
www.rsc.org/advances

RSC Advances

This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. This Accepted Manuscript will be replaced by the edited, 
formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 



Prediction of structural and thermomechanical properties of polymers
from multiscale simulations
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We report mesoscale simulations of polymer melts and crosslinked polymer networks by using realistic coarse-grained (CG)
models that are developed from atomistic simulations of polymer melts. We apply this multiscale strategy to different polymers
in order to predict quantitatively some structural and thermomechanical properties such as the melt density, the end-to-end
distance, the entanglement mass and the plateau modulus. The temperature dependence of the CG models is investigated through
the calculation of the melt specific volumes at different temperatures and the calculation of the isothermal compressibility gives
some insight into the pressure transferability of the CG models. We also show that the CG models can be applied successfully
to high molecular weight chains. We test the performance of the CG models by calculating directly the plateau modulus of a
crosslinked PIB network from mesoscopic simulations under a tensile stress. We compare the value of the plateau modulus with
that calculated from the autocorrelation of the stress tensor during equilibrium simulations.

1 Introduction

The improvement of the desired properties and performance
of a polymeric material requires investigating the relationship
between the structure at the atomic or molecular length and
the key physical and chemical macroscopic properties. Al-
though molecular theories developed in polymer science have
made paramount progress in relating the structure of polymer
chains to their macroscopic properties, such theoretical meth-
ods suffer from a limiting predictive power due to the large
variety of chemical constituents and molecular architectures
that are at the origin of the viscoelastic properties. Molec-
ular modelling1–3 has become an efficient tool for checking
the theoretical predictions of properties, for giving a molec-
ular description of the analysis of experimental work and for
designing advanced materials with specific properties. How-
ever, many problems at the leading edge of materials science
involve collective phenomena that occur over a range of time
and length scales that are difficult to capture in atomistic sim-
ulations. As a result, the ability to perform computer simula-
tions of materials over length scales that are relevant to exper-
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Fig. 1 cis-1,4-polybutadiene (cis-1,4-PB), poly(dimethylsiloxane)
(PDMS), polyisobutylene (PIB) chemical structures along with the
corresponding beads formed by five monomers.

iments represents a grand challenge in computational material
science. Different approaches have been developed to model
the matter at two or more different length and time scales and
participate to the overall strategy of multiscale modelling4–16.

Indeed, a powerful investigation of the relationship between
molecular structure and mechanical properties of polymer
melts requires statistical averages on well-equilibrated melts
of very long chains. For a polymer chain of length N, the
longest relaxation of an entangled polymer2,17 scales as N3.4

with a computational cost growing as N4. Atomistic simula-
tions require solving the equations of motion on a timescale of
10�15 s and a length of Angstroms whereas collective relax-
ations can occur on a scale of micrometers and a time that can
exceed 1 ms (see Fig. S1 (ESI†) for a comparison between
atomistic and mesoscopic simulations for the calculation of
the end-to-end vector autocorrelation function). To simulate

1–10 | 1

Page 1 of 10 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



materials on larger time scales, there is no alternative but to
simplify the model. These simplified/coarse-grained (CG)
models allow for longer length and time scales than atomistic
models that are unable to reach the complete relaxation of the
polymer melts7,8,18 with a reasonable computational effort. A
number of CG models19–28 have been applied in the past to re-
produce universal (scaling laws) properties of polymer melts
but the quantitative prediction of properties as a function of
the polymer chemistry remains much more challenging. The
key problem is how to simplify the model without loosing the
essential physics and being able to relate the parameters of the
CG model to molecules of specific chemistry. Top-down and
bottom-up parameterization schemes represent then two dif-
ferent alternatives to derive CG models. Top-down approaches
derive parameters from macroscopic properties (compressibil-
ity, diffusion)29–31 and requires the use of a well-developed
experimental database. Bottom-up approaches use the config-
urations at the atomistic level to develop interaction forces and
parameters for mesoscopic model5,9,16,18,32–34. It represents
an attractive alternative for designing new polymeric materi-
als from the structure-properties relationship.

