RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

A high-performance monolith catalyst based on 3D hierarchical foam-like $Fe_2O_3@CuO_x$ was developed for selective catalytic reduction of NO.

ARTICLE

Cite this: DOI: 10.1039/x0xx00000x

Received 00th January 2012, Accepted 00th January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Rational design of 3D hierarchical foam-like Fe₂O₃@CuOx monolith catalysts for selective catalytic reduction of NO with NH₃

Cheng Fang, Liyi Shi, Hang Hu, Jianping Zhang and Dengsong Zhang*

Herein, we have rationally designed and originally fabricated a high-performance monolith catalyst based on 3D hierarchical foam-like Fe_2O_3 (CuO_x for selective catalytic reduction (SCR) of NO with NH₃. The Fe₂O₃@CuO_x foam catalyst was synthesized by calcining the Cu foam in air first to form CuO_x foam with CuO_x nanowire arrays on the surface and then the Fe₂O₃ could be *in situ* formed on the surface of CuO_x through the reaction in the interfacial region between the aqueous solution of Fe^{2+} and CuO via a hydrothermal method. This catalyst was mainly characterized by the techniques of X-ray diffraction, transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, H₂ temperature-programmed reduction, $NH_3/NO + O_2$ temperature-programmed desorption and in situ diffuse reflectance infrared Fourier transform spectroscopy. Both the atomic concentration of Cu^+ and chemisorbed oxygen species are enhanced by the coating of Fe_2O_3 , which facilitates NO attack on active sites, resulting in the *in situ* formation of NO₂ and promoting the "fast SCR" reaction. Moreover, there is a strong interaction between CuO_x and Fe_2O_3 , which could not only lead to better reduction ability but also raise the acid amounts and enhance the acid strength as well as NO_x adsorption ability. Based on these favourable properties, the Fe₂O₃@CuO_x catalyst exhibits a higher activity and more extensive operating temperature window than the catalyst without Fe₂O₃. More importantly, the Fe₂O₃ not only prevents the generation of ammonium sulfates from blocking the active sites but also inhibit the formation of copper sulfates, resulting in a high SO₂-tolerance. In addition, the catalyst also displays favourable stability and H₂O resistance. The rational design of 3D hierarchical foam-like Fe_2O_3 (CuO_x paves a new way for the development of environmental-friendly and high-performance monolith deNO_x catalysts

1. Introduction

Nitrogen oxides (NO_x) from combustion of fossil fuels have given rise to a variety of environmental and health-related issues, including acid rain, photochemical smog, greenhouse effect and ozone depletion. Selective catalytic reduction (SCR) with ammonia is considered to be the most efficient and widely used technology for reducing NO_x emissions from stationary source.¹⁻⁴ The commercial catalysts for this process are based on the V₂O₅/TiO₂ promoted by WO₃ or MoO₃. However, due to the such disadvantage as the narrow operation temperature window (300-400 °C) as well as the toxicity of VO_x to ecoenvironment and human health,^{5, 6} more and more researchers are focusing on the development of environmental-friendly and vanadium-free catalysts in an appropriate temperature range.⁷⁻¹¹

In the past decades, a variety of transition metal oxide based catalysts have been developed for possible application in SCR reactions.¹²⁻¹⁵ Great efforts have been made to the CuO_x-based catalysts due to the good low-temperature NH₃-SCR activities.¹⁶⁻²² However, it is well known that the residual SO₂ in the flue gas could greatly affects the NO_x removal efficiency over CuO_x-based catalysts in the complicated SCR process.²²⁻²⁴ Thus, it is of great significance to improve the SO₂-tolerance for the CuO_x-based catalysts.

Recently, iron oxide is widely used in the SCR of NO either as a promoter or as an active component.²⁵⁻²⁷ It is found that the addition of Fe could improve the low-temperature SCR activity of the catalysts.^{28, 29} Besides, it is also demonstrated that the SO₂ durability of the catalysts could be improved by the element of Fe.^{25, 30, 31} Therefore, iron oxide could be a good candidate to enhance the low-temperature SCR activity and SO₂ tolerance for the CuO_x-based catalysts.

RSCPublishing

ARTICLE

Fig. 1. (a) Schematic illustration of the synthetic procedure for the $Fe_2O_3@CuO_x$ foam. SEM images of (b) the Cu foam, (c) the CuO_x foam (inset: enlarged image) and (d) the $Fe_2O_3@CuO_x$ foam.

It is noted that the above-mentioned catalyst powders were usually shaped as ceramic monoliths in practical applications. The catalytic components are generally introduced onto the surface of the ceramic monoliths by wash-coating or mixing into the channel walls during the extrusion of monolith structures, followed by such drawbacks as suppressed radial mixing due to impermeable internal channel walls and the accumulation of catalyst powders in the corners of the channels.^{32, 33} Besides, the distribution of active components over the conventional monolith catalysts is always inhomogeneous and easy to agglomerate, which restricts the deNO_x performance in the practical applications.^{34, 35} Thus, it is valuable to develop high-performance monolith catalysts with stable and highly dispersed active components on the surface.

