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Abstract

To study the Hofstadter spectrum of monolayer molybdenum disulfide (MoS2),

we systematically examine the magnetic energy spectra due to various hoppings

between d-orbital electrons to illustrate the link between the Bloch bands and the

corresponding magnetoelectronic spectra. The magnetoelectronic spectrum shows a

mirror (inversion) symmetry as a result of the particle-hole symmetry (asymmetry)

in the Bloch bands. At small field, specific Landau fan diagrams can be ascribed

to certain Bloch-band singularities. In the spectrum of real MoS2, we further find a

breaking of spectral symmetry, the spin and valley polarization, and a flux-dependent

energy gap. Our numerical results can facilitate a qualitative understanding of the

topological nature of d-bands and provide a basis for exploring the Landau levels in

transition-metal dichalcogenides.
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1 Introduction

Recent advances in the fabrication of two-dimensional (2D) materials leads to a renewal

of interest in the Hofstadter spectrum1. In a magnetic field, Bloch bands are effectively

converted into rich fractal butterfly patterns. Physically, it is a direct manifestation of the

commensurability between atomic periodicity and magnetic vector potential. In recent ex-

periments, the Hofstadter patterns have been observed on graphene superlattices, where the

stacking twist significantly magnifies the lattice periodicity and thus enables the penetrating

magnetic flux to reach the order of a flux quantum2−4. Accompanied by the rapid devel-

opment of high magnetic field, the Hofstadter physics on atomically thin crystals has now

become an object of intense investigation.

The Hofstadter spectra for various 2D lattice symmetries have been previously re-

ported, such as the square lattice5−12, triangular lattice12,13, honeycomb lattice14−18, Kagome

lattice19, and lattices in a modulated field20−23, where each atom contributes one orbital only.

In this work, for a more realistic approach, we study the MoS2 monolayer, where multiple

orbitals per atom are taken into account. MoS2 is one of the most stable 2D nanomaterials

in the post-graphene era, which is also promising for spintronic and valleytronic applications

due to its sizeable band gap and spin-orbit coupling. Therefore, the Hofstadter spectrum

on such a realistic material has a great chance of being observed in future experiments.

Using a magnetic tight-binding model, we numerically compute the Hofstadter spectrum

of MoS2, as well as the spectra of involving hoppings between d orbitals. We clearly show how

the 2D Bloch bands relate to the spectral symmetry and low-flux Landau level structures. In

the MoS2 spectrum, the site-energy difference results in the breaking of spectral symmetry,

the spin-orbit coupling gives rise to the spin split, and the magnetic field leads to the valley
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split. The semiconductor-metal transition can be induced by tuning the penetrating flux.

2 Theoretical method

A MoS2 monolayer consists of three atomic layers, a single layer of molybdenum atoms

sandwiched between two layers of sulfur atoms. The main features of the Bloch bands in zero

field are well described by density functional theory24−31. The low-energy electronic states

are mainly dominated by the 4dz2−r2 , 4dxy and 4dx2−y2 orbitals of Mo atoms30−32; therefore,

we have utilized a three-band model to study the Hofstadter spectra of MoS2 where the

parameters are fitted from the generalized gradient approximation32. The orbital geometry

is shown in the inset of Fig. 1(a), where the three orbitals are respectively indexed by the

magnetic quantum number |ml = 0〉, |−2〉 and |+2〉. The molybdenum layer alone forms a

2D triangular lattice, and the primitive unit cell contains a single Mo atom. Each Mo atom

interacts with six neighboring Mo atoms, where the lattice constant is a = 3.19 Å.