Within the bottom-up approach, the Iterative Boltzmann
Inversion (IBI) method is an iterative method for potential
inversion from distribution functions using the potential of
mean force approach35. CG intramolecular and intermolecu-
lar potential functions can be then deduced from appropriate
distribution functions of atomistic configurations36–39. This
method has been successfully applied to a variety of polymer
melts formed by vinyl polymer chains40, dendrimers41,
polystyrene7,8,32 and polyethylene chains37–39. These coarse-
grained models have been implemented either in Molecular
Dynamics7,32,40–42 or in Dissipative Particle Dynamics
(DPD)8,37–39 methods. There are some major advantages
to use the DPD method : i) in addition to the conservative
force, the dissipative and random forces are short-ranged
and pairwise additive so that the hydrodynamic interactions
are preserved; ii) the random and dissipative forces are
independent of the conservative forces and are coupled to
each other through the fluctuation-dissipation theorem to act
as a thermostat. However, the use of IBI method for building
CG potentials addresses a number of fundamental issues7,40

:i) we have no guarantee that the potentials developed from
atomistic configurations to match the distributions functions
are able to reproduce all the properties of the original system;
ii) the way of grouping the atoms into the CG element and the
degree of coarse-graining are not unique; iii) the dynamics
were often found to be significantly faster than the atomistic
simulations.

In this paper, we propose to combine the IBI approach
with the DPD method to reproduce thermomechanical and
structural properties of different polymer melts (see Fig. 1). In

a first step, we develop CG potentials for three polymers (cis-
1,4-PB, PDMS and PIB) to calculate the density, end-to-end
distance, entanglement mass and plateau modulus of melts.
We examine the temperature and pressure transferabilities
throughout the calculation of the coefficients of thermal
expansion and isothermal compressibility, respectively. We
also investigate the transferability to polymer chains of
higher molecular weight. In a second step, we apply these
potentials to different methodologies for the calculation of the
plateau modulus of a crosslinked PIB network. We opt for a
crosslinked network in order to avoid too large system-sizes
that are expected to show a plateau in polymer melts43–46.
The plateau modulus is then calculated from non-equilibrium
simulations by means of stress-strain curve and by equilib-
rium simulations using the stress tensor elements.

The outline of this paper is organized as follows. In Sec. II,
we present the DPD method and the coarse graining proce-
dure. Sec. III presents the results of this work concerning the
calculation of the thermomechanical and structural properties
of PIB, PB and PDMS melts and of the shear modulus of a
crosslinked network of PIB. The main conclusions of this
work are summarized in Sec. IV.

2 Developments of the coarse-grained (CG) po-
tentials

2.1 Atomistic molecular dynamics (MD) simulations

The atomistic simulations of the cis-1,4-PB, PDMS and PIB
polymers were performed using the all-atom representation
of the COMPASS force field47 and the Forcite module from
MATERIALS STUDIO Accelrys package48. The bulk atom-
istic configurations consisted of 40 chains of 200 monomers.
Constant-NPT simulations were carried out at 298 K and 0.1
MPa. The equations of motion were integrated using the Ver-
let leapfrog algorithm scheme with a timestep of 2 fs. The
cutoff radius for the Lennard-Jones interactions was fixed to
14 Å. A typical MD simulation consists of a first period of
10 ns followed by an additional production phase of 50 ns.
The dimensions of the simulation cell were chosen in order to
avoid self-entanglements. The validation of these atomistic
force field was carried out by comparing the polymer melt
density and its temperature dependence as well as the end-
to-end distance. We have also checked some methodological
aspects of the atomistic simulations (see Fig. S2 (ESI†)) estab-
lishing that the description of the polymer melts is as good as
possible with an atomistic model. As an example, for the cis-
1,4-PB polymer, the atomistic simulations give an end-to-end
distance of 0.74 ± 0.03 Å2 mol g�1 for an experimental value
of 0.76 Å2 mol g�1 with a ratio to the mean square end-to-end
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distance to the mean square radius of gyration equal to 6.1.
These atomistic simulations18 have established a quantitative
prediction of the thermal expansion coefficient of 6.5 ⇥10�4

K�1 against an experimental value of 6.7 ⇥10�4 K�1. Once
this atomistic force field was validated, the bottom-up strategy
used here consists of designing CG potentials from atomistic
molecular dynamics simulations.