It has been reported that Fe_2O_3 nanosheets could be *in situ* formed on the surface of CuO through the reaction in the interfacial region between the aqueous solution of Fe^{2+} and CuO.³⁶ Besides, the thermal oxidation of copper substrates such as grids and foils in air would cause the change of metal Cu to copper oxides and the formation of CuO_x nanowires on the surface.³⁷ Inspired by these researches, we originally designed a three-dimensional hierarchical monolith deNO_x catalyst derived from Cu foam with stable and highly dispersed active components, that is, CuO_x foam with CuO_x nanowire arrays on the surface coated with Fe_2O_3 . In this design, the monolith catalysts based on the merits of copper catalysts and iron catalysts have a broaden temperature window for deNOx and also have a better catalytic performance within the low temperature regions as compared with the commercial

vanadium-based catalysts. Specifically, the CuO_x exhibits favorable SCR activity in low temperature region and the Fe₂O₃ could serves as effective components to improve the activity of CuO_x . Furthermore, the Fe₂O₃ not only prevents the generation of ammonium sulfates from blocking the active sites but also inhibit the formation of copper sulfates. The CuO_x foam with a 3D interconnected porous structure possesses a high porosity and highly accessible surface area, which is beneficial to mass transfer and thus enhance the catalytic reaction.³⁸ As illustrated in Fig. 1a, the fabrication process of foam-like Fe₂O₃@CuO_x monolith catalyst involves the following steps. Firstly, the CuO_x foam with CuO_x nanowires oriented perpendicular to the surface was formed by thermal oxidation of Cu foam in flow air. Secondly, Fe²⁺ could hydrolyze and released an H⁺ under hydrothermal conditions. Subsequently, CuO_x was gradually dissolved into the aqueous solution under such local acidic environment and then the initial nucleated iron hydroxide species seeds would in situ form on the surface of CuO_x, which will serve as nucleation centers that allow the subsequent adsorption of Fe²⁺ and the crystal growth. After calcination, the hierarchical foam-like $Fe_2O_3(a)CuO_x$ can be obtained. The catalyst shows uniform three-dimensional structure with homogeneous distribution of the active components and good adhesion of Fe₂O₃ on the foam substrate, and thus the high NH₃-SCR activity as well as high SO₂-tolerence could be guaranteed.

2. Experimental

2.1 Catalyst preparation

The Cu foam was purchased from Ailantian Advanced Technology Materials Co. Ltd (Dalian, China). The Cu foam was cut into small rounds (d = 20 mm, 1.6 mm thick) and pretreated with acetone and 0.1 M HCl aqueous solution upon ultrasonic vibration for 10 min to remove dirt and grease respectively, and then washed fully with deionized water to remove residual HCl. All the other chemicals were purchased from Sinopharm Chemical Regent Company and used without further purification.

In a typical synthesis process, the cleaned Cu foam was firstly calcined in flow air at 500 °C for 6 h to obtain a copper oxides foam with nanowires on the surface according to previous report.³⁷ This sample was denoted as CuO_x foam. Secondly, 1.4 mmol of FeSO₄·7H₂O was dissolved in 70 mL of water under stirring and then transferred into a Teflon-lined stainless steel autoclave. The CuO_x foam was immersed in the above homogeneous solution and 2.5 mmol of sodium hydroxide was quickly added. Subsequently, the autoclave was heated and maintained at 170 °C for 1 h and then allowed to cool down to room temperature naturally. The sample was washed several times with distilled water, dried at 80 °C and finally calcined in air at 500 °C for 1 h. The as-prepared catalyst was denoted as Fe₂O₃@CuO_x foam.

2.2 Characterization

The powder X-ray diffraction (XRD) was performed with a Rigaku D/MAX-2200 X-ray diffractometer by using Cu K α (40 kV, 40 mA) radiation and a secondary beam graphite monochromator. The morphologies were observed by a scanning electron microscope (SEM, JEOL JSM-6700F) and a field emission high resolution transmission electron microscope (HRTEM, JEOL JEM-2100F). The X-ray photoelectron spectroscopy (XPS) was recorded on a Perkin–Elmer PHI 5000C ESCA system equipped with a dual X-ray source, using the MgK α (1253.6 eV) anode and a hemispherical energy analyzer. The back ground pressure during data acquisition was kept below 10⁻⁶ Pa. All binding energies were calibrated using contaminant carbon (C 1s = 284.6 eV) as a reference.

Temperature-programmed reduction by hydrogen (H₂-TPR) was obtained on a Tianjin XO TP5080 auto-adsorption apparatus. 50 mg of the calcined catalyst was outgassed at 300 °C under N2 flow. After cooling to room temperature under N2 flow, the flowing gas was switched to 5% H2/N2, and the sample was heated to 880 °C at a ramping rate of 10 °C min⁻¹. The H₂ consumption was monitored by a TCD. Temperatureprogrammed desorption experiments of ammonia (NH₃-TPD) were conducted on a Tianjin XQ TP5080 auto-adsorption apparatus. Before TPD, each sample was pretreated under N2 flow at 300 °C for 0.5 h, then saturated with high-purity anhydrous ammonia at 100 °C for 1 h and subsequently flushed at the same temperature for 1 h. Finally, the TPD operation was carried out from 100 to 980 °C at a heating rate of 10 °C min⁻¹. The amount of NH₃ desorbed was monitored by a TCD. Temperature-programmed desorption experiments of NO + O_2

Page 4 of 12

In situ diffuse reflectance infrared Fourier transform spectroscopy (*in situ* DRIFTS) experiments were performed on an FTIR spectrometer (Nicolet 6700) equipped with a Harrick DRIFT cell and an MCT/A detector cooled by liquid N₂. Prior to each experiment, the catalysts were pretreated at 500 °C in a flow of N₂ (50 mL·min⁻¹) for 0.5 h and cooled to room temperature under N₂ flow. Background spectra were recorded in the N₂ flow at different temperature and subtracted from each sample spectrum. All the *in situ* DRIFTS spectra were collected by accumulating 64 scans at a 4 cm⁻¹ resolution. For ammonia adsorption, the catalysts were treated in flow of 500 ppm NH₃ at room temperature for 1 h and then purged by N₂.

