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The quantitative analysis of explosives is very important for national defence and security inspection. 
However, the conventionally analytical methods are complicated and time-consuming because of the 
complexity of the explosive samples. Herein, we proposed a new quantitative method, which combined 
ultraviolet (UV) spectrophotometry with partial least square regression (PLS-1 and PLS-2), to quickly 
determine the contents of  1,3,5,7-tetranitro-1,3,5,7-tetraazacyclo-octane (HMX), hexahydro-1,3,5-10 

trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) simultaneously from the mixed explosive 
samples. The calibration models were constructed by using 49 reference samples in the calibration set and 
optimized by the full cross-validation. The predictive performance of the optimized models was validated 
by the 21 explosive samples in an independent test set. The standard errors of prediction (SEP) were 
lower than 1.4 µg mL-1 for HMX, 2.2 µg mL-1 for RDX, and 0.8 µg mL-1 for TNT in both two PLS 15 

models. Finally, the optimized PLS-1 and PLS-2 models were successfully applied to simultaneously 
determine the three explosive ingredients in eight polymer bonded explosives (PBXs). The average 
recovery was close to 100% for each of the three components. Thus, UV spectrophotometry combined 
with the PLS regression can be considered as a promising strategy to conduct the determination of HMX, 
RDX and TNT in practice.20 

1. Introduction 

2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-
triazine (RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclo-octane 
(HMX) are polynitro-explosives. Also, they are three of the most 
widely used secondary explosive ingredients in ammunition 25 

formulation and plastic explosives.1-3 A majority of military 
explosives and commercial ones are highly filled with composite 
materials, which mainly contain one to three energetic 
compounds (e.g., HMX, RDX, TNT) as main components and a 
small quantity of organic compounds (e.g., waxes, stabilizers, 30 

plasticizers, oils) as fillers.4 In recent years, the surge of 
explosive-based terrorisms have led to enormous damage to 
society.5-8 Therefore, it is important for national defence and 
security inspection to identify the types of explosives rapidly and 
determined their contents accurately.  35 

In the past decades, a great number of analytical methods have 
been developed in the field. The most common methods involve 
ion mobility spectrometry (IMS),9-12 mass spectrometry (MS),13-15 
Raman spectroscopy,5,16,17 THz spectroscopy,18-20 laser induced 
breakdown spectroscopy (LIBS),21-24 gas chromatography 40 

(GC),25-27 high performance liquid chromatography (HPLC)28-31 
and some combined methods (viz. HPLC-MS29 and GC-MS32). 
Although these instrumental techniques are highly selective and 
sensitive, most of the devices are rather bulky, expensive, and 
time-consuming,33 impeding the quick and on-line determination. 45 

Thus, it is quite necessary to further develop new methods or 

improve the existing analytical techniques to enable faster, more 
sensitive, less expensive and simpler determinations to facilitate 
the determination of explosives. 
As known, the ultraviolet (UV) spectrophotometry can easily and 50 

quickly conduct the quantitative analysis for a specific compound 
with high accuracy. However, they cannot be directly applied in 
the analysis of the military and commercial explosives because 
the multicomponents are involved in these explosives and some 
components have very similar physicochemical properties, 55 

leading to highly overlapped absorption bands in UV spectra.34-36 
Thus, the UV spectrophotometer has commonly been used as a 
detector in HPLC for the determination of explosives and other 
complicated samples.  
Chemometrics was firstly introduced by Svan Wold37 in 1972, 60 

which utilized mathematical and statistical approaches to design 
optimal steps in experiments and extracted maximal information 
from the experimental data.38 Multivariate calibration methods in 
chemometrics play an important role in multicomponent 
resolution and quantification34, 39-43 and have been successfully 65 

used to solve the problems existed in the spectral data of 
complicated mixtures, such as collinearity, band overlaps and 
interactions.44-49 Partial least squares (PLS) regression initiated by 
Wold50 has been successfully used in multicomponent 
quantitative analysis in many complicated cases.39,51-55The 70 

calibration of multiple response data by PLS can be performed 
via two methods, namely constructing multiple models with one 
response (viz., PLS-1) and building one model with multiple 
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responses (viz., PLS-2).56 The former executes the decomposition 
and regression for only single component at a time, while the 
latter calculates latent variables based on all of the components 
and only one calibration matrix is used.  
Based on the considerations above, we, herein, combine the UV 5 

spectrophotometry with PLS algorithm to develop a new method 
to simultaneously determine the contents of HMX, RDX and 
TNT in the mixed explosives. We firstly construct the PLS-1 and 
PLS-2 models by using a well-designed calibration set, which 
included 49 reference samples with known proportions of HMX, 10 

