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Molecular modeling studies of dihydro-alkyloxy-benzyl

-oxopyrimidines (DABOs) as Non-nucleoside Inhibitors

 of HIV-1 Reverse Transcriptase using 3D-QSAR, Topo

mer CoMFA and molecular docking simulations 

Minghui Dong,a Yujie Ren*a 

The human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) is generally 

regarded as target for the treatment of Acquired immune deficiency syndrome(AIDS). Non-

nucleoside RT inhibitors (commonly known as NNRTIs) are currently being used in the 

treatment of HIV-1 infections. In this work, a series of NNRTIs were studied using a 

combination of molecular modeling techniques including three-dimensional quantitative 

structure-activity relationship (3D-QSAR), Topomer CoMFA and molecular docking 

simulations. The best optimum comparative molecule field analysis (CoMFA) model yielded a 

leave-one-out correlation coefficient (q2) and a non-cross-validated correlation coefficient (r2) 

of 0.636 and 0.993, respectively. The respective q2 and r2 of the best comparative molecular 

similarity indices analysis(CoMSIA) model were 0.655 and 0.998. The models were validated 

by test sets, and predicted correlation coefficients (r2pred) of 0.907 and 0.886 obtained from 

the CoMFA and CoMSIA models, thus judging the robustness of the model. The analysis of 

Topomer CoMFA, obtained a q2 of 0.546 and a r2pred value of 0.718 which suggested the 

model had a good predictive ability (q2 > 0.2). The results indicated the steric, hydrophobic and 

electrostatic fields play key roles in models. Molecular docking elucidated the conformations 

of compounds and key amino acid residues at the docking pocket of RT protein. 

 

 

1.Introduction 

The HIV-1 infection causes acquired immunodeficiency syndrome 
that is a fatal human health-threatening disease.1 The disease 
presents a serious health care challenge because each year it affects 
an increasing number of people.2 Since the time when it was 
recognized 30 years ago, 30 million people have died of HIV-
related causes.3 An estimated 34 million people are living with 
HIV/AIDS worldwide.4,5 Among them about 3.4 million children 
aged less than 15 years have been infected mainly through mother-
to-children transmission.6 In 2010, 1.8 million people died of AIDS 
related illness,7 it has further reaching implications in terms of 
economic, social and political stability.8 

In AIDS therapy, the fundamental strategy is to inhibit viral 
replication. Many studies have demonstrated that the viral reverse 
transcriptase of HIV was a multifunctional enzyme critical to the 
viral life cycle, and thus provided an attractive target in the search 
for anti-HIV therapies.9 HIV was first isolated in 1983 by Luc 
Montagnier10 and accepted as the causative agent of AIDS by 
1984,11 had a single strand RNA containing its genomic material 
and the viral enzyme reverse transcriptase enables the virus to 
utilise this single strand RNA genome as a template for the 

production of an intermediate single DNA strand, and ultimately 
double-stranded DNA.12 Among the major types of HIV originated 
from primate species, HIV-1 which is more easily transmitted and 
accounts for the vast majority of global HIV infections.13,14 The 
HIV-1 RT is an asymmetric heterodimer, comprising a p66 subunit 
(560 amino acids) and a p51 subunit (440 amino acids)15 which has 
been used as an effective target for antiretroviral drugs. 

To combat disease, several drugs which are currently in 
clinical use have been developed to inhibit this potential target, 
including Nevirapine,16 TIBO,17 PETT,18 TNK-651,19 Delavirdine20 
and HEPT21 (Fig.1). NNRTIs inhibit RT by binding to the enzyme 
in a hydrophobic pocket located at a distance of around 10Å from 
its catalytic site.22 However, their therapeutic effectiveness are 
limited by toxicity, unfavorable pharmacokinetics and emergence 
of resistant viral strains.23-25 The ability of the virus to circumvent 
the inhibitors via mutation clearly signifies the need for improved 
therapeutic agents.26 Therefore, there is still a need to identify new 
NNRTIs, eliciting intense efforts in the development of potent 
inhibitors. Fortunately, the dihydro-alkyloxy-benzyl-
oxopyrimidines (DABOs)27-29 derivatives were disclosed as non-
nucleoside reverse transcriptase inhibitor (NNRTI)30,31 by Artico et 
al group in 1992,33-34 endowed with inhibitory potencies in the low 
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nanomolar range. 
For saving resources and expedite the development of 

NNRTIs, computer simulation techniques used to offer further 
means or design effective inhibitors about RT and explore the 
inhibition mechanisms, recently. Among several computational 
methods, the quantitative structure-activity relationship (QSAR)35 
study is one of the most effective computational approaches in drug 
design without a doubt. The results of comparative molecular field 
analysis (CoMFA)36 and the comparative molecular similarity 
indices analysis (CoMSIA)37 studies not only used to predict the 
activity of newly inhibitors but provide beneficial information in 
structural modification. Up till now, it has been successfully 
applied in many biological and medicinal studies. 