2.3 Catalytic activity measurements

The NH₃-SCR activity measurement was carried out in a fixedbed stainless steel flow reactor (i.d. 2 cm) operating in a steady state flow mode. The reactant gases were fed to the reactor by an electronic mass flow controller. The typical reactant gas composition was as follows: 500 ppm NO, 500 ppm NH₃, 3 vol. % O₂, 250 ppm SO₂ (when used), 8 vol. % H₂O (when used), and balance N₂. The total flow rate was 215 mL·min⁻¹ and thus a GHSV of 20 000 h⁻¹ was obtained. The temperature increased from 200 to 400 °C. At each temperature step the data were recorded when the SCR reaction reached steady state after 15min. The concentration of NO in the inlet and outlet gas was measured by a KM9106 flue gas analyzer. NO conversion was calculated according to the following expression:

$$NOConversion(\%) = \frac{[NO]_{in} - [NO]_{out}}{[NO]_{in}} \times 100\%$$
(1)

3. Results and discussion

3.1. Characteristics

The micro-morphologies of the catalysts were investigated by SEM techniques. Fig. 1b shows that the framework of Cu foam forms a three-dimensional interconnected microporous structure. The surface of Cu foam shows a tortoiseshell-like morphology and many tiny pores. The Cu foam possesses a high porosity and highly accessible surface area, which is conducive to mass transfer. After thermal oxidation in flow air, the surface of the framework is covered by a dense array of uniform, straight and long nanowires as shown in Fig. 1c. The inset of Fig. 1c reveals that the surface of the nanowires is smooth and round. The diameter of these nanowires is about 500 nm and the length is varied in the range of 2-10 μ m.³⁷ Each

ARTICLE

RSC Advances

nanowire is grown in the direction perpendicular to the framework. Fig. 1d shows the SEM image of the $Fe_2O_3@CuO_x$ foam. It is obvious that the surface of the nanowires is rough and some irregular nanoparticles distributed around the nanowire. The shape and size of the nanowire did not significantly change from that of CuO_x foam as presented in the inset of Fig. 1c.

Fig. 2. TEM image (a) and EDX-mapping images (b-d) of the $Fe_2O_3@CuO_x$ foam.

The TEM analysis was also performed to investigate morphological characteristics of the $Fe_2O_3@CuO_x$ foam as shown in Fig. 2. Fig. 2a clearly exhibits that the nanowire is wrapped by nanoparticles. As compared to the inset of Fig. 1c, the only difference is that the smooth nanowire surface of CuO_x foam disappeared and irregular nanoparticles were uniformly scattered on the surface instead. Fig. 2b-d are the distributions of Cu, Fe, and O elements on the surface of the $Fe_2O_3@CuO_x$ foam, which can be verified by the EDX mapping from the TEM image in Fig. 2a. The mapping shapes of Cu, Fe, and O elements are all similar to that of the $Fe_2O_3@CuO_x$ foam, indicating the catalyst has uniform element composition and dispersion. It also presents that the presence of Cu is associated with Fe, which suggests the synergistic effect between Cu and Fe species.

The XRD was performed to determine the chemical compositions and phases of all catalysts as shown in Fig. 3. As to the Cu foam, the diffraction peaks are corresponding to the typical and sole elemental Cu (JCPDS 65-9026), suggesting the high purity of the Cu foam. For the CuO_x foam, the peaks belonging to the phase of metal Cu disappear completely. Specifically, the strong diffraction peaks at around 35.5 °, 38.7 °, 48.7 ° and 61.5 ° can be assigned to the CuO (JCPDS 48-1548) and the diffraction peaks around 36.5 °, 42.4 ° and 73.7 °

according to Cu₂O (JCPDS 65-3288) can be observed. These results indicate the fully oxidation of the Cu foam, which is in line with the previous study.³⁷ It is reported that Cu₂O was first generated when copper was oxidized in air and then it served as a precursor to CuO, which was formed slowly through a second step of oxidation.³⁷ The XRD pattern of Fe₂O₃@CuO_x foam is very similar to that of CuO_x foam but there are two extra weak peaks corresponding to Fe₂O₃ (JCPDS 39-1346). The peaks of Fe₂O₃ shows that iron species generated on the CuO_x foam during the hydrothermal treatment, coinciding with the SEM and TEM results. In addition, a slight shift of the XRD peaks can be found, which should be ascribed to the interaction between Fe₂O₃ and CuO_x.

The XPS measurements were carried out to determine the oxidation state of elements as well as the chemical compositions of the catalysts. The Cu 2p spectra of $Fe_2O_3@CuO_x$ foam and CuO_x foam can be observed in Fig. 4a, which can be separated into four peaks by performing a peakfitting deconvolution.^{22, 39} The spectra located at 930-937 eV can be separated into two peaks assigned to Cu⁺ (932.4 eV) and Cu²⁺ (934.3 eV). The shake-up satellite peaks at 940-945 eV can also be observed, which is attributed to the characteristics of Cu^{2+} . The surface atomic concentrations of O, Cu, Fe and the relative concentration ratios of Cu⁺ and surface adsorbed oxygen are summarized in Table 1. The relative intensity of Cu⁺/Cu²⁺ calculated from deconvolution of Cu 2p profiles were 0.7 and 0.6 for the Fe_2O_3 (a)CuO_x foam and CuO_x foam, respectively. This result means that the introduction of Fe₂O₃ will improve the content of Cu⁺. It has been reported that Cu⁺ was suggested to facilitate NO attack on active sites, resulting in the in situ formation of NO2, which might promote the "fast SCR" reaction as the presence of NO2 in the feed gas is conducive to the SCR reaction over the catalysts.24, 40 Compared with the CuO_x foam, the Cu 2p peaks for the $Fe_2O_3@CuO_x$ foam catalyst show a little positive shift in binding energy due to the electron transfer from Cu to Fe.⁴¹ Therefore, Cu species have lower density of electron cloud,

RSCPublishing

ARTICLE

Table 1 Elemental surface analysis of the catalysts by XPS.						
Catalyst	O (at.%)	Cu (at.%)	Fe (at.%)	Cu ⁺ (at.%)	$O_{\alpha}/(O_{\alpha}+O_{\beta})$ (%)	$O_{\alpha}(at.\%)$
Fe ₂ O ₃ @CuO _x foam	38.7	5.3	0.8	2.2	62.8	24.3
CuO _x foam	39.1	3.9	-	1.5	59.1	23.1

leading to increase of the oxidative ability of Cu species in the $Fe_2O_3@CuO_x$ foam.⁴¹ In other words, this positive shift suggests the change in the chemical environment of Cu, indicating there is an interaction between Cu and Fe species. In the Fe 2p XPS spectra of the $Fe_2O_3@CuO_x$ foam (Fig. S1, ESI),

the binding energies of the three peaks correspond well with characteristic Fe^{3+} , suggesting the presence of Fe_2O_3 .⁴¹⁻⁴³

