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We have numerically studied the nonlinear dynamics of aggregation of surfactant monomers 

in a micellar solution. The study has been done on the basis of a discrete form of the Becker-

Döring kinetic equations for aggregate concentrations. The attachment/detachment coeffi-

cients for these equations were determined from the extended Smoluchowski diffusion mod-

el. Three typical situations at arbitrary large initial deviations from the final aggregative 

equilibrium with coexisting premicellar aggregates, spherical and cylindrical micelles have 

been considered. The first situation corresponds to micellization in the solution where ini-

tially only surfactant monomers were present. Other two situations refer to nonlinear relaxation 

in the cases of substantial initial excess and deficit of surfactant monomers in solution over 

their equilibrium concentration in the presence of spherical and cylindrical aggregates. The 

interplay between non-equilibrium time-dependent concentrations of premicellar aggregates, 

spherical and cylindrical micelles in relaxation far from equilibrium has been found. The exist-

ence of ultrafast relaxation and possibility of nonmonotonic behavior of the monomer concen-

tration has been confirmed. Comparison with predictions of analytical kinetic theory of relaxa-

tion and micellization for concentration of monomers and total concentrations for spherical and 

cylindrical micelles has been given. It has been shown that the analytical theory is in fine 

agreement with the results of the difference Becker-Döring kinetic equations both for fast and 

slow nonlinear relaxation. 

 

 

Introduction 

Self-assembling of stable surfactant aggregates in micellar 

systems and relaxation of the ensembles of these aggregates to 

aggregative equilibrium are vivid examples of statistical be-

havior in complex systems initiated by the hydrophobic effect. 

Micelle formation, i.e. micellization, is a fundamental property 

of surfactants in solutions.1-4 Understanding thermodynamic 

and kinetic regularities of micellization opens new possibilities 

for experimental study and applications of micellar systems. It 

gives a key to design of new detergents, solvents and nanoreac-

tors. 

 In many aspects, micellization is similar to nucleation phe-

nomena.5 Its thermodynamics is governed by the work of ag-

gregation as a function of the aggregation number, surfactant 

concentration and temperature in the surfactant solution. Its 

kinetics via the stepwise molecular mechanism can be de-

scribed with the help of the Becker-Döring kinetic equations6 

initially proposed for nucleation kinetics. However the mi-

celles are not the nuclei of a new phase. Their thermodynamic 

models, as well as the rates of attachment-detachment of mon-

omers, are more complicated. With increasing the total surfac-

tant concentration, micelles of new shapes and sizes appear. 

Thus, in addition to the spherical micelles observed above the 

first critical micelle concentration (cmc1), cylindrical micelles 

are formed above the second critical micelle concentration 

(cmc2).  

 While a number of works on molecular modeling of micel-

lar systems via molecular dynamics and Monte Carlo methods 

increased significantly during last decades,7,8 studies of self-

aggregation kinetics via numerical approaches were relatively 

rare. One of the ways to address this problem is a stochastic 

simulation. A corresponding variant of Monte Carlo method, 

introduced by Gillespie9 and employed by other groups for the 

studies of micellar systems,10,11 gave a valuable information on 

micellization kinetics. 

 Mavelli and Maestro10 adapted Gillespie's general method 

for stochastic simulations of surfactant solutions. Their model 

for micelle formation allowed fusion and fission of the aggre-

gates with various aggregation numbers. A semi-empirical 

approach was used to determine kinetic constants. The results 

of the simulations appeared to be in good agreement with 
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Aniansson's kinetic theory12,13 which was the first application 

of the Becker-Döring equations to kinetics of micellar systems.

 Marrink et al11 investigated aqueous solution of do-

decylphosphocholine by molecular dynamics simulations. Dif-

fusion coefficients of the aggregates, their sizes, and corre-

sponding rate constants were obtained. Along with that, the 

results of the stochastic simulations carried out in Ref.11 

showed a discrepancy for the rate constants in comparison with 

the molecular dynamics data. 

 Micelle formation and disintegration are processes involv-

ing many time scales. A sophisticated model for treating these 

phenomena was proposed by Mohan and Kopelevich.14 This 

model provided a link between stochastic description of micel-

lar kinetics and underlying molecular mechanisms modeled by 

the molecular dynamics method. For a system of nonionic 

spherical micelles, the authors studied fast processes via the 

coarse-grained molecular dynamics. The attachment-

detachment rates were obtained from the Brownian dynamics 

simulations with the assumption of the dominant stepwise 

mechanism of the aggregate formation. These rates were later 

used in the kinetic equations describing the aggregation. Thus, 

a multi-scale model for micellar kinetics was formulated.  

 A description and numerical investigation of the possible 

aggregation models, even beyond the stepwise mechanism, for 

surfactant solutions was given by Starov et al.15 Four models 

denoted in Ref.15 as A, B, C, and D were considered. Accord-

ing to A and B models, aggregation/disaggregation occurs 

symmetrically by attachment/detachment of single surfactant 

molecules (A) or clusters of arbitrary size (B). Models C and D 

describe an asymmetric mechanism: clusters of any size can 

associate but only single molecules can leave aggregates (C), 

or opposite (D). Analytical and numerical treatment of the ki-

netic equations showed15 that C was the only model yielding a 

transition from the equilibrium distribution of the low sized 

clusters to the bimodal distribution of premicellar aggregates 

and micelles above the critical surfactant concentration. 

 Here we will be interested in results based on the approach 

with direct numerical solution of the difference Becker-Döring 

equations for non-equilibrium aggregate concentrations in the 

kinetics of micellization and relaxation. Initially this approach 

has been developed for spherical micelles.12,13,16-25 In Refs.26,27 

the approach had been extended to the case of mixed and ionic 

spherical micelles. Last years the kinetic description in frame-

works of the Becker-Döring equations has been extended to 

systems with cylindrical micelles and coexisting spherical and 

cylindrical micelles.28-35  

 We will focus in this paper on description of aggregation 

dynamics in a micellar solution with coexisting premicellar 

aggregates, spherical and cylindrical micelles at large initial 

deviations from the final equilibrium. The description is as-

sumed to be a complete, i.e., to give a total behavior of the 

system since initial moment to establishing final equilibrium 

state. A similar approach has been recently applied by us to 

systems with spherical micelles25 and systems with cylindrical 

micelles.34 However, a kinetic behavior far from equilibrium in 

the systems with coexisting premicellar aggregates, spherical 

and cylindrical micelles has not yet been considered in the 

literature. As follows from the study of exponential relaxation 

at small deviations from final equilibrium,35 there are several 

different time scales in such systems determining fast and slow 

processes. At large deviations from final equilibrium, one may 

expect an appearance of additional time scales as a result of 

considerable interplay between aggregates of different shapes 

and sizes in their consumption and emission of surfactant 

monomers. A question arises about the direct influence of ini-

tial conditions on the total kinetic behavior of micellar sys-

tems. It will be also of interest to compare the numerical re-

sults with the analytical ones for the nonlinear continuous 

Becker-Döring kinetic equation for such complex sys-

tems.28,31,32 

 The paper is organized as follows. The nonlinearized dif-

ference equations of stepwise aggregation with models for 

their coefficients are considered in Section 1. The time-

dependent behavior of concentrations of aggregates with dif-

ferent aggregation numbers in three typical situations far from 

final equilibrium is analyzed in sections 2 - 4. In Section 2, the 

case of solutions with total surfactant concentration exceeding 

the cmc2 and with zero initial concentrations of spherical and 

cylindrical micelles is considered. In this case we observe a 

proper micellization with formation of premicellar aggregates, 

stable spherical micelles and cylindrical micelles. Time evolu-

tion of aggregate concentrations in the course of relaxation in 

the case of substantial initial excess of surfactant monomers is 

present in section 3. The case of substantial initial deficit of 

surfactant monomers is considered in section 4. Sections 3 and 

4 include also a comparison with predictions of analytic non-

linear kinetic theory of self-aggregation and relaxation. Con-

clusions are made in the last section. 