RDX and TNT. Then, the models were validated by an 
independent test set. Finally, the optimized PLS models were 
applied to eight polymer bonded explosives. Satisfied results 
were obtained from the PLS models, indicating that it is highly 
potential for the UV spectrophotometry in combination with PLS 15 

to realize a simple, quick and accurate quantification 
determination on either the single-component explosives or the 
multicomponent ones.  

2. Experimental 

2.1. Chemical reagents and stock solutions 20 

HMX, RDX, TNT and eight polymer bonded explosives (PBXs) 
based on the three analytes were provided by the Yinguang 
Chemical Plant, China. Analytical reagent grade acetonitrile was 
purchased from Chengdu Kelong Chemical Reagent Factory 
(Chengdu, China) and further purified. Stock solutions of 1014 25 

µg mL-1 for HMX, 1002 µg mL-1 for RDX and 1010 µg mL-1 for 
TNT were prepared by dissolving appropriate amount of the 
analyte in acetonitrile and diluting to the mark with acetonitrile in 
50 mL volumetric flasks. 

2.2. Standard solutions and sample solutions 30 

Stock solutions of HMX, RDX and TNT were utilized to 
construct the calibration set. These stock solutions were properly 
diluted to give work solutions with the concentration range of 
0.81-32.45 µg mL-1 for HMX, 0.80-28.06 µg mL-1 for RDX, and 
0.81-26.66 µg mL-1 for TNT. The calibration set consists of 49 35 

samples, including 15 single-component mixtures, 9 binary-
component mixtures and 25 ternary-component mixtures.  
To validate the calibration models, an independent test set 
involved 21 samples with one to three components was randomly 
prepared using the same stock solutions with concentration inside 40 

the limits of the calibration set.  
For the purpose of inspecting the predictive performance of the 
optimized PLS models in real cases, we validated the models by 
using eight real PBX samples. The real explosives were weighed 
and then powdered in a mortar. An appropriate amount of 45 

accurately weighed mixtures of the homogenous powder was 
dissolved with acetonitrile and then were filtered. 1.00 mL of this 
filtrate was diluted to 50.00 mL with acetonitrile. 

2.3. Apparatus and software 

Absorption spectra were recorded in a wavelength (λ) range of 50 

190-400 nm at 1 nm intervals with respect to a blank of 
acetonitrile in a 1 cm quartz cell, using a Hitachi U-1900 UV-Vis 
spectrophotometer (Tokyo, Japan) with a scan fate of 400 nm/min 
and slit width 4.0 nm.      
All data obtained from the experiments were gathered in a matrix 55 

data by Microsoft Office Excel (version 2010) and transferred to 
MATLAB software. All calculations were done using MATLAB 
(version 2013 a).  

2.4. Procedures 

2.4.1. Single component calibration 60 

In order to find the linear concentration range of each material, 
single component calibrations were executed. Different volumes 
of the stock solution of each component was added to 10 mL 
volumetric flask and diluted to the mark with acetonitrile. The 
absorption spectra were recorded over 190-400 nm against a 65 

solvent blank. For each explosive, the linearity ranges were 
determined by plotting the absorbance at its λmax (228 nm for 
HMX and TNT, and 197 nm for RDX) versus the sample 
concentration. The linear concentrations range from 0.41 µg mL-1 

to 33.29 µg mL-1 
for HMX, from 0.62 µg mL-1 

to 29.12 µg mL-1 
70 

for RDX and from 0.29 µg mL-1 
to 27.13 µg mL-1 

for TNT. The 
characteristic parameters for the regression equations of 
individual calibrations were listed in Table 1.  

Table 1. Parameters of the linear regression equations for each analyte. 