In the case of O 1s spectra (Fig. 4b), the spectra of the catalysts can be divided into two peaks. The peak at lower binding energy (528.7-530.9 eV) is assigned to the lattice oxygen O^{2-} (denoted as O_{β}), and the one at higher binding energy (531.4-532.5 eV) corresponds to the surface adsorbed oxygen (denoted as O_{α}), belonging to hydroxyl-like or defectoxide group.⁴⁴ The $O_{\alpha}/(O_{\alpha}+O_{\beta})$ over the Fe₂O₃@CuO_x foam and CuO_x foam are presented as 62.8 % and 59.1 % and the concentration of O_a are calculated to be 24.3 at.% and 23.1 at.%, respectively. It has been demonstrated that the surface adsorbed oxygen O_{α} is more active in oxidation reactions than the lattice oxygen O_{β} due to its higher mobility. It is believed that high O_{α} content promotes NO oxidation to NO₂, thereafter facilitates the "fast SCR" reaction.⁴⁵ Furthermore, the surface hydroxyl-like groups could act as Brønsted acid sites to absorb NH₃ and form NH4⁺, which will react with the NO2 adsorbed nearby to produce N₂.⁴⁶ Based on the XPS analysis, higher O_a concentration over the Fe₂O₃@CuO_x foam would lead to favorable reduction of NO through the "fast SCR" reaction.

The H₂-TPR technique was employed to investigate the reducibility of the catalysts. As illustrated in Fig. 5, all the H₂-TPR profiles of the Fe₂O₃@CuO_x foam and CuO_x foam present distinct H₂ consumption peaks. It has also been reported that CuO are more easily reduced than other CuO_x with different oxidation states and the profile of pure CuO exhibits reduction peak at approximately 370 °C.^{47, 48} For the CuO_x foam, the H₂-TPR profile presents two well-defined reduction peaks around 353 and 554 °C. The former can be assigned to the relatively easier reduction in the CuOx dispersed on the outside surface of the catalyst, while the latter took place inside the bulk catalyst. In order to clarify the detailed reduction processes, the reduction peaks were deconvoluted into four sub-bands from low to high temperature, attributed to the reduction processes of $CuO \rightarrow Cu_2O$ and $Cu_2O \rightarrow Cu$ in the surface and bulk, respectively. It has been demonstrated that the H2-TPR profile of Fe₂O₃ presents two H₂ consumption peaks around 370 and 590 °C, ascribed to the stepwise reduction of $Fe^{3+} \rightarrow Fe^{2+} \rightarrow$ $Fe^{0.41}$ The reduction peaks of the $Fe_2O_3@CuO_x$ foam were accordingly deconvoluted into six sub-bands. The four peaks at 336 °C, 403 °C, 450 °C and 500 °C are attributed to the reduction of CuO_x and the two peaks at 363 °C and 599 °C corresponds to the reduction of Fe₂O₃. The reduction peaks of CuO_x species for $Fe_2O_3(a)CuO_x$ foam shift to the lowtemperature regions by about 20-50 °C as compared to the CuO_x foam, suggesting the better redox ability. Thus, it is reasonable to deduce that the introduction of Fe₂O₃ promotes the reducibility of CuO_x and there is a strong interaction between copper oxide and iron oxide species in the Fe₂O₃@CuO_x foam, which was also confirmed by the Cu 2p XPS results. Moreover, the area of the reduction peak is actively relevant with the consumption of H₂, directly revealing the amount of the reactive oxygen species.⁴⁹ Larger reduction peaks can be observed for the Fe_2O_3 (2)CuO_x foam, suggesting that more active components are exposed, which is conducive to the SCR reaction.

Fig. 6. NH₃-TPD profiles of the catalysts (the inset is the enlargement of the CuO_x foam).

The NH₃-TPD analyses were performed to study the adsorption behaviour of NH3 on the catalysts, which is generally viewed as the primary steps in the NH₃-SCR of NO. It is reported that for the NH3-TPD profiles, the low temperature desorption peaks between 100 and 300 °C belong to the ammonia desorbed from weak Lewis or Brønsted acid sites, whereas, the high temperature desorption peaks situated between 300 and 600 °C belong to the ammonia desorbed from strong acid sites.⁵⁰ As shown in Fig. 6, the NH₃-TPD profile of Fe₂O₃@CuO_x foam exhibits three desorption peaks: the weak peak centered at 154 °C attributed to ammonia desorbed from the weak acid sites, and the two strong and sharp peaks observed at 409 and 575 °C assigned to ammonia desorbed from the strong acid sites on the catalysts. While, in the case of CuO_x foam, the intensity of the desorption peaks is significantly reduced. In the inset of Fig. 6, the enlarged profile of CuO_x foam also shows three desorption peaks. The peak centered at 154 °C and the other two peaks at 345 and 566 °C are related to the weak and strong acid sites, respectively. It is well known that the position and area of desorption peak are correlated with the acid strength and acid amount, respectively.9, 51 The peaks related to strong acid sites of the CuOx foam shift to higher temperatures after the coating of Fe₂O₃, which suggests that the strength of the acid sites on the Fe₂O₃@CuO_x foam is stronger than that of the CuOx foam. Therefore, the stronger acid strength of the Fe₂O₃@CuO_x foam might be associated with the stronger interaction between copper oxide and iron oxide. It is also demonstrated that Fe³⁺ could act as strong Lewis acid sites.⁴³ The NH₃-TPD profile of the Fe₂O₃@CuO_x foam reveals the much larger area, indicating the presence of more acid sites. The above results demonstrate that the coated Fe₂O₃ not only enhance the acid strength but also raise acid amounts, which may be beneficial to the NH₃-SCR reaction.