This method has been applied to facilitate the design of more 
specific and potent HIV-1 inhibitors. Such as, Horrick Sharma et 
al.38 used 3D-QSAR method to study of 3-keto salicylic acid 
chalcones and related amides as novel HIV-1 integrase inhibitors, 
Hamid Abedi et al.39 developed a 3D-QSAR model for new 
phenyloxazolidinones derivatives as potent HIV-1 protease 
inhibitors and so on. In this work, 3D-QSAR based on the ligand-
based alignment rule, applied to determine the structural factors 
that affect the inhibitory activity of RT inhibitors. In addition, we  
used the second generation of CoMFA technique-Topomer 
CoMFA which generated a QSAR model by splitting the molecule 
into fragments, aligning each fragment and calculating steric and 
electrostatic field descriptor values for the topomerically aligned 
fragments. The contour maps got by models were used to support 
each other. Molecular docking was carried out to study the possible 
binding modes of inhibitors at the active site of HIV-1 protein. To 
the best of our knowledge, this is the first report on 3D-QSAR-
CoMFA/CoMSIA/Topomer models for this series of compounds. 
Also, have not been reported simultaneously in the literature. The 
models and docking information derived, we hope, will be of great 
assistance in NNRTIs and accurate activity predictions for newly 
designed HIV-1 reverse transcriptase inhibitors in future. 

 

 

Fig.1 Chemical structures of Well-Known RT Inhibitors 

2.Results and Discussion 

2.1 Computational approach 

The 3D-QSAR, Topomer CoMFA modeling analyses, calculations, 

molecular docking simulations were performed using the SYBYL-

X 2.0 package (Tripos Inc.,St. Louis, USA) running on windows 7 

workstation. All compounds (creation of training set, test set and 

docking calculations)  involved in this study were optimized using 

Tripos force field and Gasteiger-Huckel charges. The structural 

energy minimization was terminated when using Powell gradient 

algorithm with a convergence criterion of 0.005 kcal/ (mol•Å) 

reached and a maximum of 10000 iterations. 

2.2 Data sets 

The 35 compounds involved in this study which were reported 
recently by Dante Rotili.40 Their capability to inhibit by 50% the 
HIV-1-induced cytopathic effect in MT-4 cells (HIV-1 Strain:NL4-
3) were expressed as micromolar (µM) units and converted to 
corresponding pEC50 values according to the following formula: 

pEC50 = －㏒ EC50 

The samples were randomly divided into a training set of 29 
compounds for model generation and a test set of 6 compounds for 
model validation. The data set was selected by considering both the 
distribution of biological data and structural diversity. The 
structures and Anti-HIV-1 activities expressed as pEC50 against 
HIV-1 are shown in Tables 1. In this study, the highest activity of 
compound 14 is taken as the template molecule and each molecule 
has to be superimposed onto it for the analysis. The alignment of 
training set is shown in Fig. 2a. As shown in Fig. 2b, the red atoms 
used to automatically position the compounds by using database 
alignment. 
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Table 1 The structures, actual and predicted pEC50 (µM) values of COMFA and CoMSIA. 

 