Parameter 
HMX  
(228 nm) a 

RDX 
(197nm) a 

TNT  
(228 nm) a 

Linear range (µg mL-1) 0.41-33.29 0.62-29.12 0.29-27.13 

Intercept 0.0087 0.0479 0.0411 

Slope 68.966 64.038 81.460 

Correlation coefficient 0.9992 0.9961 0.9992 

LOD (µg mL-1) b 0.27 0.33 0.23 

LOQ (µg mL-1) c 0.91 1.11 0.77 

 
a The values in parenthesis correspond to the maximum absorption 
wavelength. b The LOD (limit of detection) was determined by a signal-
to-noise ratio (S/N) = 3 for each analyte. c The LOQ (Limit of 
quantitation) was determined by a signal-to-noise ratio (S/N) = 10 for 
each analyte. 

 75 

2.4.2. Multivariate calibration  

In the determination of the three assayed explosive ingredients, 
the obtained spectral data were organized in an X matrix, in 
which each row stands for a given sample and each column 
corresponds to the absorbance value at a given wavelength. There 80 

are a total of 211 wavelengths in a spectrum. The concentration 
value of each of the three assayed explosives was utilized to 
compose the y vector. A full cross-validation was employed to 
construct optimum PLS models between the spectral data and the 
concentration values using the calibration set containing 49 85 

reference samples. Then, the models were validated by an 
independent test set of 21 samples and 8 real polymer bonded 
explosives. In order to detect whether there are outliers in the 
calibration and independent test samples, the residual analysis 
43,57,58 was executed in the PLS regression models.  90 

3. Results and Discussion 

Fig.1 shows the chemical structures of HMX, RDX and TNT and 
Fig.2 exhibits their corresponding absorbance spectra. As can be 
observed from Fig.2, the spectra of HMX, RDX and TNT are 
seriously overlapped, which prevents the direct determination by 95 

means of classical univariate calibration method without prior 
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separation. Thus, it is necessary to use multivariate calibration 
techniques, such as PLS, to realize simultaneous determination of 

HMX, RDX and TNT in the mixed explosive samples. 
 

Table 2. Concentration data (µg mL-1) for the forty-nine samples in the calibration set. 5 

Sample NO. HMX RDX TNT Sample NO. HMX RDX TNT 

Ternary mixtures Binary mixtures 
1 0.81 0.80 0.81 26 - 0.80 7.27 

2 0.81 8.02 7.27 27 - 8.02 13.74 

3 0.81 15.23 13.74 28 - 15.23 20.20 

4 0.81 22.44 20.20 29 - 22.44 26.66 

5 0.81 28.06 26.66 30 0.81 28.06 - 

6 8.11 0.80 7.27 31 17.04 15.23 - 

7 8.11 8.02 13.74 32 32.45 0.80 - 

8 8.11 15.23 20.20 33 8.11 - 0.81 

9 8.11 22.44 26.66 34 25.15 - 13.74 

10 8.11 28.06 0.81 Single component solutions 

11 17.04 0.80 13.74 35 0.81 - - 

12 17.04 8.02 20.20 36 8.11 - - 

13 17.04 15.23 26.66 37 17.04 - - 

14 17.04 22.44 0.81 38 25.15 - - 

15 17.04 28.06 7.27 39 32.45 - - 

16 25.15 0.80 20.20 40 - 0.80 - 

17 25.15 8.02 26.66 41 - 8.02 - 

18 25.15 15.23 0.81 42 - 15.23 - 

19 25.15 22.44 7.27 43 - 22.44 - 

20 25.15 28.06 13.74 44 - 28.06 - 

21 32.45 0.80 26.66 45 - - 0.81 

22 32.45 8.02 0.81 46 - - 7.27 

23 32.45 15.23 7.27 47 - - 13.74 

24 32.45 22.44 13.74 48 - - 20.20 

25 32.45 28.06 20.20 49 - - 26.66 

 

 
Fig. 1. Chemical structures of the three energetic compounds. 

 
Fig. 2. Absorption spectra of 8.11 μg mL

-1
 HMX (black line), 8.02 μg mL

-
10 

1
 RDX (red line) and 7.27 μg mL

-1
 TNT (blue line). 