 

1. Kinetic equations of self-aggregation 

 

Kinetics of stepwise formation and fragmentation of aggre-

gates with different aggregation numbers n , including mono-

mers as a particular case of aggregates with 1n = , is governed 

by the system of the Becker-Döring difference equations for 

non-equilibrium aggregate concentrations ( )nc t  as functions 

of time t .5,6,21,23,24 For a closed system with fixed total surfac-

tant concentration 
m

1

n

n

n

C= nc
=
∑ and finite upper aggregation 

number mn , the Becker-Döring difference equations can be 

written as25,34,35 

 ( )
1

1
1 1 1

1

mn

n n n n

n

c
= a c c b c

t

−

+ +
=

∂
− −

∂ ∑ ,  (1) 

 22
1 1 2 2 2 1 2 3 3

1

2

c
a c b c a c c b c

t

∂
= − − +

∂
, (2) 

 1 1 1 1 1 1
n

n n n n n n n n

c
=a c c b c a c c b c

t
− − + +

∂
− − +

∂
,  m= 3,n nK .    (3) 
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Here na  are the aggregate-monomer attachment coefficients, the 

aggregate-monomer detachment coefficients 1
1

1

n
n n

n

c c
b a

c
+

+

=
% %

%

 are 

expressed via the detailed balance relations through na , the Boltz-

mann distribution 1nc +%  and the monomer concentration 1c%  in the 

state of final equilibrium of the micellar solution, 

 1 1
nnW n W

nc c e c e− −= =% .       (4) 

We will distinguish the proper aggregation work 
nW  (free energy 

of aggregate formation expressed in thermal energy units Bk T  

where Bk  is the Boltzmann constant and T  is the absolute tem-

perature of solution) and the shifted aggregation work 

( ) 11 lnn nW W n c= + −  which depends only on aggregation number 

n  in the case of ideal mixture of aggregates. Here and below, the 

monomer concentration 1c  is assumed to be dimensionless and 

measured in units of the monomer concentration at which n nW W= .  

 A micellar solution with coexisting premicellar aggregates, 

spherical and cylindrical micelles exists at the total surfactant 

concentration in the vicinity and above the cmc2. A corresponding 

model equilibrium distribution nc%  had been previously considered 

in literature.28,35-38 The aggregation work 
nW at such total surfactant 

concentrations should have as a function of aggregation number two 

maxima at points 
( )1
cn  and 

( )2
cn , two minima at points 

( )1
sn  and 

( )2
sn and slowly increasing linear tail at 0n n> . Such model func-

tion generalizes the models for the work 
nW which we have recently 

used for separate kinetic modeling of spherical and cylindrical mi-

celles.33,34 Evidently, the values 
( )1
cn , 

( )2
cn , 

( )1
sn ,

( )2
sn , and 0n  de-

pend on the surfactant monomer concentration. Taking parameters 

of the model in such way that monomer concentration 1 1c =  corre-

sponds to the total concentration in the vicinity of cmc2, we propose  

 

4/3 2/3 (1)
1 2 3

(1) 4 (1) 3 (1) 2 (1) (1)
1 2 3 0

0 0 0

( 1) ( 1) ( 1) , 1 ,

= ( ) ( ) ( ) , ,

( ) , .

s

n s s s s s

w n w n w n n n

W v n n v n n v n n W n n n

k n n W n n

 − + − + − ≤ ≤


− + − + − + ≤ ≤
 − + >

  (5) 

Here the values 
( )1
sn ,

( )2
sn , and 0n  coincide with the values 

( )1
sn ,

( )2
sn , and 0n  at the monomer concentration 1 1c = , 

(1)
sW is the 

value of the first minimum of the work nW , 
0

0 n n n
W W

=
≡ . It is 

assumed in eq.(3) that work nW  for aggregates with aggregation 

numbers 
( )1
sn n≤  corresponds to the simplified droplet model for 

spherical aggregates25,39 with maximum at 
( )1
cn  and minimum at 

( )1
sn , while the work at 0>n n  refers to the linear model28,34,35 for 

cylindrical aggregates. In the transient (from spherical to cylindrical 

aggregates) range 
( )1

0sn n n< „ , we use a polynomial interpolation 

having a maximum at 
( )2
cn  and two minima at 

( )1
sn  and 

( )2
sn . As 

the parameters of the work nW , we have fixed several characteristic 

points: the locations 
( )1
sn  and 

( )2
sn of two minima of the work, the 

values 
(1)
sW  and 

(2)
sW  of these minima and the values 

(1)
cW  and 

(2)
cW  (

(1) (2)
c cW W> ) of the maxima of the work (but not the loca-

tions of these maxima). These six conditions determine six parame-

ters iw  and iν  ( = 1,2,3)i , while additional two conditions of 

continuity of function nW  and its derivative with respect to aggre-

gation number at 0=n n   at fixed k  determine 0n  and 0W . Selec-

tion of the point of minimum 
( )1
sn  as a point of patching the droplet 

and transient models is convenient for finding the parameters of the 

aggregation work. However it has a major drawback because it does 

not ensure equality of second derivatives of the model functions at 

the minimum and makes asymmetric potential well even for small 

deviations from the minimum point. Nevertheless we can minimize 

the degree of this asymmetry and consider the following set of fixed 

parameters determining work nW : 

 
(1)

= 15cW , (1) = 100sn , 
(1)

= 5sW ,  

     
(2)

= 14cW , (2) = 300sn , 
(2)

= 9sW , = 0.01k . (6) 

As a consequence, other parameters entering eq.(5) are 

(1) = 16cn , (2) = 211cn , 1 = 0.4317w , 2 = 4.0955w − ,    

3 = 9.9403w , 8
1 = 6.8358 10v −⋅ , 5

2 = 2.8343 10v −− ⋅ , 

3
3 = 3.0343 10v −⋅ , 0 = 301n ,    0 = 9.0025W . (7) 

 It is possible to say that fixing the values of the aggregation 

work parameters we fix the properties of surfactant and solu-

tion. We chose these values as quite representative, for in-

stance, for water solutions of nonionic surfactants of the alkyl 

poly(ethylene glycol) type.40 The results of computations with 

the help of eqs.(1)-(3) are sensitive to these values as they 

should be sensitive to a specific surfactant. Shift in these val-

ues will change the values of cmc1 and cmc2. 

  

 

Fig.1 The micellization work nW  as a function of the aggregation 

number n . 

  The detailed behavior of work nW  as a function of aggrega-

tion number n  is shown in Fig.1. The asymmetry of the work 

in the vicinity of minimum at 
( )1
sn n=  is small. Maximal value 
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mn  of the aggregation number for work nW  is = 3500mn . This 

value was chosen to provide that the main part of surfactant 

(more than 99,97%) is gathered in equilibrium in aggregates 

with  1 mn n≤ ≤ . 

 The equilibrium monomer concentration for the micellar 

system at cmc2 can be determined from the condition that the 

total number of surfactant molecules in cylindrical micelles 

equals at equilibrium 10 percent of the total surfactant concen-

tration. This condition can be written in the form 

 
( )

m m

2 =1=

0.1

c

n n

n n

nn n

nc nc =∑ ∑% %  . (8) 

Solving eq.(8) after substituting eqs.(4)-(7) gives 

21( ) = 0.9977cmcc% .   

