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We investigate the effect of chain topology on conformation and adsorption transition on an
attractive surface of a ring polymer in a dilute solution in a good solvent. Based on Flory theory, we
find that the ratio of mean squared radii of gyration of a ring polymer and a linear chain of identical
length is 0.574, which is in good agreement with the results from renormalization theory, previous
simulations and experiments. Using three-dimensional Langevin dynamics simulations, we examine
the adsorption transition of a flexible ring polymer chain with one bead grafted to a flat solid surface
and the conformation of the adsorbed chain. Compared with the linear chain, the ring polymer has
the same critical adsorption point (CAP). At the CAP, the crossover exponent of the number of
adsorbed beads with chain length is about 0.50 for both ring and linear chains. At the CAP, ring
polymers are adsorbed on the surface more than linear chains, which agrees with experiments. In
addition, we further observe that, compared with linear chains, the adsorption of ring polymers is
faster. Under strong attractions, we observe that the exponent of the adsorption time as a function
of the chain length is 1 + ν3D, where ν3D = 0.588 is the Flory exponent in three dimensions.

I. INTRODUCTION

The adsorption of polymer chain on a solid surface has
been investigated for many years by theories [1–9], ex-
periments [10–16] and simulations [2, 4, 17–28] due to
its importance to practical applications, such as colloidal
stabilization, lubrication and adhesion [29–31]. Under-
standing the process of the adsorption and the confor-
mation of the adsorbed chain is also in favor of biolog-
ical physics, such as proteins adsorbing on a membrane
[32, 33].

The properties of a polymer solution are very different
from the bulk when polymer interacts with an attractive
surface. At the critical adsorption point (CAP), Polymer
undergoes an adsorption transition from a three dimen-
sional (3D) to a two-dimensional (2D) conformation. The
adsorption transition can be explained as a second order
phase transition at the CAP in the thermodynamic limit
N → ∞, with N being the chain length. At the CAP, the
number of beads adsorbed on the surface at equilibrium,
Ne, shows a scaling behavior with N , namely Ne ∼ Nϕ

with ϕ being the crossover exponent.

For ideal chains, it has been known that ϕ = 1
2 [30].

The value of the crossover exponent ϕ in good solvent
cases is fairly controversial. Based on scaling arguments,
de Gennes [34] proposed ϕ = 1 − ν with ν = 0.588 be-
ing the Flory exponent in 3D [35], which would yield
ϕ = 0.412. However, it was pointed out [36] that this
scaling relation underestimates ϕ, because the concen-
tration profile of the monomer is assumed not to depend
on the distance from the surface. Thus, this crossover ex-
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tronic address: kluo@ustc.edu.cn

ponent is more suitable for a penetrable surface than for
the impenetrable one [37]. In contrast with this crossover
exponent, lattice Monte Carlo (MC) simulation results
[36, 38] gave ϕ = 0.58, which is close to ν. Taking into
account the proximal exponent [37], scaling theory can
also give ϕ ≈ ν. Using the pruned-enriched Rosenbluth
method [39], Grassberger [40] has found ϕ = 0.48, a little
smaller than 1

2 .

By now, however, most of studies focus on adsorption
of linear chains, where the structure of adsorbed polymer
layers in solution is classically described in terms of loop-
s, tails and trains, and the relative importance of loops
and tails in an adsorbed polymer layer has also been ad-
dressed [43]. In contrast to linear chains, ring polymers
do not have any tails and form adsorbed layers containing
only loops and trains [41]. Thus, it is very important and
meaningful to examine the adsorption of ring polymers.
Experiments have shown that ring polymers under the
same conditions are adsorbed more than the linear ones
of the same molecular weight [42, 43]. In addition, lattice
Monte Carlo (MC) simulation results have demonstrated
that an adsorbed layer for a ring polymer begins to form
at the larger adsorption transition temperature than that
for a linear polymer chain [44].