3.1. The calibration set: construction of PLS models  

 
3.1.1. Experimental design 

Four important factors were considered in constructing the 15 

sample solution of the calibration set. Firstly, the concentration 
of each component must be in its linear range. Secondly, the 
concentration of the analyte in the calibration samples must be 
orthogonal in order to provide the maximal information of the 
studied system. Thirdly, the total absorbance of the standard 20 

mixture solutions was not beyond the maximum absorbance 
reading of the spectrophotometer (i.e. does not overload). 
Fourthly, the UV spectral data of the corresponding solutions 
were recorded in the same determination conditions. In the 
conditions, the ternary-component samples in the calibration 25 

set are constructed according to a five-level orthogonal array 
design (OAD, L25 (5

6)).59 The binary-component and single-
component samples are also prepared according to the same 
five concentration levels above. Table 2 lists the concentrations 
of the three analytes in the calibration set. 30 

 
3.1.2. The selection of the number of factors and optimized 
PLS models 

In order to avoid overfitting, it is of great importance to reduce 
the number of features and accurately select the optimal 35 

number of factors. Thus, a full cross-validation called leave-
one-out cross-validation (LOO-CV) was utilized to tackle the 
problem in our study. The main principle of LOO-CV was to 
leave out one sample from the calibration set in each iteration 

Page 3 of 8 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 

4  |  Journal Name, [year], [vol], 00–00 This journal is © The Royal Society of Chemistry [year] 

and perform the PLS calibration with the remaining samples. 
Then, the concentration of the hold-out sample was predicted 
by the obtained PLS model. This procedure was iteratively 
repeated until each sample in the calibration set had been left 
out once. Then, the known concentrations of the analytes in 5 

each reference sample were compared with the prediction 
concentrations of the analytes in each sample and the standard 
error of cross-validation (SECV) was calculated in terms of Eq. 
(1).  
 10 

                                       (1) 
 
where Cpred, i is the predicted concentration of the interested 
component in ith mixture through the model, Cact, i is the real 
concentration, and m is the number of samples in the 15 

calibration set. 

 
Fig. 3. Plot of standard error of cross-validation (SECV) vs the number 

of factors in the PLS-1 and PLS-2 calibration models for HMX ( ), 

RDX ( ) and TNT ( ). 20 

To determine the optimum number of factors, the SECV value 
was calculated in the same way each time after a new factor 
was added to the models. The variation of SECV values with 
respect to the number of factors was shown in Fig. 3. It was 
required that the SECV value of the model with the optimum 25 

number of factors is not significantly greater than the minimal 
SECV. The F-statistic was used to make the significance 
determination by means of a comparison of the calculated F-
value with the cutoff value (α=0.25), which was proposed to be 
a good criterion by Haaland and Thomas.60 As a result, the 30 

optimum number of factors in the PLS-1 and PLS-2 models for 
HMX and RDX were determined to be 9. For TNT 
determination, the optimum number of factors are 10 for PLS-1 
model and 14 for PLS-2 one. Table 3 lists the optimum number 
of factors selected, the standard error of calibration (SEC), 35 

standard error of cross-validation (SECV)，standard error of 
prediction (SEP) and the correlation coefficient of 
determination (R2

cal) in the calibration set for each analyte. As 
can be seen from Table 3, the satisfactory results are obtained 
for all the analytes in PLS-1 and PLS-2 models, confirming the 40 

reliability of the two models constructed.  
In addition, the outliers in the regression models were detected 
by using the residual analysis.43,57,58 In general, a residual (εi) is 
defined as the difference between an experimental observation 
and a predicted value from a regression model, εi = yact,i - ypred,i 45 

where yact,i is the real value and ypred,i is the predicted value by 
the regression model. Fig. 4 shows that the residual values for 
the three components for the calibration samples in PLS-1 
model. As can be seen from Fig.4, the residuals are scattered 
closely around the horizontal line, confirming that there are no 50 

outliers in the calibration samples and the regression model 
constructed is reliable.  Similarly, the outliers have not been 
detected by the residual plot in PLS-2 model (see Fig. S1, 
ESI†). 

Fig. 4. Absolute residual distribution of PLS-1 model vs concentrations 55 

plots for the three components for the calibration ( ) and 

independent test  ( )samples.   