The in situ DRIFTS of NH₃ adsorption at various temperatures are also performed to investigate the adsorption behaviours of the NH3 molecules on the surface of the catalysts. As shown in Fig. 7, the bands at 1247 and 1618 cm⁻¹ can be assigned to the characteristic bands of NH3 coordinated on Lewis acid sites. As compared with the CuO_x foam, the band at 1618 cm⁻¹ shows up for the $Fe_2O_3(a)CuO_x$ foam, which can be assigned to the formation of new Lewis acid site caused by the addition of Fe₂O₃. No bands assigned to Brønsted acid sites were observed, indicating that Lewis acid sites are responsible for the SCR reactions over these two catalysts. It is evident that the band intensity of Lewis acid over the Fe₂O₃@CuO_x foam is much higher than that over the CuO_x foam. This result suggests the addition of Fe₂O₃ will lead to more Lewis acid sites due to the interaction between CuOx and Fe2O3, and thus result in more adsorbed NH₃, which is in good agreement with the NH₃-TPD analysis. A shift of the band at 1247 cm⁻¹ both occurs in the in situ DRIFTS process for the two catalysts, which can be attributed to electron donation from (partly) filled *d*-orbitals of copper ions to π^* -orbitals of NH₃.⁵² It is also found that when the temperature goes up to 100 °C over the Fe₂O₃@CuO_x foam, the intensity of band at 1247 cm⁻¹ increases. This phenomenon can be attributed to the activation of NH₃ molecules caused by

heating up and subsequently NH_3 molecules are adsorbed by Lewis acid sites from the gaseous phase. The above analyses indicate the coating of Fe_2O_3 on the CuO_x foam has enhanced the Lewis acid sites over the CuO_x foam, resulting in the better low-temperature NH_3 -SCR activity.

Fig. 7. In situ DRIFTS of NH_3 adsorption on (a) the CuO_x foam and (b) the $Fe_2O_3@CuO_x$ foam.

The NO + O2-TPD measurements were also conducted to study the adsorption behaviour of NOx on the catalysts as presented in Fig. 8. The TPD profiles of the two catalysts both exhibit distinct NO_x desorption peaks. It is reported that the NO_x desorption process can be divided into three stages: simple desorption of physical adsorbed and weakly chemisorbed NO (75-150 °C), NO desorption together with its dissociation (150-400 °C), and nitrite/nitrate thermal decomposition (300-500 °C).⁵³ Accordingly, in the case of the Fe₂O₃@CuO_x foam and the CuO_x foam, the desorption peaks at 77 $^{\circ}$ C correspond to the physical adsorbed NO, and the ones at 170 °C, 198 °C and 228 °C are assigned to the desorption and dissociation of NO, and the ones at 378 °C and 430 °C are attributed to the thermal decomposition of nitrite/nitrate species. As compared with the CuO_x foam, the desorption peaks shift to higher temperature range after the introduction of Fe₂O₃ and the NO + O₂-TPD

profile of $Fe_2O_3(a)CuO_x$ foam reveals the much larger area,

suggesting the interaction between iron oxide and copper oxide

species can lead to the stronger adsorption ability of NO_x and

more adsorbed NO_x over the catalyst, which are both beneficial

3.2. Catalytic activity

The NH₃-SCR activities tested for the catalysts as a function of temperature is provided in Fig. 9. It is clear that the Fe₂O₃@CuO_x foam demonstrates a more extensive operating temperature window and higher NO conversion than the CuO_x foam under identical operating conditions. For the CuO_x foam catalyst, the maximum NO conversion is 83% at 275 °C, and the NO conversion is dramatically decreased when the operating temperature is beyond 300 °C. After coating with Fe₂O₃, by contrast, the maximum NO conversion is enhanced to 90% and the temperature window is significantly broadened, especially at the high temperature region. The temperature window for >80% NO conversion ranges from 250 to 380 °C.

RSCPublishing

ARTICLE

Based on these results, the Fe_2O_3 could serve as effective components to promote the catalytic activity of the catalyst, especially at the high-temperature region. Besides, the $Fe_2O_3@CuO_x$ foam achieves higher N₂ selectivity than the CuO_x foam under the operating conditions (Fig. S2, ESI). The catalytic activity curve of Cu foam is similar to that of CuO_x foam (Fig. S3, ESI), which can be attributed to the copper oxide species formed during the temperature-rising test process.

The XRD, SEM, TEM and EDX-mapping analyses demonstrate the successful coating of Fe_2O_3 on the CuO_x foam and the uniform distribution of active components, which could greatly improve the catalytic activity of the catalysts.⁵⁴ According to the XPS analyses, the introduction of Fe_2O_3 could increase the amount of Cu^+ and surface adsorbed oxygen species on the surface of catalyst. In addition, a large amount of Cu^+ (1.6 at.%) still exists on the surface of the used $Fe_2O_3@CuO_x$ foam (Fig. S4, ESI). The XRD result of the used $Fe_2O_3@CuO_x$ foam also confirms the presence of Cu_2O (Fig.

S5, ESI). The H₂-TPR analyses suggest that the $Fe_2O_3@CuO_x$ foam possess abundant reactive oxygen species and strong interaction between CuO_x and Fe₂O₃, resulting in its better reducibility, which could enhance the catalytic cycle. The NH₃-TPD and in situ DRIFTS results show that the Fe₂O₃@CuO_x foam presents more acid sites and stronger acid strength, which could facilitate the adsorption and activation of NH₃ in the SCR reaction. Stronger adsorption ability of NO_x and more adsorbed NO_x over the Fe₂O₃@CuO_x foam are also proved by the NO + O2-TPD tests. In addition, the 3D hierarchical structure can improve the gas diffusion by providing a decreased gas diffusion distance and also ensuring a minimized inner resistance for the gas transportation pathways. Based on these favorable properties of the structure and components, the $Fe_2O_3@CuO_x$ foam catalyst exhibits excellent activity in the NH₃-SCR reaction.