  The kinetic model for the aggregate-monomer attachment 

coefficients na  should correspond to the model for the aggre-

gation work nW  and be different for spherical aggregates at 

aggregation numbers 
( )1

1 sn n≤ ≤ , for transient aggregates at 

aggregation numbers (1)
0sn n n≤ ≤ , and for cylindrical aggre-

gates at 0>n n . Such a model has been considered in Refs.34,35 

Under assumption of the Brownian diffusion kinetics41 for 

molecular aggregates and monomers in solution, attachments 

of monomers to a spherical aggregate occur with a stationary 

diffusion rate. This rate can be written as 

( )( )1 1n n na R R D D∝ + +  where nR  and nD  represent the radi-

us and the diffusion coefficient of aggregate { }n  in surfactant 

solution. With using the Stokes–Einstein formula for diffusivi-

ties of spherical aggregates, 1n nD R∝ , and the droplet model 

for the dependence of aggregate radius on n  in the form 
1 3

nR n∝ , we have at 
( )2

1 cn n<< < : 1 3
na n∝ .25 At 0n n≥  the 

diffusivities of cylindrical micelles become small. Then it is 

sufficient for calculation of na  to find the stationary flux of 

monomers onto immobile cylindrical body in polar coordi-

nates. This flux will be proportional to the length of the cylin-

drical body. Since the radius of the body is fixed for cylindrical 

micelles, the length of the body itself is proportional to the 

aggregation number n . Thus we have 
na n∝  at 0>n n .34 In 

view of the above consideration, we will use the following 

continuous model for the attachment coefficients na  at arbi-

trary n : 

 
1 3 2 3

0

0

( )
=n

n n n
a

n

+
,  1 1mn n≤ ≤ − , 0

mn
a = . (9) 

This formula matches the asymptotic cases for spherical aggregates 

at 0n n<<  and for cylindrical aggregates at 0>n n> . It includes the 

specific factor coming from the proportionality constants as a scale 

into the quantity na . As is clear, the attachment coefficient na  

should have a dimensionality of reciprocal time. Representation of 

the quantity na  in the form (9) means that we consider a dimen-

sionless time. 

 In our study of initially large deviations of non-equilibrium state 

of the micellar system with coexisting premicellar aggregates, 

spherical and cylindrical micelles, the concentrations of aggre-

gates at arbitrary moment of time t can be represented in view of 

eq.(4) as 

 ( ) 1( ) = ( )exp( )n
nn nc t A t c t W− . (10) 

Here the pre-exponential factor ( )nA t  tends to 1 and 
1 1( )c t c→ %  as 

t → ∞ . In view of eq.(10), the initial distribution of surfactant ag-

gregates in solution is characterized as 

 ( ) 1(0) = 0 (0)exp( )n
nn nc A c W− . (11) 

As follows from eqs.(4) and (10), the pre-exponential factor ( )nA t  

has a meaning of the aggregate distribution in aggregation number 

normalized to the quasi-equilibrium distribution at current monomer 

concentration 
1( )c t . Deviation of quantity nA  from unity indicates 

a nonequilibrium state of micellar solution. If ( )nA t  appears to be 

independent on n  in some range of aggregation numbers, the mi-

cellar system approaches a locally quasi-equilibrium state in this 

range.  

2. Micellization at initial zero concentrations of   

aggregates with 1>n  
 

First we will consider dynamics of micellization, i.e., transition in 

the surfactant solution to final equilibrium at total surfactant con-

centration above the cmc2 in the situation when initially the solution 

contains only surfactant monomers. Thus we set 

 ( ) 10n nA δ=  (12)  

in eq.(11) for the distribution (0)nc  which serves as initial condi-

tion for eqs.(1)-(3). 

 

Fig.2 Normalized aggregate distribution ( )
n

A t  at different stages of 

micellization at ( )
1

0 73.474c =  and 
1

1.004c =% . 
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  Solving eqs. (1)-(3) simultaneously with initial condition (12) 

and the coefficients na  determined according to eqs.(4)-(7),(9) at 

( )1 0 73.474c =  and 
1

1.004c =%  (
21 1( ) = 0.9977cmcc c>% % ), we have 

computed aggregate concentrations ( )nc t  as functions of time at 

any aggregation number n . The corresponding behavior of the 

normalized aggregate distribution ( )nA t  at different time scales is 

shown in Fig.2. 

 In addition, the whole picture of micellization and its stages 

can be illustrated by dependences on time of the monomer 

concentration
1( )c t , total concentration ( ) ( )

{ }
SM n

n SM

C t c t
∈

≡ ∑  of 

spherical and total concentration ( ) ( )
{ }

CM n

n CM

C t c t
∈

≡ ∑  of cy-

lindrical micelles shown in Fig.3. The range { }SM  of aggrega-

tion numbers for spherical micelles lies in the vicinity of first 

maximum of the aggregate distribution, while the range { }CM  

of aggregation numbers for cylindrical micelles extends from 

the vicinity of second maximum of the aggregate distribution 

to number mn . For quasi-equilibrium and equilibrium states 

we can write { } ( ) ( )( )1 2
,c cSM n n=  and { } ( )2

( , ]c mCM n n= . 

 The large concentration of monomers at the beginning of 

micellization provides that initial value of 
( )1
cn  is very small. 

As a result, the activation barrier for passing from monomers 

to spherical micelles is low.5,21 All of this enables a very fast 

and intensive formation of spherical aggregates with consump-

tion of monomers until the monomer concentration drops from 

( )1 0 73.474c =  to its intermediate value 1 1.2c ≈ . It occurs to 

the moment of time 70t ≈ . In Fig.3, the total concentration of 

spherical micelles reaches its maximal value 2.2939SMC =  to 

the same moment of time. After that to the moment of time 
23 10t ≈ ⋅ , the monomer concentration continues to decrease to 

its minimal value 1 0.8631c = , lying considerably below the 

final value 1 1.004c =% . Thus the monomer concentration 
1( )c t  

and the total concentration ( )SMC t  of spherical aggregates 

demonstrate a nonmonotonic time behavior. There is no visible 

change in total concentration of cylindrical aggregates of such 

times. 

 The nonmonotonic behavior of the total concentration of 

the spherical micelles and the monomer concentration can be 

commented in the following way. With decreasing the mono-

mer concentration during the initial stage, the current value of 
( )1
cn and the activation barrier for passing from monomers and 

premicellar aggregates to spherical micelles grow. As a result, 

a number of stable spherical aggregates which have been 

formed from the very beginning turn back to be premicellar 

aggregates. The number of cylindrical micelles stays to be very 

small at this stage. For times larger than 23 10t ≈ ⋅  but less than 
36.5 10t ≈ ⋅ , we observe in the first slides of Figs.2 and 3 an 

increase of the monomer concentration due to detachment of 

monomers from premicellar and micellar aggregates and a 

decrease of the total concentration of aggregates, especially 

with small aggregation numbers. Larger aggregates grow due 

to disintegration of smaller premicellar aggregates. At the same 

time, the normalized aggregate distribution ( )nA t  tends to be 

independent of aggregation number n  in the region of spheri-

cal micelles, and this means establishing a local equilibrium in 

 
Fig.3 The monomer concentration ( )1

c t , the total concentration 

( )SM
C t of spherical micelles  and the total concentration ( )

CM
C t  of 

cylindrical micelles at different stages of micellization at 

( )
1

0 73.474c =  and 
1

1.004c =% . 
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this region. Still there is only a small number of cylindrical 

micelles on this stage of micellization. As follows from the 

second slide in Fig.2, the number of cylindrical micelles be-

comes significant on time scale 510t∆ ≈ , and up to the mo-

ment of time 54.3 10t ≈ ⋅  we observe approaching ( )nA t  to a 

horizontal line in the region of cylindrical micelles, i.e., estab-

lishing the local equilibrium in this region.  

 Since the horizontal linear parts of ( )nA t  are different in 

the regions for spherical and cylindrical micelles on the third 

slide in Fig.2, the local aggregate equilibriums for these mi-

celles are also different and merge only to moment of time 
76 10t ≈ ⋅ . It is not a complete equilibrium, because the equilib-

rium of micelles with monomers and premicellar aggregates is 

not yet reached. The complete equilibrium is achieved at times 
810t >  when equality ( ) 1nA t =  holds everywhere. 