No R1 R2 R3 
Actual 

pEC50 

Predicted 

COMFA 
Residual 

Predicted 

COMSIA 
Residual 

1 H H i-Pr 6.42 6.431 -0.011 6.419 0.001 

2 H H s-Bu 6.80 6.752 0.048 6.776 0.024 

3 H H n-Bu 6.54 6.583 -0.043 6.562 -0.022 

4 H Me i-Pr 6.92 6.946 -0.026 6.905 0.015 

5 H Me n-Pr 7.07 7.091 -0.021 7.149 -0.079 

6 H Me s-Bu 7.33 7.252 0.078 7.272 0.058 

7 H Me n-Bu 6.96 7.071 -0.111 7.000 -0.040 

8 Me H i-Pr 8.70 8.952 -0.252 8.816 -0.116 

9 Me H n-Pr 8.52 8.469 0.051 8.476 0.044 

10 Me H s-Bu 9.00 9.025 -0.025 8.941 0.059 

11 Me H cyclopentyl 9.52 9.278 0.242 9.522 -0.002 

12 Me Me n-Pr 10.30 10.307 -0.007 10.207 0.093 

13 Me Me s-Bu 9.52 9.473 0.047 9.560 -0.040 

14 Me Me cyclopentyl 10.52 10.517 0.003 10.524 -0.004 

15 Me Et n-Pr 7.55 7.536 0.014 7.527 0.023 

16 Me Et n-Bu 7.19 7.098 0.092 7.159 0.031 

17 Et Me n-Pr 7.59 7.497 0.093 7.605 -0.015 

18 Et Me s-Bu 7.27 7.263 0.007 7.251 0.019 

19 Et Me n-Bu 6.96 6.905 0.055 6.963 -0.003 
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20 Me Me i-Pr 9.00 8.903 0.097 8.985 0.015 

21 Me Me n-Pr 7.55 7.453 0.097 7.625 -0.075 

22 Me Me s-Bu 9.05 9.151 -0.101 9.112 -0.062 

23 Me Me n-Bu 7.30 7.482 -0.182 7.302 -0.002 

24 Me Et i-Pr 7.05 7.113 -0.063 7.005 0.045 

25 Me Et n-Pr 6.62 6.586 0.034 6.592 0.028 

26 Et Me i-Pr 8.40 8.581 -0.181 8.374 0.026 

27 Et Me n-Pr 7.92 7.884 0.036 7.916 0.004 

28 Et Me s-Bu 9.10 9.048 0.052 9.119 -0.019 

29 Et Me cyclopentyl 7.96 7.984 -0.024 7.966 -0.006 

test1
a
 H H cyclopentyl 6.82 6.767 0.053 7.373 0.553 

test2 H Me cyclopentyl 6.74 6.933 -0.193 6.828 -0.088 

test3 Me Me cyclopentyl 9.00 8.771 0.229 8.835 0.165 

test4 Me Et s-Bu 6.85 7.743 -0.893 7.614 -0.764 

test5 Me Et n-Bu 7.64 6.792 0.848 7.121 0.519 

test6 Me Et cyclopentyl 6.8 7.213 -0.413 7.577 -0.777 

atest = test set compounds. 

 

Fig. 2 a) The alignment of training set compounds. b) The atoms used to automatically position the compounds by using 
database alignment (red). 

Topomer CoMFA is the second generation of CoMFA. The 
study was carried out with the same training and test sets, each of 
the training set structure was broken into two sets of fragments 
shown as R1 (red) and R2 (blue) groups as shown in Fig. 3. The 
method provides a means for an alignment-independent 3D-QSAR 
approach, which providing the means for automated search for 
activity in fragment libraries. Each topomer fragment was applied 

with topomer alignment to make a 3D invariant representation.41 

Steric and electrostatic interaction energies were calculated using 
the carbon sp3 probe. 
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Fig. 3 R1 fragment is represented by the red color and R2 fr
agment is represented by sky blue color. 

2.3 CoMFA, CoMSIA and Topomer CoMFA statistical 

results 

To generate statistically significant 3D-QSAR models, we used the 
ligand-based alignment rule. The alignment result is shown in 
Figure 2. In this study, the regression analysis was carried out using 
the partial least squares (PLS) method,42,43 some statistical 
parameters were used to analysis the stand or fall of these models, 
including the cross-validated coefficient (q2), the standard deviation 

of error prediction (r2), standard error of estimate (SEE) and F-
statistic values, a high q2 and r2 value (q2 > 0.5, r2 > 0.6) is 
considered as a proof of high predictive ability of the model.44 

Table 2 lists the statistical parameter results of the CoMFA and 
CoMSIA analyses. For CoMFA analysis, steric and electrostatic 
fields were considered, which gave an optimal number of 
components (ONC) of 8 and q2 of 0.636. The standard deviation of 
error prediction r2, SEE and F-statistic values are 0.993, 0.118 and 
333.5, respectively. The contributions of the steric and electrostatic 
fields are 58.5% and 41.5%. For CoMSIA analysis, five descriptor 
fields were considered. The CoMSIA model obtained satisfactory 
q2, r2 , SEE and F-statistic values of 0.655, 0.998, 0.069 and 488.2, 
respectively. The steric, electrostatic, hydrophobic, hydrogen bond 
donor, and hydrogen bond acceptor fields contribution of 22.1%, 
19.9% , 24.5%, 18.7% and 14.8%, respectively. The steric, 
electrostatic, hydrophobic fields were found to be the important 
contributions in the optimal CoMSIA model. All the statistical 
results of  different fields summarized in Table 2. The actual and 
predicted pEC50 value of the training and test set molecules were 
illustrated in Fig. 4, respectively.  