The stability is also an important indicator to evaluate the catalytic performance of the catalyst. Fig. 10a shows the

stability test of the Fe₂O₃@CuO_x foam as a function of time at 350 °C. The feed gas consists of 500 ppm NO, 500 ppm NH₃, 3 vol% O₂, and balance gas N₂ and the total flow rate is 215 mL min⁻¹. The NO conversion of the catalyst is kept at ca. 91.5% during a 24 h continuous running duration. Therefore, the Fe₂O₃@CuO_x foam catalyst could not only provide high NH₃-SCR activity in a wide operating temperature range, but also exhibit good stability.

It is noted that vapour in the flue gas might have an inhibition effect on the NOx removal capacity of catalysts.^{26, 55} The influence of H₂O on the SCR activity over the $Fe_2O_3@CuO_x$ foam as a function of time at 350 °C is investigated as shown in Fig. 10b. Before the addition of vapour, the NO conversion of the catalyst is kept at ca. 92%. When 8 vol. % H₂O is added to the feed gas, the NO conversion is almost unchanged with a slight fluctuation during the test period. This result indicates that the catalyst has a good H₂O-resistant performance. It has also been reported that the inhibition of H₂O is reversible, due to the competitive adsorption between water and ammonia molecules on the active sites of the catalyst surface.⁵⁵ The NH₃-TPD analysis shows that a large number of acid sites over the Fe₂O₃@CuO_x foam might preferentially absorb NH₃ other than H₂O in the gas phase, which is responsible for its excellent H₂O resistance.

As we know, the flue gas still comprises low concentration of SO₂ even after desulphurization.²³ It is generally believed that SO₂ has a serious poisoning effect on the catalytic activity and could lead to the catalysts poisoning and deactivation.^{19, 56,} ⁵⁷ Fig. 10c depicts the catalytic activity of the catalyst, as a function of time in the presence of 250 ppm SO₂ at 350 °C. When 250 ppm SO₂ was added to the feed gases, the NO conversion over the catalyst decrease slightly, and only about 3 % of the conversion was lost during the test period. After eliminating SO₂ from the feed gas, the NO conversion was gradually restored to the initial value. It is noted that the poisoning and deactivation of the catalyst caused by SO₂ usually involves the following two aspects.58, 59 Firstly, ammonium sulfate species are generated and deposited on the catalyst surface, blocking the active sites of the catalyst surface, and this deactivation process is reversible. Secondly, active components of the catalyst can be sulfated to form stable metal sulfates, which leads to an irreversible deactivation. Shen et al.60 reported that the addition of iron oxide would have a positive effect on the SO₂-tolerance of Mn-Ce/TiO₂ catalyst, because iron oxide could significantly decrease the generation rate of sulfates. Fig. 9c indicates that the effective resistance to SO_2 appears to be achieved by coating Fe_2O_3 on CuO_x . Therefore, it is reasonable to deduce that the Fe₂O₃ not only prevent the generation of ammonium sulfates from blocking the active sites but also inhibit the formation of copper sulfates.

We also investigated the SCR activity of the $Fe_2O_3@CuO_x$ foam under the coexistence of H_2O and SO_2 , and the result is shown in Fig. 10d. It is obvious that the coexistence of 8 vol. % H_2O and 250 ppm SO_2 induced a 4 % decrease in the NO conversion, but the NO conversion is recovered to 92 % when cutting off the supply of H_2O and SO_2 . The above results suggested that the synergistic inhibition effect between H_2O and SO_2 does not exist in the SCR reaction over the catalyst. The morphology and structure of the catalyst are maintained well after the anti-toxicity test (Fig. S6, ESI). Thus, it is reasonable to deduce that the adhesion between the Fe₂O₃ and CuO_x foam is sufficiently strong to support the de-NO_x process. Besides, the XRD pattern of this catalyst shows that no crystalline phase ascribed to sulfates can be detected (Fig. S7, ESI). The maintained morphology and XRD result prove directly that the generation of ammonium sulfates and copper sulfates on the catalyst surface can be inhibited by the Fe₂O₃.

4. Conclusions

In summary, we have rationally designed and originally fabricated a monolith deNO_x catalyst based on 3D hierarchical foam-like Fe₂O₃@CuO_x. The Fe₂O₃@CuO_x foam displays a more extensive operating temperature window and higher catalytic activity for NH₃-SCR of NO than the CuO_x foam. The characteristic of 3D hierarchical structure, uniform distribution of the active components as well as the strong interaction between copper oxide and iron oxide species contribute to the excellent deNO_x performance of the $Fe_2O_3(a)CuO_x$ foam. The coating of Fe₂O₃ could improve the atomic concentration of the Cu⁺ and surface adsorbed oxygen species, facilitating NO attack on active sites as well as in situ formation of NO2. The strong interaction between copper oxide and iron oxide species lead to better reduction ability, more acid sites, stronger acid strength and NO_x adsorption ability. The above features are closely associated with the excellent activity of the catalyst in the NH₃-SCR reaction. The catalyst also presented favourable stability and H₂O/SO₂ resistance. Especially, the SO₂-resistance of the $Fe_2O_3(a)CuO_x$ foam is significantly improved since the Fe₂O₃ not only prevents the generation of ammonium sulfates from blocking the active sites but also inhibit the formation of copper sulfates. The rational design of 3D hierarchical foamlike Fe₂O₃@CuO_x offers fresh approach to developing ecofriendly and high-performance monolith deNO_x catalysts.