3. Relaxation at large initial excess of monomers 

Let us now turn to the case of large initial excess of surfactant 

monomers in comparison to the equilibrium concentration of 

monomers. Spherical and cylindrical aggregates are also pre-

sent at the initial moment of time.  

 We determine initial distribution of aggregates in the aggrega-

tion number in the form 

 ( ) ( ) ( )

( ) ( )

1

1

1

1

0 1

1

m

n

m
l

n

k
W c k

n n n
W c

l

l

kc

c c

lc

η

η

− =

−

=

= +

+

∑

∑

%

%

%

%

%

. (13)  

 

Fig.4 Initial aggregate distribution ( )( )0n n nc c c− % %  in aggregation 

number at 0.1=η  and 
1

1.004c =%  ( ( )
1

0 1.8971c = ). 

 

Here η  is a perturbing parameter and nc%  is the equilibrium distri-

bution (4) of the aggregates at the same temperature and total sur-

factant concentration as for unperturbed system. Last factor with the 

ratio of sums in eq.(13) ensures that the total surfactant concentra-

tion C  satisfies equality ( )
1 1

0
m mn n

n n

n n

C nc nc
= =

= =∑ ∑% . At 0η =  there is 

no disturbance, and ( )0n nc c= % . At 0.1η =  and 1 1.004c =% (this 

monomer concentration corresponds to 73.474C = ) it follows from 

eq.(13) that ( )1 0 1.8971c = . This allows us to choose the value  

0.1η =  as providing a large initial excess of surfactant monomers. 

At  0.1η =  the relative deviation of the aggregate concentrations 

( )( )0n n nc c c− % % has the form shown in Fig.4. 

 In view of eqs.(4), (11) and (13), the initial value of the 

pre-exponential factor ( )nA t  in eq. (10) can be written now as  

 ( )
( )

( ) ( )

( ) ( )

1

1

11

1

1

0 1
0

1

m

n

m
l

n

n k
W c k

n n
W c

l

l

kc
c

A
c

lc

η

η

− =

−

=

 
= + 

  +

∑

∑

%

%

%

%

%

. (14)  

 Solving numerically eqs.(1)-(3) with initial condition (13) at 

0.1η =  and the coefficients defined according to eqs.(4)-(7),(9) at 

( )1 0 1.8971c =  and 
1

1.004c =%  (thus 
21 1( ) = 0.9977cmcc c>% % ), we 

have found the relaxation behavior of the normalized aggregate 

distribution ( )nA t  at different times as shown in Fig.5. 

 

 
Fig.5 Normalized aggregate distribution ( )

n
A t  at different stages of 

relaxation at 0.1=η  and 
1

1.004c =%  ( ( )
1

0 1.8971c = ). 
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Fig.6 The monomer concentration ( )1

c t , the total concentration 

( )SM
C t of spherical micelles  and the total concentration ( )CM

C t  of 

cylindrical micelles at different stages of relaxation at 0.1=η  and 

1
1.004c =% . 

 

 As follows from the first slide in Fig.5, function ( )nA t  be-

comes independent on n  in the range 1 10n = ÷  to the moment 

of time 25.5 10t = ⋅ . Thus the quasi-equilibrium distribution of 

premicellar aggregates establishes very fast. Then, to the mo-

ment of time 32.1 10t = ⋅ , we can observe establishing a quasi-

equilibrium state for spherical aggregates within range 

30 170n = ÷ . Almost the same time is required for establishing 

the quasi-equilibrium state of smallest cylindrical micelles 

within the range 230 500n = ÷ . With increasing the time, the 

states of the aggregate distribution in these ranges of aggrega-

tion number stay to be quasi-equilibrium. However the total 

numbers of spherical and cylindrical micelles change due to 

transitions over potential peak of the aggregation work be-

tween spherical and cylindrical aggregates. These transitions 

cause displacement of the local horizontal linear parts of distri-

bution ( )nA t  in a vertical direction.  

  The second slide in Fig.5 shows that the micellar system on 

the next stage of evolution tends to establishing of local quasi-

equilibrium in the whole range of aggregation numbers for 

cylindrical micelles, 230 3500n = ÷ . This stage ends to the 

moment of time 61.2 10t = ⋅ .  

 The final stage of micellar relaxation is shown in the third 

slide in Fig.5. We observe here two different linear parts of 

function ( )nA t  decreasing to the moment of time 77.9 10t = ⋅ to 

the join value. These parts relate to the quasi-equilibrium dis-

tributions of spherical and cylindrical micelles, respectively. 

The join plato for spherical and cylindrical micelles merges in 

the final equilibrium distribution with concentrations of mon-

omers and premicellar aggregates to moment of time 
81.5 10t = ⋅ . 

 To make more clear the whole picture of evolution of the 

micellar system with coexisting spherical and cylindrical mi-

celles at large initial excess of surfactant monomers, let us 

analyze in addition the dependences on time for the monomer 

concentration 
1( )c t , total concentration ( )SMC t  of spherical 

and total concentration ( )CMC t  of cylindrical micelles. These 

dependences follow from the computations of separate aggre-

gate concentrations ( )nc t and are shown in Fig.6. 

 As is seen from Figs.5 and 6, establishing the quasi-

equilibrium distribution of premicellar aggregates to the mo-

ment of time 25.5 10t = ⋅  is accompanied by the rapid drop of 

the surfactant monomer concentration from ( )1 0 1.8971c =  to 

1 1.0082c = . Subsequent decrease in the monomer concentra-

tion is slower. At the value 1 1.004c =
(

which practically coin-

cides with the final equilibrium value 1c% , establishing a quasi-

equilibrium state for spherical aggregates within range 

30 170n = ÷ occurs to the moment of time 32.1 10t = ⋅ . On larg-

er time scale, we observe further slow drop of the monomer 

concentration below its equilibrium value and then slow 

growth back to the equilibrium value. Thus the total behavior 

of the monomer concentration ( )1c t  turns to be non-

monotonic. We observed a similar behavior of the monomer 

concentration in the previous section when considered micelli-

zation at initial zero concentrations of spherical and cylindrical 

micelles. Such similarity in the results for the monomer con-

centration is not surprising. The micellar system in presence of 

large aggregates with high aggregate-monomer attachment rate 

1na c  and detachment rate 1 1 1n n n nb a c c c+ += % % %  becomes an inert 

one.  By contrast, the time behavior of total concentrations of 

spherical micelles ( )SMC t  and ( )CMC t  appear to be monoton-

ic in the considered case, ( )SMC t  drops from 
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( )0 0.44032SMC =  to 0.37991SMC =%  while ( )CMC t  grows 

from ( )0 0.063248CMC =  to 0.076841SMC =% . It is seen from 

Fig.6, that there is no change in the concentrations ( )SMC t  and 

( )CMC t until the moment of time 41 2 10t = ÷ ⋅ . This allows us 

to consider the corresponding stage of micellar relaxation as 

the fast relaxation stage.12,13,30-32 It is not characterized by pure 

exponential dependence on time, and the deviations of the 

monomer concentration from its quasi-equilibrium value 1c
(

 on 

this stage are nonlinear. Another stage when the total concen-

trations ( )SMC t  and ( )CMC t slowly approach their values at 

final equilibrium can be called a slow relaxation stage.28,32 It is 

also the stage with nonlinear deviations of the monomer and 

micellar concentrations from their final equilibrium values, 

which demonstrates non-exponential behavior. 