 

Table 2  Summary of the COMFA/COMSIA PLS statistical results 

 q
2  ONC

 
r

2 SEE
 

F rpred
2 

Field contribution(%) a 

S E H D A 

COMFA 

S+E 0.636 8 0.993 0.118 333.5 0.907 58.5 41.5 - - - 

COMSIA 

H+A 0.604 11 0.992 0.129 202.0 0.964 - - 65.3 - 34.7 

S+A 0.678 11 0.987 0.170 115.6 0.910 63.2 - - - 36.8 

H+D 0.742 12 0.995 0.107 268.7 0.844 - - 64.5 35.5 - 

S+H 0.814 9 0.991 0.133 232.8 0.864 44.2 - 55.8 - - 

S+E+H 0.697 14 0.998 0.072 517.2 0.820 29.9 35.7 34.4 - - 

S+H+D 0.842 12 0.996 0.100 308.8 0.828 30.6 - 40.8 28.6 - 

S+H+A 0.757 11 0.996 0.098 353.7 0.913 33.3 - 42.3 - 24.4 

S+E+H+D 0.711 16 0.999 0.060 643.2 0.826 25.2 25.7 29.4 19.8 - 

S+E+H+A+D 0.655 16 0.998 0.069 488.2 0.886 22.1 19.9 24.5 18.7 14.8 
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aAbbreviations: COMFA and COMSIA with different field contributions such as S (steric); E (electrostatic); H (hydrophobic); 
D (H-bond donor); A (H-bond acceptor). 

 

 Fig. 4 Plots of predicted versus actual pEC50 values for all the molecules based on CoMFA (a) and CoMSIA models (b)

In Topomer CoMFA analysis, all the models were 
investigated using the full cross validated (q2) PLS leave-one-out 
(LOO) method with CoMFA standard options for scaling of the 
variables. The model reflects the quantitative relationship between 
the structure and activity. The q2 value of 0.546, an optimized 
component of 6 and r2 value of 0.798, which suggested the model 
also has predictive ability (q2>0.2). The pEC50 value of test set 
was predicted with the r2 pred value of 0.718. 

2.4 Contour maps of CoMFA,CoMSIA and Topomer Co

MFA 

To visualize the field effects on the target compound in 3D space, 
the model results were graphically interpreted by using field type 
“StDev*Coeff”. For choosing the best biological activity against 
HIV-1 cells which makes it is easier to explain the contour maps. 
Hence using compound 14 as a reference structure to illustrate all 
contour maps of the models, explaining the key structural features 
required for inhibitory activity. 

 

 Fig. 5 Contour maps of CoMFA (a) and COMSIA (b) based 
on compounds 14. Topomer CoMFA contour maps around 
R1(c) and R2(d). Steric fields: favored (green) and 
disfavored (yellow) 

As shown in Fig. 5 (a) and (b), the sterically favorable regions 

are represented in green and yellow contours suggest that the bulky 
subsituents would not be tolerated. The default values of 80% 
contribution for favored and 20% for disfavored regions were set 
for visualization of the contour maps. It can be observed that the 
steric contour map of COMFA is similar to that of COMSIA . The 
topomer CoMFA 3D interaction maps (steric and electrostatic 
interactions) around R1 and R2 are shown in Figures 5 (c) and (d), 
respectively. The meaning of colors is the same as the CoMFA’s. 
The steric descriptor is found to be identical with the CoMFA and 
CoMSIA models, which prove the consistency of the results. A 
green contour covering the cyclopentyl group links to R3 indicates 
the presence of a bulky group for good biological activity. This is 
in agreement with the experimental data. The order of inhibitory 
activity is: isomeric (i) > normal (n) and secondary(s) > normal(n). 
For example, 2 (s-Bu) > 3 (n-Bu), 6 (s-Bu) > 7 (n-Bu), 8 (i-Pr) > 9 
(n-Pr), 18 (s-Bu) > 19 (n-Bu), 20 (i-Pr) > 21 (n-Pr), 22 (s-Bu) > 23 
(n-Bu), 24 (i-Pr) > 25 (n-Pr), 26 (i-Pr) > 27 (n-Pr). The yellow 
contour surrounding the R2 position indicates that compound with 
bulky substitution could not possess better biological activity as 
observed in 15 (Et) < 12 (Me), 24 (Et) < 20 (Me) and 25 (Et) < 21 
(Me) .  
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 Fig. 6 Contour maps of CoMFA (a) and COMSIA (b) based 
on compounds 14. Topomer CoMFA contour maps around 
R1 (c) and R2 (d). Electrostatic fields: electropositive (blue) 
and electronegative (red) 