For the tight-binding electrons in a magnetic field Bẑ, a Peierls phase ∆G is implemented

in the Hamiltonian matrix elements33−42. By choosing a Landau gauge with ~A = (0, Bx, 0),

this phase is given by the line integral of the vector potential as ∆G(Rα,Rβ) =
∫ 1

0
(Rα−Rβ)·

A[Rβ + λ(Rα − Rβ)]dλ. To reach a flux quantum φ0 per unit lattice cell, a magnetic field

2.3464 × 104 T is required33. Therefore, to satisfy the additional boundary condition due to

a smaller magnetic field, the supercell is expanded to m(= φ0/φ)-times larger. Accordingly,

the wave function is expressed in the basis of {|0〉j , | − 2〉j , | + 2〉j} where 1 ≤ j ≤ m. The

solutions of this magnetic model cover the entire Brillouin zone.
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4

3 Hopping between |0〉 orbitals

Considering the hopping between nearest neighboring |0〉 orbitals only, the tight-binding

wave function is derived from the single orbital basis |0〉 and the Hamiltonian is given by32

H0,0 = 2t0(cos 2α + 2 cos α cosβ), (1)

where α = 1
2
kxa and β =

√
3

2
kya. The hopping parameter is t0 = −0.184 eV. The resulting

2D electronic structure is shown in Fig. 1(a), which is plotted along the highly symmetric

points Γ, K and M in momentum space. For a better identification of the band features, a

contour plot is also shown in the inset of Fig. 1(a). The Bloch band consists of a single band,

which appears as local minimum at Γ point, local maximum at K point and saddle point

at M point. It is also noted that the symmetry between the positive and negative energy

is lacking. In what follows, we demonstrate that those band singularities are converted into

specific fractal patterns in the magnetoelectronic spectra.

As a magnetic field applied normal to the surface, the Hamiltonian is given by33

H0,k;0,j = t0e
i2αδj,k−2 + 2t0 cos βje

iαδj,k−1 + t0e
−i2αδj,k+2 + 2t0 cosβj−1e

−iαδj,k+1, (2)

where j and k denote lattice sites within the magnetic supercell and cosβj = cos(β+π φ
φ0

(j+

1
2
)). The calculated Hofstadter spectrum is shown in Fig. 1(b). As a function of magnetic

flux, the energy spectrum consists of self-similar recursive patterns: each parent band splits

into multiple subbands which are also called daughter bands. When the flux ratio φ/φ0

takes on a rational value p/q, the spectrum has a total of q Landau subbands. Here q and p

are mutual primes and each Landau subband is p-fold degenerate. For a smaller q, Landau

subbands tend to have broader band widths, implying that these magnetic subbands remain

dispersive as a function of planar momentum. In the opposite limit, as q grows, the band

Page 4 of 21RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



5

widths quickly shrink. Eventually, Landau subbands turn into dispersionless Landau levels

for a sufficient large q. Such a Hofstadter pattern is identical to that of simple triangular

lattice which contains one orbital per atomic site12,13.

In the region of low magnetic flux, the Landau levels present certain fan-like structures.

Each level has a specific field dependence that intimately relates to the band features in

zero field. In going from the 2D Bloch band to the Landau levels, band around the local

extrema turns into levels linear in flux. Alternatively, band around the saddle point turns

into a cluster of Landau levels, as guided by the gray dashed lines in Fig. 1.

The butterfly spectral pattern can be characterized by an inversion symmetry about

E = 0 and p/q = 1/2, indicating that the spectrum of 1/2 ≤ p/q ≤ 1 equals to that of

0 ≤ p/q ≤ 1/2 with a reversed energy. In other words, a reflection symmetry between

positive and negative energy or between p/q and 1 − p/q does not exist. Such a lack of

reflection symmetry in the Hofstadter spectrum can be ascribed to the absence of electron-

hole symmetry of the Bloch band in zero field.

4 Hopping between |0〉 and | ± 2〉 orbitals

In zero field, the wave function is a linear combination of all the three orbital basis sets,

i.e. |0〉, | − 2〉 and | + 2〉. The associated Hamiltonian matrix elements are described by32

H0,−2 = −2
√

3t2 sinα sinβ + 2it1(sin 2α + sinα cos β)

H0,+2 = 2
√

3it1 cosα sinβ + 2t2(cos 2α − cos α cosβ). (3)

The relevant hopping parameters are t1 = 0.401 eV and t2 = 0.507 eV. As shown in Fig.

2(a), three Bloch bands appear. The centermost one is dispersionless and remains at E = 0.

The other two bands are dispersive and have a reflection symmetry with respect to E = 0.
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In addition to the local extrema at M point and the saddle points in between Γ and K

points, we also find pairs of linear bands intersecting at Γ and K points, forming Dirac

cones. Furthermore, as the momentum moves away from the Dirac points, the isotropic

subbands gradually involve into anisotropic ones. Those band singularities can be better

identified from the energy contour plot shown in the inset of Fig. 2(a).