 One of the goals of this study is to compare the numerical 

results obtained from the difference Becker-Döring equations 

for nonlinear micellar relaxation in solutions of coexisting 

spherical and cylindrical micelles with the analytical ones. An 

analytical theory for fast and slow relaxation in such complex 

systems was built on the basis of the continuous Becker-

Döring kinetic equation.28,31,32  

 The set of two coupled equations had been derived in 

Ref.31 for evolution of coexisting spherical and cylindrical 

micelles on the stage of fast relaxation. In our notation, it can 

be rewritten as 

( )
1 1 1 12

1 1

2
SM

SM SM CMSM SM
n

SM

C Cd
M = a c M M

dt c cn

  
  ∆ − + ∆ + ∆
  ∆  

(

( (

( (

( (
(

, (15)  

  
1

1 1
1

1
CMnCM CMCM CM

CM CM

a c C nd
M = M

dt n c n

 
∆ − + ∆ + ∆ 

(

(( (
(

( ( (
 

 ( )1 1 1 1
1

SM SM CM CMCM CMC n
M M M M

c


+ ∆ + ∆ + ∆ ∆ 



(
(

(
, (16)  

where 

 ( ) ( )
{ }

1
1

1SM
n n

n SM

M t n c t c
c ∈

∆ ≡ −  ∑ (

(
, (17)  

 ( ) ( )
{ }

1
1

1CM
n n

n CM

M t n c t c
c ∈

∆ ≡ −  ∑ (

(
, (18)  

 
( )

( )2

1
=

1 c

c

n

n n

SM n
SM

n c n
C

≡ ∑
(

(

( (

( ,    ( )
( )

( )

( )
2

1
=

2 21 c

c

n

n n

SM n SM
SM

n c n n
C

∆ ≡ −∑
(

(

( ( (

( , (19)  

 
( )2

=

1 m

c

n

n n

CM n
CM

n c n
C

≡ ∑
(

( (

( ,   ( )
( )

( )
2

=

2 21 m

c

n

n n

CM n CM
CM

n c n n
C

∆ ≡ −∑
(

( ( (

( . (20)  

It follows from the condition of surfactant matter balance 

m m

1 1

n n

n n

n n

C= nc nc
= =

=∑ ∑ (

 that the quantities ( )1
SMM t∆ and ( )1

CMM t∆  

are related to the monomer concentration ( )1c t as 

 
( ) ( ) ( )1 1

1 1
1

SM CMc t c
= M t M t

c

−
−∆ − ∆

(

(
. (21)  

 Simultaneous solving eqs. (15), (16) with initial conditions 

( ) ( ) ( )1
1

0
0 0

SMSM
SM SM

C
M n n

c
∆ = −  

(

(
,     ( )0SM SMC C=

(

, (22)  

( ) ( ) ( )1
1

0
0 0

CMCM
CM CM

C
M n n

c
∆ = −  

(

(
,    ( )0CM CMC C=

(

, (23)  

and substituting the result on the right-hand side of eq. (21) 

gives the function ( )1c t  shown in the first slide in Fig.6 by 

hollow circles. As is seen, the curves for the monomer concen-

tration obtained by two approaches coincide for the stage of 

nonlinear fast relaxation. 

 In the case of nonlinear slow relaxation, we will use the 

formulation of the analytical theory done in Refs.28,32 In our 

notation, we have the following three equations describing the 

slow evolution of the monomer concentration ( )1c t  and the 

total concentrations of spherical micelles ( )SMC t  and cylindri-

cal micelles ( )CMC t : 

 ( )1 1 2 2
SMdC

J J J J
dt

′ ′′ ′ ′′= − − − ,  (24)  

  2 2
CMdC

J J
dt

′ ′′= − , (25) 

   
( ) ( )

1

2 2

1 11

SM SM CM CM

SM SM CM CM

n dC dt n dC dtdc

dt n C c n C c

+
= −

+ ∆ + ∆
, (26) 

where 1J ′  and 2J ′  are the quasi-steady direct fluxes of ag-

gregates over the first and second potential peaks of the ag-

gregation work as a function of aggregation number, and 1J ′′  
and 2J ′′  are the corresponding backward fluxes. These fluxes 

can be determined as  

 ( )

( )( )
( )1

1

2
1 1 11 2

exp

c

c

n
c

W
J a c

n

−
′ =

π ∆
,  (27)  

  ( )

( )( )
( ) ( )

{ }

1

1

1 1 11 2

exp 1

expc

c

SMn
nc

n SM

W
J a c C

Wn
∈

−
′′ =

−π ∆ ∑
, (28) 

   ( )

( )( )
( ) ( )

{ }

2

2

2 1 21 2

exp 1

expc

c

SMn
nc

n SM

W
J a c C

Wn
∈

−
′ =

−π ∆ ∑
, (29) 

 ( )

( )( )
( ) ( )

{ }

2

2

2 1 21 2

exp 1

expc

c

CMn
nc

n CM

W
J a c C

Wn
∈

−
′′ =

−π ∆ ∑
, (30) 

 
{ }

1
SM n

SM n SM

n c n
C ∈

≡ ∑ ,  ( ) ( )
{ }

2 21
SM n SM

SM n SM

n c n n
C ∈

∆ ≡ −∑ ,  (31)  

 
{ }

1
CM n

CM n CM

n c n
C ∈

≡ ∑ ,   ( ) ( )
{ }

2 21
CM n CM

CM n CM

n c n n
C ∈

∆ ≡ −∑ , (32)  
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( )( )

( )1

2
1 2

c

c
n n n

n
W

=

∆ ≡
′′

,         
( )( )

( )2

2
2 2

c

c
n n n

n
W

=

∆ ≡
′′

. (33) 

The definitions of fluxes in eqs.(28)-(30) slightly differ from 

those in Refs.28,32 by last factors. Instead of using the Gauss 

approximation for the aggregation work in the vicinity of the 

first potential well of the work and the Poisson approximation 

for the aggregation work for cylindrical aggregates at 
( )2
cn n> , 

we have used here the formula ( ) 11 lnn nW W n c= − −  with work 

nW determined by eq.(5). 

 Simultaneous solving eqs. (24)-(26) with initial conditions 

 ( )1 10c c= (

,     ( )0SM SMC C=
(

,   ( )0CM CMC C=
(

 (34)  

gives the functions ( )1c t , ( )SMC t  and ( )CMC t  shown in Fig.6 

by symbols × . As is seen, the curves for these concentrations 

obtained by the solution of the difference Becker-Döring equa-

tions and by solution of eqs. (24)-(26) are in a fine agreement 

for the stage of nonlinear slow relaxation at initial excess of 

surfactant monomers. 

4. Relaxation at large initial excess of surfactant 

matter in aggregates 

By contrast to the linear deviations, relaxation at nonlinear 

deviations from the final state reveals different behavior with 

changing the sign of initial deviation. Let us now consider the 

situation of large initial deficit of surfactant monomers in 

comparison to the final equilibrium state of the micellar system 

with coexisting spherical and cylindrical aggregates. This situ-

ation is opposite to the case analyzed in the previous section. 

 

 

Fig.7 Initial aggregate distribution ( )( )0n n nc c c− % %  in aggregation 

number at 0.1η = −  and 
1

1.004c =%  ( ( )
1

0 0.46853c = ). 

 

 We still can set initial distribution of aggregates in the aggrega-

tion number in the form of eq.(13). We provide ( )1 10c c< %  in eq.(13) 

if we take negative values of the perturbing parameter η . At 

0.1η = −  and 1 1.004c =% ( 73.474C = ) it follows from eq.(13) that 

( )1 0 0.46853c = .  

 At  0.1η = −  the relative deviation of the aggregate concentra-

tions ( )( )0n n nc c c− % % has the form shown in Fig.7. 

 Solving numerically eqs.(1)-(3) with initial condition (13) at 

0.1η = −  and the coefficients defined according to eqs.(4)-(7),(9) at 

( )1 0 0.46853c = and 
1

1.004c =%  (
21 1( ) = 0.9977cmcc c>% % ), we have 

found the relaxation behavior of the normalized aggregate distribu-

tion ( )nA t  at different times as shown in Fig.8.  