In figure 6(a), a large blue color contour around the 
pyrimidine group indicates that the electropositive groups are 
favorable to the activity, the red region around O atom at the 
pyrimidine ring suggests the electronegative groups are favorable 
to the activity. As shown in Fig 6(b), two pieces of medium-sized 
region of blue contour locate at the pyrimidine group shows the 
importance of electropositive atoms in imparting better biological 
activity. The result of Topomer CoMFA (electrostatic contour map) 
is almost similar to that of the CoMFA and CoMSIA model, the 
analysis of the electrostatic contour map is neglected herein. 
Moreover, it is recognized that all the models have a blue contour 
region around R3 position, which indicates that with electropositive 
groups lead to a increase of bioactivity. 

 

 Fig. 7 Contour maps of COMSIA based on compounds 
14.(a) Hydrophobic field: the yellow color shows the 
favored hydrophobic area, the white color shows the 
disfavored hydrophobic area. (b) Hydrogen bond donor 
field: the cyan color shows the favored H-donor area, and 
the purple color represents the disfavored H-donor area. (c) 
Hydrogen bond acceptor field: the magenta color shows the 
favored H-acceptor area, the red color shows the disfavored 
H-acceptor area, 

As shown in Table 2, the hydrophobic field found to be the 
most important contributions in the optimal CoMSIA model. It 
plays important role in bioactivity than other fields. From figure 7a, 
one large yellow (hydrophobic favorable) contour map cross the R2 

position, suggesting introduction of hydrophobic substituents into 
the ring pyrimidine will be benefit for inhibitory activity. This is in 
agreement with the experimental data: 4(-CH3) > 1(H), 6(-CH3) > 
2(H), 7(-CH3) > 3(H), 12(-CH3) >  9(H), 13(-CH3) > 10(H) and 
14(-CH3) > 11(H). Besides, a small yellow contour map observed 
farther from R3, indicating the hydrophobic field has little effect on 
inhibitory activity. 

One small white (hydrophilic favorable) contour map around 

the ring cyclopentyl (R3), suggesting that introduction of 
hydrophilic substituents into the ring cyclopentyl may be benefit 
for inhibitory activity. Since the other white contour maps farther 
from compound 14, the analysis of these contour maps are 
neglected herein. As shown in Fig 7b and 7c, the purple contour 
represents where hydrogen bond donor disfavors the biological 
activity and the cyan contour shows the favored hydrogen bond 
donor area, in which the magenta color shows the hydrogen bond 
acceptor group would be beneficial to the bioactivity, whereas the 
red color shows the disfavored H-acceptor area. 
 

2.5 Docking Analysis  

 

 

Fig. 8 Re-docking result of the bis (heteroaryl) 
piperazine (BHAP) U-90152 ( Red color ligand) into the 
binding site of  HIV-1 reverse transcriptase protease and the 
cognate ligand ( Atom type color ) from the protein 
( PDB:1KTS). Hydrogen bonds are shown as yellow lines, 
with distance unit of Å. The inhibitor and the important 
residues are shown as stick model.  

To validate the 3D-QSAR results, docking simulation was 
performed to study the binding environment. Here, the Surflex 
program (SYBYL-X 2.0, Tripos Inc.St. Louis, USA) was used to 
explore the probable binding conformation. Initially, the 
performance of docking software was tested by re-docking 
experiment. For this purpose, crystal structure of protein (PDB 
code:1KLM) with the cognate ligand was re-docked. As is shown 
in Fig.8, it can be recognized that the re-docking result and the 
cognate ligand are almost completely superimposed together. Their 
rotational tendency are basically similar. Meanwhile, it shows 
interacting modes of U-90152 in the binding site of RT receptor, 
some key amino acids (Lys104, Tyr188, Tyr181, His235, Val106, 
Leu100 and Pro236) interact with the inhibitor by hydrophobic 
interactions at the binding site. The key residue Lys103 interact 
with the inhibitor by hydrogen bond. The hydrogen bond distances 
observed are 2.04 Å(Lys103-HN-H...O-), 1.98 Å (Lys103-O...H-
NH-), respectively. Two of these interactions are similar to the 
results discussed by Robert et al.45  Both results can be inferred that 