It is clear that the adsorption transition for ring poly-
mers is not well understood. In addition, it is also inter-
esting to understand the difference of the adsorption be-
tween ring polymers and linear chains, which is induced
by the topological constraint in ring polymers. The ba-
sic questions are the following: (a) Are the CAP and the
crossover exponent for ring polymers the same as those
for linear chains? (b) As to the linear chain or the ring
polymer, which one is absorbed more and faster? (c)
What’s the ratio of Ne at the CAP for ring polymers
and linear chains? To this end, we investigate the ad-
sorption dynamics of a flexible ring polymer chain with
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one bead grafted to a flat solid surface and the conforma-
tion of the chain at the CAP using 3D Langevin dynamics
simulations.

II. MODEL AND METHODS

In our numerical simulations, the polymer chains are
modeled as bead-spring chains of Lennard-Jones (LJ)
particles with the Finite Extension Nonlinear Elastic
(FENE) potential. Excluded volume interaction between
beads is modeled by a short range repulsive LJ potential:
ULJ(r) = 4ε0[(

σ
r )

12 − (σr )
6
] + ε0 for r ≤ 21/6σ and 0 for

r > 21/6σ. Here, σ is the diameter of a bead, and ε0
is the depth of the potential. The connectivity between
neighboring beads is modeled as a FENE spring with
UFENE(r) = −1

2kR
2
0 ln(1 − r2/R2

0), where r is the dis-
tance between consecutive beads, k is the spring constant
and R0 is the maximum allowed separation between con-
nected beads.
We consider a schematic representation as shown in

Fig. 1, where we give the chain conformation at absorp-
tion equilibrium for a ring polymer initially grafted to
a smooth surface. The surface is formed by stationary
particles of diameter σ, a series of beads closely packed
at the z = 0 plane. During the adsorption process, the
bead-wall particle interaction is modeled by an attractive
LJ potential with a cutoff of 2.5σ and interaction energy
ε. Although most of previous works use a strictly local
interactions between the surface and the beads, here we
use this more realistic potential [21].
In the Langevin dynamics simulation, each bead is sub-

jected to conservative, frictional, and random forces, re-
spectively, with [45]mr̈i = −∇(ULJ+UFENE)−ξvi+FR

i .
Here m is the bead’s mass, ξ is the friction coefficient,
vi is the bead’s velocity, and FR

i is the random force
which satisfies the fluctuation-dissipation theorem. In
the present work, the LJ parameters ε0, σ, and m fix the
system energy, length and mass units respectively, lead-
ing to the corresponding time scale tLJ = (mσ2/ε0)

1/2

and force scale ε0/σ, which are of the order of ps and
pN, respectively. The dimensionless parameters in the
model are chosen to be R0 = 1.5, k = 30, ξ = 0.7 and
kBT = 1.2.
The Langevin equation is integrated in time by a

method described by Ermak and Buckholz [46]. We ini-
tially fix the first bead of a linear chain but anyone of a
ring chain at the center of a surface, while the remain-
ing beads are under thermal collisions described by the
Langevin thermostat to obtain an equilibrium conforma-
tion. During this relaxation process, the repulsive LJ
potential is used for all particle pairs. After the equi-
librium conformation of the chain is reached, we use the
attractive LJ potential to model the bead-surface particle
interaction during adsorption process. Once the number
of beads adsorbed on the surface attains a balance, the
time of the chain adsorption process, the number of the
beads adsorbed on the surface at this time and a lot of
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FIG. 1: A schematic representation of chain conformation at
adsorption equilibrium for a ring polymer of length N = 100,
which is initially grafted to the surface.

conformational properties are all measured. In all of our
simulations we did a number of runs with uncorrelated
initial states. Typically, we average our data over 1000
independent runs.