In the presence of a magnetic field, the Hamiltonian matrix elements are given by33

H0,k;−2,j = t1e
i2αδj,k−2 + [t1 cos βj +

√
3it2 sinβj]e

iαδj,k−1

−t1e
−i2αδj,k+2 + [−t1 cos βj−1 −

√
3it2 sinβj−1]e

−iαδj,k+1

H0,k;+2,j = t2e
i2αδj,k−2 + [−t2 cosβj +

√
3it1 sinβj]e

iαδj,k−1

+t2e
−i2αδj,k+2 + [−t2 cos βj−1 +

√
3it1 sinβj−1]e

−iαδj,k+1. (4)

In the computed Hofstadter spectrum shown in Fig. 2(b), one can find a reflection symmetry

between electrons and holes, and also, in terms of the flux, a mirror symmetry between p/q

and 1 − p/q. Those symmetries can be ascribed to the e − h symmetry in zero field. In

addition, for a given flux p/q, the number of Landau subbands is tripled to 3q since there are

three Bloch bands in zero field. The E = 0 Landau level originated from the dispersionless

Bloch band is field-independent. Other low-lying levels, in low-flux regime, are proportional

to
√

B, in response to the linear bands intersecting at Γ and K points. In particular, some

higher levels appear to form another fan diagram with a different field dependence. This

feature is a direct consequence of the triangle warping. As illustrated in the inset of Fig.

2(a), such a warping effect is much stronger around K point compared to that around Γ

point.
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5 Hopping between | ± 2〉 orbitals

In the basis of | − 2〉 and | + 2〉, the associated Hamiltonian matrix elements are32

H−2,−2 = 2t11 cos 2α + (t11 + 3t22) cos α cos β

H+2,+2 = 2t22 cos 2α + (3t11 + t22) cos α cos β

H−2,+2 =
√

3(t22 − t11) sinα sinβ + 4it12 sinα(cos α − cos β), (5)

where the hopping parameters involved are t11 = 0.218 eV, t22 = 0.057 eV and t12 = 0.338

eV. In a magnetic field, the Hamiltonian matrix elements become33

H−2,k;j,−2 = t11e
i2αδj,k−2 + [

1

2
(t11 + 3t22) cos βj]e

iαδj,k−1

+t11e
−i2αδj,k+2 + [

1

2
(t11 + 3t22) cos βj−1]e

−iαδj,k+1

H+2,k;j,+2 = t22e
i2αδj,k−2 + [

1

2
(3t11 + t22) cos βj]e

iαδj,k−1

+t22e
−i2αδj,k+2 + [

1

2
(3t11 + t22) cos βj−1]e

−iαδj,k+1

H−2,k;j,+2 = t12e
i2αδj,k−2 + [−i

√
3

2
(t22 − t11) sin βj − 2t12 cos βj]e

iαδj,k−1

−t12e
−i2αδj,k+2 + [i

√
3

2
(t22 − t11) sinβj−1 + 2t12 cos βj−1]e

−iαδj,k+1. (6)

Such a hopping leads to two Bloch bands with quite distinct topological nature, as shown

in Fig. 3(a). As expected, the e − h asymmetry results in the inversion symmetry of the

Hofstadter spectrum (Fig. 3(b)), analogous to the case of Fig. 1. Also, the counterparts

of the band extrema and saddle points can be unambiguously found in the low-flux fan

diagram, where the effect of triangular warping appears as the energy splitting of the first

few top and bottom Landau levels.
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6 Spin-orbit coupling

In general, an intrinsic spin-orbit coupling (SOC) exists in most transition-metal dichalco-

genides. To address the spin degree of freedom, the basis is doubled to |0, ↑〉, |−2, ↑〉, |+2, ↑〉,

|0, ↓〉, | − 2, ↓〉, | + 2, ↓〉. The Hamiltonian describing the SOC takes the form32

H ′ = λL · S =
λ

2




Lz 0

0 −Lz


 , (7)

where the coupling strength is λ = 0.073 eV for MoS2. This coupling occurs between the

|−2〉 and |+2〉 orbital states while the two states are of the same spin orientation. Note also

that, such a SOC does not lead to spin flips. The strong spin-valley coupling in this system

significantly suppresses the spin and valley relaxation, and thus the flip of spin and valley43.