the rationality of the program, and the docking result is reliable. 
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Fig. 9 Docking result of the compound 14 (a) , 28 (b) and 1 (c) into the binding site of  HIV-1 reverse transcriptase protease. Hydrogen 
bonds are shown as yellow lines, with distance unit of Å. The inhibitor and the important residues are shown as stick model. 

 
After validating the docking reliability, Surflex-Dock was 

used for docking. Herein the compounds were originally reported 
to be the most potent inhibitors toward HIV-1 and least active 
compound were selected for more detailed analysis. Fig. 9 shows 
the interacting mode of compounds 14, 28 and 1 in the binding site 
of RT receptor. As shown in Fig. 9a, compound 14 was docked into 
the binding cavity with the carboxyl directing towards the 
hydrophobic group of Leu100, Lys102, Val106, Val179, Tyr181, 
Tyr188, Val189, Gly190, Phe227, Leu234, His235, Pro236 and 
Tyr318. One hydrogen bond was formed between the pyrimidine 
ring and the Lys101 residue. The hydrogen bond distances 
observed are 2.26 Å (Lys101-HN-H...O-), 1.78 Å (Lys101-O...H-
NH-), respectively. Robert et al. revealed that hydrogen bonding to 
the main chain of Lys-103 and strong hydrophobic interactions are 
particularly important for any successful inhibitors. But many NNIs, 
including HEPT and TIBO analogues,45 also forming a hydrogen 
bond to the carbonyl oxygen of Lys101. The Glu138 and Lys103 
residues   interact with 14 by electrostatic interaction. The presence 
of these interactions affect the nearby protein structure. 

As shown in Fig.9b, compound 28 was docked into the 
binding cavity with the carboxyl directing towards the hydrophobic 
group of Pro95, Leu100, Val106, Thr107, Val179, Tyr181, Tyr188, 
Gly190, Phe227, Trp29, Leu234, His235, Pro236 and Tyr318. One 
hydrogen bond was formed between the pyrimidine ring and the 
Lys101 residue. The distances observed are 1.51 Å (Lys101-HN-
H...O-), 2.09 Å (Lys101-O...H-NH-), respectively. The residues 
Lys102 and Lys103 interact with 28 by electrostatic interaction. Fig. 
9c depicts the interactions between the compound 1 and the active 
site. The ligand was anchored into the binding site via one 
hydrogen bond to the key residues of Lys101. The distances 
observed are 2.17 Å (Lys101-HN-H...O-), 1.90 Å (Lys101-O...H-
NH-), respectively. Moreover, the compound was stabilized by the 
hydrophobic interactions offered by Leu100, Pro95, Val106, 
Lys102, Val179, Tyr181, Tyr188, Trp229, Leu234, Phe227 and 
Tyr318. Compared with the compounds 14 and 28, the number of 
hydrophobic group around compound 1 obviously decreased. The 
key residues Pro236 and His235 can not be found in the binding 
pocket, simultaneously. 

. 

3.Conclusion 

In the present work, a series of DABOs derivatives as Non-

nucleoside inhibitors were studied by computer-aided drug design 

processes, such as 3D-QSAR/Topomer CoMFA studies and 

molecular docking simulations. The built models are favored by 

internal and external predictions and the stastics are convincing and 

comparable. The models can not only be extrapolated to predict 

novel and more potent inhibitors, but the contour maps obtained 

from CoMFA, CoMSIA and Topomer CoMFA analyses provid a 

useful insight for structure-based design for designing new 

chemical entities with high HIV-1 inhibitory activity. For a better 

understanding of the binding modes of inhibitors at the active site 

of HIV-1 protein, molecular docking analyses of the representative 

compounds were performed. Some key residues such as Leu100, 

Lys102, Val106, Tyr181, Tyr188, His235, Pro236 hydrophobic 

interactions, as well as hydrogen bonds (Lys101, Lys103) between 

inhibitors and the active site were observed. The inhibitors interact 

with the main residues (Lys101 and 103), which may generate 

binding affinity that is less susceptible to point mutations. This 

study could serve as a basis for the development of HIV-1 

inhibitors. 
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