 
Fig.8 Normalized aggregate distribution ( )

n
A t  in aggregation num-

ber at different stages of relaxation at 0.1η = −  and 
1

1.004c =%  

( ( )
1

0 0.46853c = ). 

 

 As follows from the first slide in Fig.8, the quasi-

equilibrium distribution of premicellar aggregates in the range 

1 10n = ÷  establishes to the moment of time 25.5 10t = ⋅ . This 

ultrafast stage has been revealed also in the case of initial ex-

cess of monomers in Fig.5. As in Fig.5, establishing a quasi-

equilibrium state for spherical aggregates within range 

30 170n = ÷  is observed to the moment of time 32.1 10t = ⋅ . 

The same time is required for the establishing of the quasi-

equilibrium state for the smallest cylindrical micelles in the 

range 230 500n = ÷ . With increasing the time, the quasi-

equilibrium states of the aggregate distribution in these ranges 

of aggregation number related to the local horizontal linear 
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parts of function ( )nA t  stay to be quasi-equilibrium. Again, as 

in Fig.5, total numbers of spherical and cylindrical micelles 

change due to transitions over potential peak of the aggregation 

work between spherical and cylindrical aggregates. 

 
Fig.9 The monomer concentration ( )1

c t , the total concentration 

( )SM
C t of spherical micelles  and the total concentration ( )CM

C t  

of cylindrical micelles at different stages of relaxation at 0.1η = −  

and 
1

1.004c =% . 

 The second slide in Fig.8 shows that the micellar system 

tends on the next stage of evolution to establishing of local 

quasi-equilibrium in the whole range of aggregation numbers 

for cylindrical micelles, 230 3500n = ÷ . This stage ends to the 

moment of time 61.2 10t = ⋅ . The time scales are the same as 

for the second slide in Fig.5 although the displacement of the 

curves with time is opposite. 

 The final stage of micellar relaxation is shown in the third 

slide in Fig.8. We observe here two different linear parts of 

function ( )nA t  which rise with the growth of time to the value 

1. These parts relate to the quasi-equilibrium distributions of 

spherical and cylindrical micelles, respectively. They first form 

a joined quasi-equilibrium distribution to the moment of time 
77.9 10t = ⋅  and then merge to the moment of time 81.5 10t = ⋅  

in the final equilibrium distribution with concentrations of 

monomers and premicellar aggregates. Again, these time scales 

coincide with those in Fig.5. 

 Let us now analyze in addition the dependences on time for the 

monomer concentration
1( )c t , total concentration ( )SMC t  of spher-

ical and total concentration ( )CMC t  of cylindrical micelles. These 

dependences follow from the computations for separate aggregate 

concentrations ( )nc t and are shown in Fig.9. 

 As is seen from Figs.8 and 9, establishing the quasi-

equilibrium distribution of premicellar aggregates to the mo-

ment of time 25.5 10t = ⋅  is accompanied by the rapid rise of the 

surfactant monomer concentration from ( )1 0 0.46853c =  to 

1 1.0022c = . Then the growth of monomer concentration be-

comes slower. The monomer concentration reaches the value 

1 1.0044c =
(

 (which is larger than the final equilibrium value 

1 1.004c =% ) to the moment of time 32.1 10t = ⋅  when establish-

ing a quasi-equilibrium state for spherical aggregates within 

range 30 170n = ÷ appears. The growth of the monomer con-

centration continues even further until maximal value 

1 1.0048c = is reached at the moment of time 61.2 10t = ⋅ . To 

that moment, a local quasi-equilibrium in the whole range of 

aggregation numbers for cylindrical micelles is established. 

Subsequent monotonic slow decay of the monomer concentra-

tion to the final equilibrium value 1 1.004c =% occurs until the 

moment of time 81.5 10t = ⋅ . Thus the total behavior of the 

monomer concentration ( )1c t  turns to be non-monotonic. By 

contrast, the time behavior of total concentrations of spherical 

micelles ( )SMC t  and ( )CMC t  appear to be monotonic, ( )SMC t  

grows from ( )0 0.30628SMC =  to 0.37991SMC =%  while 

( )CMC t  drops from ( )0 0.090808CMC =  to 0.076841SMC =% . It 

is seen from Fig.9, that there is no change in the concentrations 

( )SMC t  and ( )CMC t until the moment of time 410t = . Thus we 

confirm existence of the nonlinear fast and slow relaxation 

stage at initial deficit of monomers is the system with coexist-

ing spherical and cylindrical micelles. Existence of the inflec-

tion points in curves for monomer concentration and total con-

centration of cylindrical micelles demonstrate general non-

exponential behavior of these concentrations as functions of 

time at fast and slow relaxation. 
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 Simultaneous solving eqs. (15), (16) with initial conditions 

(22) and (23) and eqs. (24)-(26) with initial conditions (34) at 

0.1η = −  and 1 1.004c =% gives the function ( )1c t  shown in the 

first slide in Fig.8 by hollow circles and the functions 

( )1c t , ( )SMC t  and ( )CMC t  shown in the in Fig.9 by symbols 

× . As is seen, the curves for these concentrations obtained by 

the solution of the difference Becker-Döring equations and by 

solution of eqs. (22), (23) and (24)-(26) are in a fine agreement 

for the stages of nonlinear fast and slow relaxation at initial 

deficit of monomers. 

 

Conclusions 

Our results for kinetic modeling of self-aggregation in surfac-

tant solution with coexisting spherical and cylindrical micelles 

show the total behavior of all aggregate concentrations as func-

tions of time at arbitrary initial conditions. We have considered 

the case of proper micellization with formation of premicellar 

aggregates, stable spherical micelles and cylindrical micelles, 

and the cases of micellar relaxation in such systems at large 

initial excess and deficit of surfactant monomers in solution 

over their equilibrium concentration. In all cases, we observed 

a stage of ultrafast relaxation at which concentration of surfac-

tant monomers changes rapidly together with concentration of 

premicellar aggregates. A similar behavior was noted previous-

ly for systems with cylindrical micelles.34 The stages of fast 

and slow relaxation are characterized by non-monotonic de-

pendence on time for the monomer concentration. In the case 

of micellization, also the behavior of total concentration of 

spherical micelles is non-monotonic in time.  

 We have shown that the stages of fast and slow relaxation 

in solution with coexisting spherical and cylindrical micelles at 

arbitrary initial conditions include substages. It is possible to 

clarify the physical processes on these substages as corre-

sponding to different quasi-equilibrium states for spherical and 

cylindrical micelles. The slowest stage is the stage with a 

joined quasi-equilibrium for spherical and cylindrical micelles. 

This stage was observed for all considered cases, including 

micellization. The time scales for similar substages of fast and 

slow relaxation at large initial excess and deficit of surfactant 

monomers are the same.  

 We have shown that the results of the difference Becker-

Döring kinetic equations for fast and slow nonlinear relaxation 

at large initial excess and deficit of surfactant monomers are in 

fine agreement with predictions of analytical kinetic theory of 

relaxation for concentration of monomers and total concentra-

tions of spherical and cylindrical micelles. 

 Let us note that micelle formation/breakdown processes 

can be reversed by corresponding change of the monomer con-

centration. We have considered here micellization where any 

aggregates with aggregation number 1n >  initially were ab-

sent. Our study in section 2 and 3 showed that at sufficiently 

high initial monomer concentration in the vicinity and above 

the cmc2, spherical micelles are formed consequently from 

monomers, and then part of spherical micelles transforms into 

cylindrical micelles. The reverse process was observed in the 

case of large initial deficit of surfactant monomers in compari-

son to the final equilibrium state of the micellar system consid-

ered in section 4. The number of cylindrical micelles diminish-

es in this case while the number of spherical micelles grow. 

