appearing within the central
band. This process repeat for a long period and lead to large
fluctuations in stress curves. Although the results in an exper-
imental study of telechelic polymers11 suggest that the fluctu-
ating stress is caused by interface instabilities, our simulations
reveal another possible cause: the vortex instability inside the
band structure. We hope more visualization experiments could
be conducted to confirm our observations in the future.

At t = 61.36τA
d , corresponding to a smooth region of the

stress curves showed in Fig. 6, the band structures also for-
m a more stable state in Fig. 7(h): the central band becomes
uniform with a smooth interface, and the fine bands near the
wall combine into darker ones after interacting with each oth-
er. This smooth region terminates at around t = 70.95τA

d , thus
the stress curves come back to the fluctuations. The compo-
sition field has been shown in Fig. 7(i) and 7(j). It is seen

that instabilities emerge within the central band, and it is still
unstable by t = 100τA

d . This particular intermittent rheochaos
have not been observed in the numerical studies with a FH-JS
model.

The visual impression of this vortex structure shown in
Fig. 7 and Fig. 8, are observed in all of the cases with large
rheological fluctuations. A more careful analysis is presented
in Fig. 9. It shows the average Fourier spectra of the intensity
reflected by composition field along the velocity direction in
the central of the simulation box, which exhibits power law de-
cay over one decade of frequency. Similar to the case of elastic
turbulence60,61, the power spectrum in wave vector seems to
approximately follow a power law up to kd ∼ 33(∆x)−1, where
∆x = L

256 is the lattice size in this study. The case of We = 10
shows significant difference from other cases in Fig. 9, as in-
dicated in the figure, the critical value k′d < kd . Compared to
other cases, with We = 10, we find that the stress fluctuation is
relatively small and the shear bands are more stable, and this
also leads to a much smaller vortex structure in the streamline
plot. Since k−1

d is related to the stress correlation length, we
may conclude that larger vortex and rheological fluctuations
are relevant to a smaller stress correlation length.

5 Conclusions

The two fluid model directly couples the viscoelastic stress
and the diffusive fluid composition, thus there is no need to
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(a) t = 17.16τd
A (b) t = 17.51τd

A

(c) t = 19.05τd
A (d) t = 20.7τd

A

Fig. 8 Snapshots of streamlines corresponding to typical rheochaos,
which clearly show a vortex structure emerges for an initially
homogeneous viscoelastic binary fluid of We = 20.0

introduce any diffusive stress term into the constitutive equa-
tions. In this study, we extend the FH-JS model by integrating
with Rolie-Poly constitutive model. Two-dimensional simula-
tions have been carried out and the numerical results for a typ-
ical monotonic and non-monotonic constitutive equation are
analyzed respectively, which show that our model can capture
the essential features of the shear-induced phase transitions in
binary polymer mixtures.

The simulations reproduce many dynamic phenomena re-
ported in literature, including the steady-state shear-banding,
the interface instabilities between the bands, and the dynam-
ic mechanisms to reach stable band structures. With a non-
monotonic constitutive equation, we have also observed that
the band structures are strongly unstable both in time and in
space. The stress continuously fluctuates in a chaotic manner.
The correlations between microstructure evolution and chaot-
ic rheological responses have been identified. Other than the
interface instability, our results reveal another possible cause
of the rheochaos: a vortex structure emerges within the central
band.

Coupled with a realistic constitutive model, the computa-
tional model presented here could provide valuable guidance
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Fig. 9 Average Fourier spectra for various We obtained on the wave
vector domain by computing Fourier transforms of the intensity
reflected by the composition field along the velocity direction at the
middle point, and then by averaging for different times. The two
solid lines are k−6.0 and k−1.2 fit respectively.

to new experimental work and could also be used to quan-
titatively study some outstanding problems by appropriately
selecting the parameters to mimic the real physical systems.
Motivated by many experimental observations, we hope to ad-
dress an in-depth quantitative study of the rheochaos in com-
plex fluids in future simulations, including large-scale three-
dimensional simulations.
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The numerical results of RP-FH model reveal another possible cause of the rheochaos: a vortex structure emerges within the
central band.
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