III. RESULTS AND DISCUSSION

A. Different conformational properties between
ring and linear chains in dilute solution

Physically, it has been shown that the scaling behav-
ior, Rg ∼ Nν , should be the same for ring and linear
chains, where Rg is the radius of gyration, N is the chain
length and ν is the Flory exponent. To characterize the
difference in chain conformation between the linear and
the circular topologies, the G factor is used. The G factor
is defined as G = R2

g,r/R
2
g,l, where Rg,r and Rg,l are the

radii of gyration for ring and linear chains, respectively.
The value of G has been shown to be between 0.52 and
0.60 from renormalization theory [47], experiments [48],
and simulations [49–52].
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On the theoretical side, only renormalization theory is
available. Here, we derive the G factor by using a rel-
atively simple but understandable method. For a linear
chain in good solvent conditions, the Flory theory [35]
gives the chain free energy in unit of kBT :

F = Aυ
N2

R3
g

+B
R2

g

Nσ2
. (1)

Here, A and B are constants, and υ is an excluded vol-
ume for a monomer, depending on the solvent and the
temperature. The first term is the excluded volume in-
teractions and the second term is the elastic energy of
the chain. For a ring polymer, we can consider it as two
linear chains of identical length N

2 with their ends joined
together to minimize the elastic energy. Then, we have

F = Aυ
N2

R3
g

+ 2B
R2

g

(N2 )σ
2
. (2)

To minimize the free energy ∂F
∂Rg

= 0, we obtain the

size of the chain

Rg,l = (
3Aυ

2B
)

1
5N

3
5σ

2
5 (3)

for linear chains and

Rg,r = (
3Aυ

8B
)

1
5N

3
5σ

2
5 (4)

for ring polymers. Based on Eqs. (3) and (4), the radius
of gyrations Rg,r for ring polymers and Rg,l for linear
chains show the same scaling behavior and their ratio is

G =
R2

g,r

R2
g,l

= (
1

4
)

2
5 = 0.574 (5)

Interestingly, our theoretical prediction of G = 0.574
based on Flory theory is in good agreement with G =
0.568 from renormalization theory [47], and is a little
higher than the experimental value 0.52 [48]. There are
many numerical values for the G factor using different
simulation methods, and our prediction is between these
values, namely 0.559 to 0.568 from Monte Carlo simula-
tions [49, 50], 0.559 from Brownian dynamics simulations
[51], and 0.607, 0.545, 0.553 from molecular dynamics,
multiparticle collision dynamics and lattice Boltzmann
simulations [52].

B. Adsorption transition

When using an attractive LJ potential, the criterion
for adsorption is somewhat arbitrary [21, 53]. We define
monomers with z ≤ 2.0 as adsorbed, and thus monomer-
s within the adsorption slab experience a z-dependent
potential.
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FIG. 2: The ratio of R2
g⊥ to R2

g∥ against ε for (a) the linear
chain and (b) the ring polymer with different chain length-
s. The εc(∞) is determined by the intersection of all curves
which is at ε = 0.30± 0.01 for both the linear chain and the
ring chain.

1. Critical adsorption point

Here, we want to find the critical attractive strength
εc(N → ∞) at the CAP. The radius of gyration, Rg,
is an important parameter to describe the properties of
adsorbed chains. In order to describe the components
of Rg (radius of gyration in perpendicular direction Rg⊥
and in horizontal direction Rg∥), a parameter κ = (ε −
εc(∞))/εc(∞) is defined to measure the distance from
the CAP and another variable η ≡ κNϕ is also defined
[36, 38]. Following references [36, 38], we have

Rg⊥(η) ∼
{

Nνσ, η ≤ 0
κ−ν/ϕ, η ≫ 0

(6)

and

Rg∥(η) ∼
{

Nνσ, η ≤ 0
κ(ν2−ν)/ϕNν2 , η ≫ 0,

(7)

Where ν2 is the Flory exponent in 2D. Descas et al. [38]
have defined r(η) ≡ Rg⊥(η)/Rg∥(η), which is used to find
the CAP. At the CAP, the ratio r(η) equals r(0), which
is a constant, independent of chain length N . So, from
the intersect of the plots of r(η) with ε for different N ,
one obtains εc(∞).

According to Eqs. (6) and (7), the ratio of R2
g⊥ to R2

g∥
is also independent of N at εc(∞). Fig. 2 shows εc(∞)
at the CAP in the thermodynamic limit N → ∞. We
observe that the εc(∞) doesn’t change with the chain
topology and εc(∞) = 0.30 ± 0.01 for both the linear
chain and the ring polymer.