3.2. Validation of the PLS Models by the independent test 

set  

To validate the predictive performance of the optimized 60 

models, an independent test set of 21 samples containing 7 
ternary-component samples, 8 binary-component samples and 
6 one-component samples was prepared. The reference values 
of the explosive compositions are listed in the first three 

( )
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columns of Table 4. the constructed PLS-1 and PLS-2 models 
were used to estimate the contents of HMX, RDX and TNT in 
the independent test set and the results are listed in Table 4. As 
can be seen from Table 4, the estimated concentrations are 
close to the reference ones. Also, the residual analysis was 5 

carried out for the three components for the independent test 
samples in the PLS regression models (see Fig. 4 and Fig.S1). 
Similarly, no outliers were detected in the independent data set. 
                                                                                                        
                                                                                                                       10 

Table 3. Statistical parameters of the PLS-1 and PLS-2 models obtained from the calibration set. 

  PLS-1 PLS-2 

  Factorsa SEC b SECV c SEP d  R2
cal

  Factors a SEC SECV SEP  R2
cal

  

HMX 9 1.2325 2.0428 1.2579 0.9898 9 1.3191 2.1097 1.371 0.9883 

RDX 9 0.8285 1.9730 1.6706 0.9938 9 0.9488 2.0962 2.1091 0.9919 

TNT 10 0.1331 0.4498 0.6959 0.9998 14 0.2168 0.4507 0.7787 0.9995 

a  The optimum number of factors. b Standard error of the calibration set. c Standard error of cross-validation. d Standard error of the independent test set. 

 

Table 4. Determination of HMX, RDX and TNT (µg mL-1) in the prediction set.  

Reference values  Predicted values  

HMX RDX TNT  PLS-1 PLS-2 

      HMX RDX TNT  HMX RDX TNT  

Ternary mixtures 
22.50 15.00 5.00 22.27 14.23 5.37 22.68 14.80 5.67 

12.50 20.00 12.50 13.82 19.26 12.70 14.42 20.02 12.98 
8.92 26.45 25.10 8.37 26.87 26.08 9.68 28.59 26.61 
16.22 9.62 12.14 14.58 10.80 11.71 15.14 11.45 11.98 
31.64 23.25 19.39 29.70 26.55 19.08 30.33 27.37 18.93 
19.47 8.02 6.48 18.99 8.95 6.09 19.29 9.13 6.02 
7.30 9.62 6.48 7.91 8.49 6.48 8.03 8.49 6.43 

Binary mixtures 
30.01 - 12.93 28.08 1.42 12.36 28.02 1.76 12.69 
19.47 - 6.48 20.10 -0.04 6.16 20.48 0.28 6.04 

- 20.04 14.57 1.12 21.12 14.03 1.92 22.13 14.20 
- 18.44 8.08 0.02 19.49 7.45 0.64 20.35 7.60 
- 12.83 24.24 1.96 14.46 23.02 2.61 15.45 22.91 

8.11 6.41 - 9.81 5.91 0.03 10.01 6.31 -0.07 

10.00 20.00 - 10.65 20.56 -0.23 11.34 21.50 -0.24 
2.43 7.21 - 2.14 7.55 -0.07 2.27 7.77 -0.09 

Single-component solutions 
4.87 - - 4.31 0.20 0.02 4.16 -0.01 -0.03 
31.64 - - 30.60 1.44 -0.19 31.36 2.51 -0.19 

- 4.81 - -0.59 4.87 0.07 -0.77 4.62 0.08 
- 27.25 - 1.06 26.80 0.02 1.74 27.79 0.19 
- - 3.24 -1.31 1.18 3.06 -1.40 1.05 3.06 
- - 25.86 -2.62 2.23 23.44 -2.22 2.37 23.26 

 
Table 5 lists the correlation coefficient of determination (R2

pred) 15 

and standard error of prediction (SEP) in the independent 
prediction set. As shown in Table 5, SEP  values are lower than 
1.4 for HMX，2.2 for RDX, and 0.8 for TNT. R2

pred values are 
higher than 0.98 for the three components. In addition, the 
recovery rates obtained by PLS-1 were 99.33% for HMX, 20 

102.82% for RDX and 97.21% for TNT. The recovery rates 
obtained by PLS-2 were 102.63% for HMX, 106.57% for RDX 
and 98.11% for TNT. These results demonstrated that the  

 
constructed PLS-1 and PLS-2 models have high predictive 25 

ability for simultaneous determination of HMX, RDX and TNT 
in the mixtures. 