The spin-flip scattering may occur by introducing magnetic defects, which is beyond the

scope of this study.

The energy spectrum with a nonzero t12 only is studied to elucidate the effect of SOC.

Such a hopping is part of the hopping between the | − 2〉 and |+ 2〉 orbitals. As the SOC is

turned off, the zero-field Bloch band and the Hofstadter spectrum are shown as red curves in

Fig. 4(a) and 4(b), respectively. All electronic states are doubly degenerate due to spin. In

particular, the fractal butterfly spectrum coincides with the case of square lattice symmetry

with one orbital per lattice site5−12. As the SOC applied, the spin degeneracy is effectively

removed, as the blue curves shown in Fig. 4. More precisely, opposite spin states are shifted

upward and downward by the same amount, which is λ = 0.073 eV.
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7 Integrated spectrum

In the actual crystal field of MoS2, one has to incorporate all the orbital hoppings and the

SOC mentioned above. Furthermore, an on-site energy for each orbital has to be included

in response to the real crystal field, which is ε1 = 1.046 eV for the |0〉 orbital and ε2 =

2.104 eV for the | − 2〉 and | + 2〉 orbitals32. These site energy terms, in the spectra of

individual hoppings, give rise to an energy shift of entire electronic spectrum. The complete

Hamiltonian in zero field therefore reads



H0,0 + ε1 H0,−2 H0,+2 0 0 0

H∗
0,−2 H−2,−2 + ε2 H−2,+2 + iλ 0 0 0

H∗
0,+2 H∗

−2,+2 − iλ H+2,+2 + ε2 0 0 0

0 0 0 H0,0 + ε1 H0,−2 H0,+2

0 0 0 H∗
0,−2 H−2,−2 + ε2 H−2,+2 − iλ

0 0 0 H∗
0,+2 H∗

−2,+2 + iλ H+2,+2 + ε2




. (8)

The 2D Bloch bands are shown in Fig. 5(a). This system is a semiconductor with a direct

energy gap of 1.59 eV bounded by the band edges at K point. The bottom of conduction

band is composed of two bands that become degenerate right at K point. Upon a close

examination of wave function, the two bands around the K point are found to be the spin-

up and spin-down states of the |0〉 orbital, and thus labeled as |0, ↑〉 and |0, ↓〉, respectively.

On the other hand, the top of valence band appears around K and Γ points. At Γ point,

there are two degenerate bands, which are respectively the spin-up and spin-down states of

the |0〉 orbital. As the momentum approaches K point, the two bands completely transform

into | ± 2〉 orbital states and the two spin states here are widely split. (The | − 2〉 and |+ 2〉

states have the same behavior due to the same magnitude of magnetic quantum number,

i.e., |ml| = 2.) The removal of spin degeneracy in the K valley is a direct result of the
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10

intrinsic SOC. It is also worth mentioning that the two valence bands will interchange their

spin orientation as the momentum moves to the neighboring K ′ valleys.

The Hofstadter spectrum of real MoS2 is shown in Fig. 5(b), which reveals many intricate

fractal structures. This spectrum in term of flux ceases to have a reflection symmetry

or inversion symmetry. In fact, no apparent spectral symmetry can be concluded. The

difference in on-site energy between the |0〉 and | ± 2〉 orbitals is the main reason. In low-

flux regime, one can still relate the Landau fan diagram to specific Bloch-band singularities

as elucidated above, including the linear field dependence and the clustering of Landau

states. In this realistic spectrum, an energy gap exists, which monotonically decreases with

increasing flux and closes at around p/q = 1/3. In particular, all the low-lying Landau levels

shift away from the Fermi level except four of them moving toward the Fermi level. The

four levels are respectively the threshold Landau levels quantized from the four low-lying

subbands in the K valley. In Fig. 5(b) they are indexed as |ml, s, n〉τ = |0, ↑, 0〉K and

|0, ↓, 0〉K in the conduction band and | ± 2, ↓, 0〉K and | ± 2, ↑, 0〉K in the valence band. Here

ml stands for the orbital index, s for the spin index, n for the Landau index, and τ for the

valley index. Such a characterization of Landau levels is in accord with the wave-function

properties, which is detailed in Ref. 33. Furthermore, some mixing of Landau levels can be

found in a range of high flux (also in Fig. 2(b)), similar to the phenomenon reported in Ref.