Acknowledgments

The authors acknowledge the support of the National Basic Research Program of China (973 Program, 2014CB660803), the National Natural Science Foundation of China (U1462110), the Science and Technology Commission of Shanghai Municipality (13NM1401200), and the Shanghai Municipal Education Commission (14ZZ097). We thank Mr. Y. L. Chu from the Analysis and Test Center of SHU for help with the TEM and SEM measurements.

Notes and references

Research Center of Nano Science and Technology, School of Material Science and Engineering, Shanghai University, Shanghai 200444, China. Fax: 86 21 66136081; E-mail: <u>dszhang@shu.edu.cn</u>

Page 11 of 12

ARTICLE

RSC Advances

Electronic Supplementary Information (ESI) available: [XPS spectra, N_2 selectivity, catalytic performance, XRD and SEM images of the catalysts]. See DOI: 10.1039/b000000x/

- 1. P. Forzatti, I. Nova and E. Tronconi, Angew. Chem., 2009, 121, 8516-8518.
- F. Gao, E. D. Walter, N. M. Washton, J. Szanyi and C. H. F. Peden, ACS Catal., 2013, 3, 2083-2093.
- W. C. Wang, G. McCool, N. Kapur, G. Yuan, B. Shan, M. Nguyen, U. M. Graham, B. H. Davis, G. Jacobs, K. Cho and X. Hao, *Science*, 2012, **337**, 832-835.
- F. Thibault-Starzyk, E. Seguin, S. Thomas, M. Daturi, H. Arnolds and D. A. King, *Science*, 2009, **324**, 1048-1051.
- R. H. Gao, D. S. Zhang, X. G. Liu, L. Y. Shi, P. Maitarad, H. R. Li, J. P. Zhang and W. G. Cao, *Catal. Sci. Technol.*, 2013, 3, 191-199.
- S. B. Kristensen, A. J. Kunov-Kruse, A. Riisager, S. B. Rasmussen and R. Fehrmann, J. Catal., 2011, 284, 60-67.
- R. Nedyalkova, K. Kamasamudram, N. W. Currier, J. H. Li, A. Yezerets and L. Olsson, *J. Catal.*, 2013, 299, 101-108.
- S. X. Cai, D. S. Zhang, L. Zhang, L. Huang, H. R. Li, R. H. Gao, L. Y. Shi and J. P. Zhang, *Catal. Sci. Technol.*, 2014, 4, 93-101.
- L. Zhang, D. S. Zhang, J. P. Zhang, S. X. Cai, C. Fang, L. Huang, H. R. Li, R. H. Gao and L. Y. Shi, *Nanoscale*, 2013, 5, 9821-9829.
- R. H. Gao, D. S. Zhang, P. Maitarad, L. Y. Shi, T. Rungrotmongkol, H. R. Li, J. P. Zhang and W. G. Cao, *J. Phys. Chem. C*, 2013, **117**, 10502-10511.
- L. Zhang, L. Y. Shi, L. Huang, J. P. Zhang, R. H. Gao and D. S. Zhang, ACS Catal., 2014, 4, 1753-1763.
- C. Fang, D. S. Zhang, S. X. Cai, L. Zhang, L. Huang, H. R. Li, P. Maitarad, L. Y. Shi, R. H. Gao and J. P. Zhang, *Nanoscale*, 2013, 5, 9199-9207.
- J. Liu, X. Y. Li, Q. D. Zhao, C. Hao and D. K. Zhang, *Environ. Sci. Technol.*, 2013, 47, 4528-4535.
- H. Chang, M. T. Jong, C. Wang, R. Qu, Y. Du, J. Li and J. Hao, Environ. Sci. Technol., 2013, 47, 11692-11699.
- F. Can, S. Berland, S. Royer, X. Courtois and D. Duprez, *ACS Catal.*, 2013, 3, 1120-1132.
- D. A. Pena, B. S. Uphade and P. G. Smirniotis, J. Catal., 2004, 221, 421-431.
- G. Ramis, L. Yi, G. Busca, M. Turco, E. Kotur and R. J. Willey, J. Catal., 1995, 157, 523-535.
- L. Chmielarz, P. Kustrowski, M. Zbroja, B. Gil-Knap, J. Datka and R. Dziembaj, *Appl. Catal.*, *B*, 2004, 53, 47-61.
- J. H. Huang, Z. Q. Tong, Y. Huang and J. F. Zhang, *Appl. Catal.*, *B*, 2008, 78, 309-314.
- N. Apostolescu, B. Geiger, K. Hizbullah, M. T. Jan, S. Kureti, D. Reichert, F. Schott and W. Weisweiler, *Appl. Catal.*, *B*, 2006, 62, 104-114.
- H. Teng, L. Y. Hsu and Y. C. Lai, *Environ. Sci. Technol.*, 2001, 35, 2369-2374.
- Q. Li, H. S. Yang, Z. X. Ma and X. B. Zhang, *Catal. Commun.*, 2012, 17, 8-12.
- Y. S. Cheng, C. Lambert, D. H. Kim, J. H. Kwak, S. J. Cho and C. H. F. Peden, *Catal. Today*, 2010, **151**, 266-270.
- 24. Z. X. Ma, H. S. Yang, B. Li, F. Liu and X. B. Zhang, *Ind. Eng. Chem. Res.*, 2013, **52**, 3708-3713.