Thus our approach works for both the sphere-to-cylinder and 

the cylinder-to-sphere transitions, demonstrating their barrier 

dependence on the surfactant monomer concentration. This is 

in agreement with known coarse-grained molecular dynamics 

simulations for pentaethylene glycol monodecyl ether in aque-

ous solution42. As we noted previously, we did not consider 

here other fission mechanisms of breaking the long cylindrical 

micelles which can be of importance in the case of micelles 

made of amphiphilic block copolymers.43 It could be a subject 

of future work.    

 Unfortunately, it is impossible at this moment to compare 

our results with that from experiments on dynamics of coexist-

ing spherical and cylindrical micelles. There is experimental 

evidence concerning co-existence of spherical and rod-like 

micelles obtained with the help of cryo-TEM technique,44 dy-

namic light scattering,45,46 and time-resolved small angle X-ray 

and neutron scattering techniques.47,48 These data is related to 

equilibrium states of nonionic and ionic direct micelles and 

non-equilibrium cylinder-to-sphere transitions in block copol-

ymer micelles. Although specific relaxation times and rate 

constants for spherical and separately for cylindrical micelles 

breakdown had been measured,4,18 however there were no ex-

periments on total time evolution of the systems with coexist-

ing spherical and cylindrical direct nonionic micelles.  

 Nevertheless, such experiment can be designed. The most 

appropriate for that could be synchrotron small-angle X-ray 

scattering in combination with the stopped-flow mixing tech-

nique. Recently this approach has successfully been applied for 

study of micelle formation at rapid mixing of a solution of 

dissolved dodecyl maltoside in dimethylformamide with wa-

ter.49 Such experiment allows one to control the changing con-

centrations of aggregates with different aggregation numbers 

and shapes under arbitrary initial conditions. It is just our case. 

 

Acknowledgements 
This work was supported by St. Petersburg State University 

(grant 11.37.183.2014) and grant of Russian Foundation for 

Basic Research 13-03-00991a. N. Volkov thanks St.Petersburg 

State University for his employment within the University 

Postdoctoral Program (grant 11.50.1609.2013).  

 

Notes and references 
a Department of Statistical Physics, Faculty of Physics, St Petersburg 

State University, Ulyanovskaya 1, Petrodvoretz,  St Petersburg, 198504, 

Russian Federation. 
1 M.J. Rosen and J.T. Kunjappu, Surfactants and Interfacial 

Phenomena, 4th ed. (John Wiley & Sons, Inc.: Hoboken, NJ, 2012). 
2 K. Holmberg, B. Jonsson, B. Kronberg and B. Lindman, Surfactants 

and Polymers in Aqueous Solution, 2nd ed. (John Wiley & Sons, Ltd: 

New York, 2002). 
3 A.I. Rusanov, Micellisation in Surfactant Solutions (Chemistry 

Reviews), Taylor & Francis, 1998.  
4 R. Zana, Dynamics in Micellar Solutions of Surfactants. In Dynamics 

of Surfactant Self-Assembles, Micelles, Microemulsions, Vesicles, 

and Lyotrophic Phases, Surfactant Science Series Vol.125, edited by 

R. Zana (Taylor & Francis, Boca Raton, 2005), Ch. 3, p.75. 
5 A.K. Shchekin, F.M. Kuni, A.P. Grinin, A.I. Rusanov, Nucleation in 

micellisation processes. In Nucleation Theory and Applications, 

edited by J.W.P. Schmelzer (Wiley: New York, 2005), Ch.9, p. 312. 
6 R. Becker and W. Döring, Ann. Phys.,1935, 24, 719. 
7 J.C. Shelley and M.Y. Shelley, Current Opinion in Colloid & Inter-

face Science, 2000, 5, 101. 
8 E. N. Brodskaya, Colloid Journal, 2012, 74, 154. 

Page 11 of 23 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



ARTICLE Journal Name 

12 | PCCP., 2014, 00, 1-3 This journal is © The Royal Society of Chemistry 2014 

9 D. T. Gillespie, J. Phys. Chem., 1977, 81, 2340. 
10 F. Mavelli and M. Maestro, J. Chem. Phys., 1999, 111, 4310. 
11 S.-J. Marrink, D. P. Tieleman, A. E. Mark, J. Phys. Chem. B, 2000, 

104, 12165. 
12 E. A. G. Aniansson and S. N. Wall, J. Phys. Chem., 1974, 78, 1024. 
13  E. A. G. Aniansson and S. N. Wall, J. Phys. Chem., 1975, 79, 857.  
14 G. Mohan and D. I. Kopelevich, J. Chem.Phys., 2008, 128, 044905. 
15 V. Starov, V. Zhdanov, N.M. Kovalchuk, Colloids and Surfaces A: 

Physicochem. Eng. Aspects, 2010, 354, 268.  
16 M. Almgren, E. A. G. Aniansson and K. Holmaker, Chem. Phys., 

1977, 19, 1. 
17 M. Teubner, J. Phys. Chem., 1979, 83, 2917. 
18 M. Kahlweit and M. Teubner, Adv. Colloid Interface Sci., 1980, 13, 

1. 
19 S. N. Wall and E. A. G. Aniansson, J. Phys. Chem., 1980, 84, 727. 
20 A. P. Grinin and D. S. Grebenkov, Colloid Journal, 2003, 65, 552. 
21 F.M. Kuni, A.I. Rusanov, A.K. Shchekin and A.P. Grinin, Russ. J. 

Phys. Chem., 2005, 79, 833. 
22 A.K. Shchekin, F.M. Kuni and K.S. Shakhnov, Colloid J., 2008, 70, 

244.  
23 I.M. Griffiths, C.D. Bain, C.J.W. Breward, D.M. Colegate, P.D. 

Howell and S.L. Waters, J. Colloid and Interface Sci., 2011, 360, 

662. 
24 I.M. Griffiths, C.D. Bain, C.J.W. Breward, S.J. Chapman, P.D. How-

ell and S.L. Waters, SIAM Journal on Applied Mathematic, 2012, 72, 

201. 
25 I.A. Babintsev, L.Ts. Adzhemyan and A.K. Shchekin, J. Chem. 

Phys., 2012, 137, 044902.  
26 S. Wall and C. Elvingson, J. Phys. Chem., 1985, 89, 2695. 
27 C. Elvingson and S. Wall, J. Phys. Chem., 1986, 90, 5250. 
28 F.M. Kuni, A.K. Shchekin, A.I. Rusanov and A.P. Grinin, Langmuir, 

2006, 22, 1534.  
29 M.S. Kshevetskii, A.K. Shchekin and F.M. Kuni, Colloid J. 70, 455 

(2008). 
30 A.K. Shchekin, F.M. Kuni, A.P. Grinin, A.I. Rusanov, Russ. J. Phys. 

Chem. A, 2008, 82, 101.  
31 M.S. Kshevetskiy and A.K. Shchekin, J. Chem. Phys., 2009, 131, 

074114. 
32 A.K. Shchekin, A.I. Rusanov and F.M. Kuni, Chemistry Letters, 

2012, 41, 1081. 
33 I.M. Griffiths, C.J.W. Breward, D.M. Colegate, P.J. Dellar, P.D. 

Howell and C.D. Bain, Soft Matter 2013, 9, 853.  
34 I.A. Babintsev, L.Ts. Adzhemyan and A.K. Shchekin, Soft Matter, 

2014, 10, 2619 (2014). 
35 I.A. Babintsev, L.Ts. Adzhemyan and A.K. Shchekin, J. Chem. 