To further confirm the observed behavior, we use an-
other method to obtain the εc(∞) of the ring chain. We
first define an order parameter fs =

Ne

N , which is the ra-
tio of the final number of beads adsorbed on the surface
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FIG. 3: The εc(∞) is extrapolated from the plot of εc(N)
versus 1

N
, which is about 0.30 ± 0.01. The order parameter

fs = Ne
N

is plotted against ε for a ring polymer of length
N=100 as shown in the inset, the point where the tangent at
the point of inflexion on the curve meets the abscissa is the
CAP.

Ne to the chain length N . In the inset of Fig. 3, the or-
der parameter fs is plotted against ε for a chain of length
N = 100. The point where the tangent at the point of
inflexion on the curve meets the abscissa is the CAP for
N = 100. Similarly, we get other values of εc(N) for
different chain lengths. In Fig. 3, based on the plot of
εc(N) versus 1

N , we find εc(∞) = 0.30 ± 0.01, which is
in good agreement with the value obtained from the first
method.
In previous work by lattice MC simulation [44], it was

found that an adsorbed layer for a ring polymer begins to
form at the larger adsorption transition temperature than
that for a linear polymer chain. This means the εc(∞) for
the ring polymer is lower than that for the linear chain,
which is different from our results here. The discrepancy
may be from the lattice model used in previous work [44].

2. Crossover exponent

At the CAP, the number of finally adsorbed beads on
the surface Ne shows a scaling behavior with the chain
lengthN whenN tends to infinity, Ne ∼ Nϕ with ϕ being
the crossover exponent. Fig. 4 shows Ne as a function of
the chain length N at the CAP for both ring and linear
chains. We observe the scaling exponent ϕ = 0.53 for the
ring polymer and ϕ = 0.50 for the linear chain, indicat-
ing that the crossover exponent almost doesn’t change
with the chain topology within the error range. These
crossover exponents are in good agreement with previous
theoretical [37] and numerical [21, 36, 38] results.
For different N , the values of Ne are always larger for

ring polymers than those for linear chains of the same
length. This is in good agreement with experimental re-
sults [42] and theoretical predictions [43] which show that

50 100 150 200

10

15

20

25

30

35

40

FIG. 4: Log-log plots of the final number of beads adsorbed
on the surface Ne vs. N for the linear chain and the ring
polymer at the CAP.

ring polymers are adsorbed on a surface more than lin-
ear chains. Based on Fig. 4, we further find that the
ratio of Ne for ring polymers to linear chains of identical
chain lengths is about 1.25∼1.30. For ideal ring poly-
mers and ideal linear chains, theory predicts the ratio to
be 1.18 [54], which is a little smaller than our numerical
result, indicating that this ratio slightly depends on the
excluded volume effect.

3. Chain size at CAP

Fig. 5 shows Rg∥ as a function of N at the CAP
(εc = 0.30) after the adsorption equilibrium for both ring
and linear chains. We observe the scaling exponents are
0.63 and 0.62 for the linear chain and the ring polymer,
respectively, which are between the Flory exponent in 2D,
ν2D = 0.75, and the Flory exponent in 3D, ν3D = 0.588
[35].

Although topological constraint in the ring chain does
not lead to differences on the scaling relationship of Rg∥
with N , the value of Rg∥ of the ring chain is always s-
maller than that of the linear chain of the same N . In-
terestingly, their ratio is a constant, 0.73, which is close
to the theoretical ratio value 0.76 for ring polymers and
linear chains in dilute solution without adsorption.

C. Adsorption kinetics

1. Number of adsorbed beads as a function of time

Fig. 6 shows the average number of beads n(t) ad-
sorbed to the surface from different initial chain confor-
mations as a function of the time for different attrac-
tive strengths ε. With increasing time, for both a ring
polymer and a linear chain, n(t) first increases until it
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FIG. 5: Log-log plots of the gyration radius component Rg∥
vs. N at ε = 0.30 after the adsorption equilibrium for ring
polymers and linear chains.