- Y. Shu, T. Aikebaier, X. Quan, S. Chen and H. T. Yu, *Appl. Catal.*, B, 2014, 150–151, 630-635.
- X. L. Mou, B. S. Zhang, Y. Li, L. D. Yao, X. J. Wei, D. S. Su and W. J. Shen, *Angew. Chem., Int. Ed.*, 2012, **51**, 2989-2993.
- 27. X. Y. Shi, F. D. Liu, L. J. Xie, W. P. Shan and H. He, *Environ. Sci. Technol.*, 2013, 47, 3293-3298.
- 28. G. S. Qi and R. T. Yang, Appl. Catal., B, 2003, 44, 217-225.
- 29. Z. B. Wu, B. Q. Jiang and Y. Liu, Appl. Catal., B, 2008, 79, 347-355.
- Y. Shu, H. Sun, X. Quan and S. Chen, J. Phys. Chem. C, 25319-25327.
- 31. S. J. Yang, J. H. Li, C. Z. Wang, J. H. Chen, L. Ma, H. Z. Chang, L. Chen, Y. peng and N. Q. Yan, *Appl. Catal.*, B, 2012, 117-118, 73-80.
- Z. G. Lei, C. P. Wen, J. Zhang and B. H. Chen, *Ind. Eng. Chem. Res.*, 2011, **50**, 5942-5951.
- 33. H. R. Li, D. S. Zhang, P. Maitarad, L. Y. Shi, R. H. Gao, J. P. Zhang and W. G. Cao, *Chem. Commun.*, 2012, 48, 10645-10647.
- 34. M. Kobayashi and K. Miyoshi, Appl. Catal., B, 2007, 72, 253-261.
- B. Pereda-Ayo, U. De La Torre, M. Romero-Sáez, A. Aranzabal, J. A. González-Marcos and J. R. González-Velasco, *Catal. Today*, 2013, 216, 82-89.
- 36. J. X. Zhu, Z. Y. Yin, D. Yang, T. Sun, H. Yu, H. E. Hoster, H. H. Hng, H. Zhang and Q. Y. Yan, *Energy Environ. Sci.*, 2013, 6, 987-993.
- X. C. Jiang, T. Herricks and Y. N. Xia, *Nano Lett.*, 2002, 2, 1333-1338.
- 38. S. X. Cai, D. S. Zhang, L. Y. Shi, J. Xu, L. Zhang, L. Huang, H. R. Li and J. P. Zhang, *Nanoscale*, 2014, 6, 7346–7353.
- V. P. Pakharukova, E. M. Moroz, V. V. Kriventsov, T. V. Larina, A. I. Boronin, L. Y. Dolgikh and P. E. Strizhak, *J. Phys. Chem. C*, 2009, 113, 21368-21375.
- 40. C. C. Liu and H. S. Teng, Appl. Catal., B, 2005, 58, 69-77.
- H. L. Zhang, C. J. Tang, C. Z. Sun, L. Qi, F. Gao, L. Dong and Y. Chen, *Microporous Mesoporous Mater.*, 2012, 151, 44-55.
- S. Roy, B. Viswanath, M. S. Hegde and G. Madras, J. Phys. Chem. C, 2008, 112, 6002-6012.
- A. Gervasini, C. Messi, P. Carniti, A. Ponti, N. Ravasio and F. Zaccheria, J. Catal., 2009, 262, 224-234.
- 44. F. D. Liu, H. He, Y. Ding and C. B. Zhang, *Appl. Catal., B*, 2009, **93**, 194-204.
- W. P. Shan, F. D. Liu, H. He, X. Y. Shi and C. B. Zhang, *Chem. Commun.*, 2011, 47, 8046-8048.
- Z. B. Wu, B. Q. Jiang, Y. Liu, H. Q. Wang and R. B. Jin, *Environ. Sci. Technol.*, 2007, 41, 5812-5817.
- D. L. Yuan, X. Y. Li, Q. D. Zhao, J. J. Zhao, M. Tade and S. M. Liu, *J. Catal.*, 2014, **309**, 268-279.
- 48. C. He, Y. K. Yu, L. Yue, N. L. Qiao, J. J. Li, Q. Shen, W. J. Yu, J. S. Chen and Z. P. Hao, *Appl. Catal.*, B, 2014, 147, 156-166.
- D. S. Zhang, L. Zhang, L. Y. Shi, C. Fang, H. R. Li, R. H. Gao, L. Huang and J. P. Zhang, *Nanoscale*, 2013, 5, 1127-1136.
- F. Ayari, M. Mhamdi, J. Alvarez-Rodriguez, A. R. G. Ruiz, G. Delahay and A. Ghorbel, *Appl. Catal.*, *B*, 2013, **134-135**, 367-380.
- C. Fang, D. S. Zhang, L. Y. Shi, R. H. Gao, H. R. Li, L. P. Ye and J. P. Zhang, *Catal. Sci. Technol.*, 2013, 3, 803-811.
- L. Ma, Y. S. Cheng, G. Cavataio, R. W. McCabe, L. X. Fu and J. H. Li, *Appl. Catal.*, *B*, 2014, **156-157**, 428-437.

- R. D. Zhang, W. Yang, N. Luo, P. X. Li, Z. G. Lei and B. H. Chen, *Appl. Catal.*, *B*, 2014, **146**, 94-104.
- P. R. Ettireddy, N. Ettireddy, S. Mamedov, P. Boolchand and P. G. Smirniotis, *Appl. Catal.*, B, 2007, 76, 123-134.
- 55. P. P. Hu, Z. W. Huang, W. M. Hua, X. Gu and X. F. Tang, *Appl. Catal.*, A, 2012, 437-438, 139-148.
- H. H. Phil, M. P. Reddy, P. A. Kumar, L. K. Ju and J. S. Hyo, *Appl. Catal.*, *B*, 2008, **78**, 301-308.
- N. Tang, Y. Liu, H. Q. Wang and Z. B. Wu, J. Phys. Chem. C, 2011, 115, 8214-8220.
- H. Z. Chang, X. Y. Chen, J. H. Li, L. Ma, C. Z. Wang, C. X. Liu, J. W. Schwank and J. M. Hao, *Environ. Sci. Technol.*, 2013, 47, 5294-5301.
- C. X. Liu, L. Chen, J. H. Li, L. Ma, H. Arandiyan, Y. Du, J. Y. Xu and J. M. Hao, *Environ. Sci. Technol.*, 2012, 46, 6182-6189.
- B. X. Shen, T. Liu, N. Zhao, X. Y. Yang and L. D. Deng, *J. Environ. Sci.*, 2010, 22, 1447-1454.