Phys., 2014, 141, 064901. 
36 G. Porte, Y. Poggi, J. Appell and G. Maret, J. Phys. Chem., 1984, 88, 

5713. 
37 S. May and A. Ben-Shaul, J. Phys. Chem. B, 2001, 105, 630. 
38 S. May and A. Ben-Shaul, Molecular Packing in Cylindrical Mi-

celles. In: Giant Micelles: Properties and Applications R. Zana and 

E. Kaler, Eds. (CRC Press: Boca Raton, 2007), p.41.  
39 A. I. Rusanov, F. M. Kuni, A. P. Grinin, and A. K. Shchekin, Colloid 

J., 2002, 64, 605; A. I. Rusanov, A. P. Grinin, F. M. Kuni, and A. K. 

Shchekin, Russ. J. Gen. Chem., 2002, 72, 607. 
40 A.G. Daful, V.A. Baulin, J.B. Avalos, and A.D. Mackie, J. Phys. 

Chem. B, 2011, 115, 3434. 
41 M. Smoluchowski, Phys. Chem., 1917, 92, 129. 
42 M. Velinova, D. Sengupta, A.V. Tadjer, and S.-J. Marrink, Langmuir, 

2011, 27, 14071. 
43 Q. Chen, Y. Li, C. Wu, Macromolecules, 2013, 46, 9164. 
44 A.Khan, А. Kaplun, Y. Talmon, and M. Hellsten, J. Colloid Interface 

Sci., 1996, 181, 191. 

45 P.R. Majhi, P.L. Dubin, X. Feng, and X. Guo, J. Phys. Chem. B, 

2004, 108, 5980. 
46 T.G. Movchan, I.V. Soboleva, E.V. Plotnikova, A.K. Shchekin, and 

A.I. Rusanov, Colloid J., 2012, 74, 239. 
47 R. Lund, L. Willner, D. Richter, P. Lindner, and T. Narayanan, ACS 

Macro Lett., 2013, 2, 1082. 
48 R. Lund, L. Willner, and D. Richter, Adv. Polymer Sci., 2013, 259, 

51. 
49 G.V. Jensen, R. Lund, J. Gummel, M. Monkenbusch, T. Narayanan, 

and J.S. Pedersen,  J. Am. Chem. Soc., 2013, 135, 7214.| 

Page 12 of 23RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Manuscript ID RA-ART-08-2014-008683  

Title: Kinetic modeling of aggregation in solutions with coexisting spherical and cylindrical 

micelles at arbitrary initial conditions  

 

Table of contents:  

 

* Colour graphic: maximum size 8 cm x 4 cm  

 

 
 

* Text: one sentence, of maximum 20 words, highlighting the novelty of the work.  

 

The whole picture of evolution of coexisting spherical and cylindrical micelles has 

been described for initial states far from equilibrium. 
 

 

Page 13 of 23 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



0 100 200 300 400 500
0

2

4

6

8

10

12

14

16

n0ns
(1)nc

(1) ns
(2)nc

(2) n
*

n

Wn

Page 14 of 23RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



50 100 150 200 250 300
0

5

10

x 10
4

n

t=5.5 ⋅ 102 

t=2.1 ⋅ 103 

t=6.5 ⋅ 103 

t=1.9 ⋅104
 

0 500 1000 1500 2000 2500 3000 3500
0

100

200

n

t=5.4 ⋅ 104
  

t=1.5 ⋅ 105 

t=4.3 ⋅ 105 t=1.2 ⋅ 106
  

0 500 1000 1500 2000 2500 3000 3500
1

2

3

An

An

An

t=3.5 ⋅  106

t=9.8 ⋅ 106 

t=5.7 ⋅ 107 
t=1.1 ⋅ 108 

n

Page 15 of 23 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



100 102 104 106 108
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

t + 1

CCM

 

 

CCM(0) =0

C̃CM =0.076841

Solution of nonlinear 

difference equations

100 102 104 106 108
0

0.5

1

1.5

2

2.5

t + 1

CSM

 

 

CSM(0) =0

C̃SM =0.37991

Solution of nonlinear 

difference equations

100 102 104 106 108
0

20

40

60

80

t + 1

c1

 

c̃1 =1.004

100 102 104 106 108

0.9

1

1.1

1. 2

t + 1

c1

 

 

Solution of nonlinear difference equations

Page 16 of 23RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



0 500 1000 1500 2000 2500 3000 3500
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

n

cn(0)−c̃n

c̃n

Page 17 of 23 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



50 100 150 200 250 300
0

0.5

1

n

t=5.5 ⋅ 102

t=2.1 ⋅ 103 

t=6.5 ⋅ 103

t=0

t=1.9 ⋅ 104 

0 500 1000 1500 2000 2500 3000 3500

0.9

1

1.1

1.2

n

t=5.4 ⋅ 104 
t=1.5 ⋅ 105 

t=4.3 ⋅ 105 

t=1.2 ⋅ 106 

0 500 1000 1500 2000 2500 3000 3500
1

1.1

1.2

n

An

An

An

t=3.5 ⋅ 106 

t=9.8 ⋅ 106 

t=7.9 ⋅ 107 
t=1.5 ⋅ 108 

0

Page 18 of 23RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



100 102 104 106 108

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

t + 1

c1
 

100 102 104 106 108
1.003

1.004

1.005

1.006

1.007

1.008

1.009

t + 1

c1

 

 

c̆1=1.004

c̃1=1.004

c1(0) =1.8971

Theory of nonlinear 

slow relaxation

Theory of nonlinear 

fast relaxation

Solution of nonlinear 

difference equations

100 102 104 106 108

0.38

0.39

0.40

0.41

0.42

0.43

0.44

t + 1

CSM

 

 

C̆SM =0.44032

C̃SM =0.37991

CSM(0) = 0.44032

Theory of nonlinear

slow relaxation

Solution of nonlinear

difference equations

100 102 104 106 108

0.064

0.066

0.068

0.07

0.072

0.074

0.076

t + 1

CCM

 

 

C̆CM =0.063248

C̃CM =0.076841

CCM(0) =0.063248

Solution of nonlinear

difference equations

Theory of nonlinear

slow relaxation

Page 19 of 23 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



0 500 1000 1500 2000 2500 3000 3500
−1

0

1

2

3

4

5

6

7

n

cn(0)−c̃n

c̃n

Page 20 of 23RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



50 100 150 200 250 300

0.8

1

1.2

1.4

1.6

n

An

t=5.5 ⋅ 102 

t=2.1 ⋅ 103 

t=6.5 ⋅ 103 

t=0

t=1.9 ⋅ 104 

0 500 1000 1500 2000 2500 3000 3500
0.7

0.8

0.9

1

n

An

t=5.4 ⋅ 104

t=1.5 ⋅ 105 
t=4.3 ⋅ 105 

t=1.2 ⋅ 106 

0 500 1000 1500 2000 2500 3000 3500
0.7

0.8

0.9

1

n

An

t=3.5 ⋅ 106 

t=9.8 ⋅ 106 

t=7.9 ⋅ 107 

t=1.5 ⋅ 108 

0

Page 21 of 23 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



100 102 104 106 108

0.5

0.6

0.7

0.8

0.9

1

t + 1

c1

 

 

100 102 104 106 108
1.002

1.0025

1.003

1.0035

1.004

1.0045

t + 1

c1

 

 

c̆1 =1.0044

c̃1 =1.004

Solution of nonlinear 

difference equations

Theory of nonlinear 

slow relaxation

Theory of nonlinear 

fast relaxation

c1(0) = 0.46853

100 102 104 106 108

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

t + 1

CSM

 

 

C̆SM =0.30628

C̃SM =0.37991

CSM(0) = 0.30628

Theory of nonlinear 

slow relaxation

Solution of nonlinear 

difference equations

100 102 104 106 108

0.078

0.08

0.082

0.084

0.086

0.088

0.09

t + 1

CCM

 

 

C̆CM =0.090808

C̃CM =0.076841

CCM(0) =0.090808

Theory of nonlinear 

slow relaxation

Solution of nonlinear 

difference equations

Page 22 of 23RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Page 23 of 23 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t