34.

The Landau level spectra in realistic magnetic field of 100 T are illustrated in Figs. 5(c)

and 5(d), respectively for the bottom of conduction band and the top of valence band. Such

a fan diagram can be linked to the hierarchy of quantum Hall states. Those Landau levels

are all spin and valley polarized33: the spin splitting originates from the intrinsic SOC, while

the valley splitting results from the inversion symmetry breaking of MoS2 geometry caused
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by magnetic field. The conduction levels are magnetically condensed from the zero-field

band edge at K point. The valence levels can be classified into three groups: the top and

bottom groups come from the band edges at K point while the middle group from the band

edge at Γ point. In addition, most levels appear in pairs, while in experiments the resolution

of those pairs will require a low temperature and a high magnetic field.

8 Summary

In exploring the Hofstadter properties of MoS2 monolayer, we systematically present the

energy spectra due to various hoppings between 4d orbitals, and for each kind of hopping, we

find the unique link between the Bloch bands and magnetoelectronic spectra. In particular,

the particle-hole symmetry of Bloch band is responsible for the reflection symmetry in the

Hofstadter spectrum. Moreover, in the range of low flux, Landau levels linear (square-

root) in field are derived from the Bloch band near the parabolic band edge (Dirac point),

while the cluster of Landau levels is derived from the band near the saddle point. In the

integrated Hofstadter spectrum, the lift of spin degeneracy stems from the intrinsic SOC,

and the breaking of inversion symmetry arises from the difference in on-site energy between

orbitals. Such a case study on a realistic system can shed light on the topological features

of d-electron-rich materials.

The Hofstadter spectra obtained by retaining part of hoppings between d orbitals can

facilitate understanding the symmetry properties of individual hoppings. Even though those

spectra do not directly correspond to the real MoS2 one, in the future, they could still

be realized in other possible 2D materials, which feature the low-lying subbands simply

dominated by one of those orbital hoppings.

In the spectrum of real MoS2, the low-flux fan diagram is of immediate experimental
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interest, which can be achieved in a suspended sample or samples barely coupled to the

substrates and by using a continuous magnetic field (up to 45 T) and a non-destructive

pulsed magnetic field (up to 100 T). In the range of higher flux, the Hofstadter spectrum is

expected to observable in superlattice samples, as was done in graphene2−4. That is, a MoS2

monolayer is commensurately coupled to the substrate, and the penetrating flux can be

tuned by the twist angle. In this way, a modulation of energy gap, or even a semiconductor-

metal transition, could be induced. A resolution of fractal patterns may require a fine tuning

of the twist angle.
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FIG. 1: (a) Zero-field Bloch band and (b) Hofstadter energy spectrum associated with the hopping

between |0〉 orbitals of neighboring Mo atoms. In term of flux ratio p/q, we set q= 797 and vary p

from 1 to q. The contour plot of (a) in momentum space is also shown in the inset.

FIG. 2: Same plot as Fig. 1 but for the hoppings between |0〉 and | ± 2〉 orbitals. The inset of (a)

is for the upper band.

FIG. 3: Same plot as Fig. 1 but for the hoppings between | ± 2〉 orbitals. The top and bottom

insets of (a) are for the upper and lower bands, respectively.

FIG. 4: Same plot as Fig. 1 but for t12 as the only non-zero hopping parameter. Spectra without

and with SOC are colored red and blue, respectively.

FIG. 5: (a) Zero-field Bloch bands and (b) Hofstadter energy spectrum incorporating all the orbital

hoppings and the SOC mentioned above, as well as the on-site energies of the three orbitals. The

Landau fan diagrams near the bottom of the conduction band and the top of the valence band are

respectively plotted in (c) and (d) for a magnetic field up to 100 T.
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