3.3. Application of the optimized models to the real samples 

In order to test the applicability of the proposed methods to the 
real samples, the optimized PLS models were further used to 30 

simultaneously determine HMX, RDX and TNT in real 
explosive samples. Eight real PBX samples (three replicates 
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per sample) were prepared as we describe in the experimental 
section above. The results derived from the PLS-1 and PLS-2 
models were summarized in Table 6. As can be observed, the 
obtained results are satisfactory with a good recovery yield in 
general (average values of 101.19%, 95.27% and 95.42% in 5 

PLS-1 model, of 102.12%, 96.24% and 93.38% in PLS-2 
model for HMX, RDX and TNT, respectively). The result 

indicates that our proposed methods are adaptable to 
simultaneously determine HMX, RDX and TNT in the real 
explosives. Thus, the UV-spectrum combined with 10 

chemometrics method should be highly potential to be a 
simple, quick and accurate analysis method in the explosive 
determination. 
 

Table 5. A summarization in the predictive performances of the constructed PLS-1 and PLS-2 models for the independent prediction set.  15 

Parameters HMX RDX TNT 

  PLS-1 PLS-2 PLS-1 PLS-2 PLS-1 PLS-2 

SEP 1.2579 1.3710 1.6706 2.1091 0.6959 0.7787 

R2
pred 0.9879 0.9852 0.9869 0.9841 0.9953 0.9930 

Recovery (%) a 99.33 102.63 102.82 106.57 97.21 98.11 
 

a The value is mean recovery for each component. Recovery (%) = 100 × (Cpred/Cact), Cpred represents the prediction concentration, Cact represents the actual 
concentration. 

 

Table 6. Determination of HMX, RDX and TNT in the eight real explosive samples (µg mL-1). 

 4. Conclusions  

In this work, we have successfully applied the partial least 
square (PLS) regression to simultaneously determine the 20 

contents of HMX, RDX and TNT from the single-component, 
binary-component and ternary-component explosive samples, 
based on their UV spectra. Multivariate calibration models 
were built from the raw spectral data matrices of the calibration 
set using PLS-1 and PLS-2 methods and further verified 25 

through the independent test set of the explosive mixtures. 
Finally, eight real polymer bonded explosives were used to 
check the applicability of the models. The results showed that 
the contents of HMX, RDX and TNT in the mixed explosives  

 30 

can be satisfactorily estimated by our proposed method, 
indicating that it is feasible for UV spectrophotometry in 
combination with chemometric techniques to develop a simple, 
quick and reliable analysis method to realize simultaneous 
multicomponent determination on explosives. 35 
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Notes  

Reference values Predicted values a 

HMX RDX TNT  PLS-1 PLS-2 

      HMX RDX TNT  HMX RDX TNT  

Comp.A5 

-  10.50  - -0.99  9.86  0.21  -1.25  9.40 0.28 

Tritonal 

- -  12.12  -1.41 1.67  10.95  -1.17  1.32 10.92 

X-2042 

18.44  -  -  20.05  -0.91 -0.03 20.90 0.25  0.06 

Comp.B-2 

-  7.42  4.94  -0.04  6.78  4.60  -0.28 6.52 4.71  

Cyclotol 

-  8.56  3.76  -0.21  7.75 3.75  -0.57  7.29 3.83  

LX-14 

19.30  -  0.38  18.62 0.64 0.37  18.00 0.73 0.35  

PBX-71 

9.76  9.60 -  8.85  10.00  -0.08  8.91  10.07 -0.06 

PBX-T-1  

13.50 9.06 6.06 14.37 8.73  5.85 14.93  9.43 5.91 
a The average values of the three independent determinations.  
Com. A5 (99% RDX and 1% stearic acid), Tritonal (80% TNT and 20% Aluminium powder)，X-2042 (92% HMX and 8% polymer), Comp. B-2 (60% 
RDX and 40% TNT), Cyclotol (70% RDX and 30% TNT) , LX-14 (95.9% HMX, 1.9 % TNT and 2.2% polymer),  PBX-71 (49% HMX, 48% RDX ,1.5% 
F2311 and 1.5% F2314) and PBX-T-1(45% HMX, 30%RDX, 20%TNT and 5% Ammonium nitrate). 
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Graphical  abstract 

 

We used UV spectrophotometry and chemometrics method to develop a novel 

method for simultaneous multi-component determination in explosives. 
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