1 10 100 1000 10000
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FIG. 6: Log-log plots of the number of the beads adsorbed to
the plane as a function of the time for a ring polymer and a
linear chain at different attractive strengths. The chain length
is N=100 for both the ring polymer and the linear chain.

saturates to a constant, Ne = n(t → ∞), for differen-
t ε. Compared with the linear chain of the same chain
length, adsorption of the ring polymer is faster to reach
equilibrium. For a ring polymer and a linear chain, Ne is
denoted by Ne,r and Ne,l, respectively. With increasing
ε in the range of 0.2 ≤ ε ≤ 5.0, both Ne,r and Ne,l in-
crease. In addition, Ne,r andNe,l are the same at ε ≥ 0.4,
while Ne,r ≥ Ne,l at ε ≤ 0.30. This indicates that, for
very weak attractive potential, the fraction of beads at
the surface is related to the loss of the entropy of the
chain. The difference in conformational entropy loss on
adsorption between rings and linear chains favors the ad-
sorption of rings. Our results for weak adsorption are in
agreement with experimental findings [42] and theoreti-
cal predictions [43] where ring polymers are adsorbed on
a surface more than linear chains. For strong attractive
potential ε = 5, we find n(t) ∼ tβ , with β ≈ 0.62.

10 100

10

100

FIG. 7: Log-log plots of the time a chain to be adsorbed on
the surface τ vs N for the linear chain and the ring chain at
a strong attraction ε=5.

2. Adsorption time as a function of the chain length for
strong attractions

For strong attractions, the adsorption can be consid-
ered to be irreversible and the bead attachment process
obeys a simple “zipping” mechanism for linear chains
[4, 55]. For ring polymers, we have checked the index of
attached beads and observed the same mechanism. Fig.
7 shows the adsorption time τ as a function of the chain
length N for both ring and linear chains at ε = 5. We
observe τ ∼ Nα, with the scaling exponent α = 1.57 and
1.56 for the linear chain and the ring chain, respective-
ly. These two exponents are very close to 1 + ν3D, with
ν3D = 0.588 being the Flory exponent in 3D. For linear
chains, α = 1+ν3D has also been observed by both lattice
[55–57] and off-lattice [4] Monte Carlo simulations.

Based on n(t) ∼ tβ , when n(t) is close to N , the ad-
sorption time τ = t(N). Using β ≈ 0.62 for ε = 5, we

obtain τ ∼ N
1
β = N1.61, which is in agreement with

the above numerical results. This also indicates that
β = 1

1+ν3D
for strong attractive strengths. When ad-

sorption is a sequential zipping process, the adsorption
kinetics can be mapped exactly to polymer translocation
dynamics under a transmembrane electric field [4], where
the translocation time with chain length shows the same
scaling behavior [58].

Another important result in Fig. 7 is that the ad-
sorption for ring polymers is always faster than that for
linear ones. We further find that the ratio of the adsorp-
tion times for the ring polymer and the linear chain of
identical chain length is close to 0.57. The origin of this
ratio comes from the ring topology.
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IV. CONCLUSIONS

We investigate the effect of chain topology on confor-
mation and adsorption transition on an attractive surface
of a ring polymer in a dilute solution in a good solvent.
Based on Flory theory, we find that the ratio of mean
squared radii of gyration of a ring polymer and a lin-
ear chain of identical length is 0.574, which is in good
agreement with the results from renormalization theo-
ry, previous simulations and experiments. Using three-
dimensional Langevin dynamics simulations, we examine
the adsorption transition of a flexible ring polymer chain
with one bead grafted to a flat solid surface and the con-
formation of the adsorbed chain. Compared with the lin-
ear chain, the ring polymer has the same critical adsorp-
tion point (CAP). At the CAP, the crossover exponent of
the number of adsorbed beads with chain length is about
0.50 for both ring and linear chains. At the CAP, ring

polymers are adsorbed on the surface more than linear
chains, which agrees with experiments. In addition, we
further observe that, compared with linear chains, the
adsorption of ring polymers is faster. Under strong at-
tractions, we observe that the exponent of the adsorption
time as a function of the chain length is 1 + ν3D, where
ν3D = 0.588 is the Flory exponent in three dimensions.
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