2.2 Dissipative Particle Dynamics (DPD)

The dissipative particle dynamics49–53 method solves the
Newtonian equations for particles subject to conservative, dis-
sipative and random forces. Thus,

dri

dt
= vi, mi

dvi

dt
= fi (1)

where fi is a pairwise-additive force defined as the sum of
three contributions

fi = Â
j 6=i

�
fC
i j + fR

i j + fD
i j
�

(2)

where fC
i j, fR

i j and fD
i j are the conservative, random and dis-

sipative forces, respectively. The conservative repulsive force
fC
i j derives from a soft interaction potential and is expressed as

fC
i j =

(
� dwc(ri j)

dri j
r̂i j (ri j < rc)

0 (ri j � rc)
(3)

where wc(ri j) is the conservative potential, ri j is the relative
displacement of particles i and j and r̂i j is the corresponding
unit vector. rc is the cutoff radius and is fixed to 4.0 nm. The
dissipative and random forces are given by

fD
i j =�gwD(ri j)(r̂i j·vi j) r̂i j (4)

fR
i j = swR(ri j)qi j

1p
dt

r̂i j (5)

where dt is the time step. vi j = vi �v j is the relative veloc-
ity, the terms wD (ri j) and wR (ri j) are dimensionless weight-
ing functions. s is the amplitude of the noise, qi j is a random
Gaussian number with zero mean and unit variance. g and
s are the dissipation strength and noise strength, respectively.
Español and Warren54 have shown that the system will sample
the canonical ensemble and obey the fluctuation-dissipation
theorem if the following conditions are satisfied.

g = s2

2kBT
and wD(ri j) =

�
wR(ri j)

�2 (6)

where kB is Boltzmann’s constant, T is the temperature and
wD(ri j) = (1� r/rc)2.

The conservative potential wc(ri j) sums intramolecular and
intermolecular interactions. The equations of motion were in-
tegrated using a modified version of the velocity-Verlet (DPD-
VV) algorithm55. The development of integration schemes in
DPD simulations is an area of active research8,56–59. We have
compared the modified velocity-Verlet scheme55 with that de-
veloped by Pagonabarraga et al.56 using a self-consistent tech-
nique to calculate forces and velocities (DPD-SC). With the
values of time step used here, we did not detect any significant
deviations between the target and the calculated temperatures
calculated by the DPD-VV and DPD-SC algorithms.

2.3 Coarse-graining procedure

From 10 independent atomistic configurations, we built bead-
bead intermolecular and intramolecular potential functions
calculated by coarse-graining atomistic configurations. This
procedure allows a direct mapping between the atomistic and
CG systems. The degree of coarse-graining was fixed to 5,
indicating that each bead corresponds to 5 monomers. This
degree of coarse-graining is then much smaller than the en-
tanglement mass and allows the use of a relatively larger time
step. By using a value of 5, no bond crossings are detected dur-
ing the dynamics of the polymer chains. As a consequence, we
expect a good reproduction of the entanglement effects. The
time step was fixed to 50 fs and the temperature was kept to
300 K. Three different distributions functions are developed
simultaneously: the radial distribution function gbond(ri,i+1)
between two consecutive beads in the polymer chain; the ra-
dial distribution function gbend(qi,i+1,i+2) between three con-
secutive beads in the polymer chain; the radial distribution
function gnb(ri, j) between beads i and j of different polymer
chains and beads i and j of the same molecule separated by
more than one bond. From these radial distribution functions
(RDF), we use the potential of mean force approach35 to de-
rive the corresponding CG potential functions as

w0
bond(ri,i+1) =�kBT lngbond(ri,i+1) (7)

w0
bend(qi,i+1,i+2) =�kBT lngbend(qi,i+1,i+2) (8)

w0
nb(ri, j) =�kBT lngnb(ri, j) (9)

where w0
bond(ri,i+1), w0

bend(qi,i+1,i+2), w0
nb(ri, j) are the

CG potentials corresponding to the bonding, bending and
nonbonded interactions developed from the CG atomistic
configurations. To improve the statistics, we have adopted the
strategy37 consisting of using different ways of grouping the
five monomers in the atomistic configurations. The resulting
potential functions have been tabulated: the force are then
obtained by a cubic spline interpolation60.
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From these w0
bond(ri,i+1), w0

bend(qi,i+1,i+2), w0
nb(ri, j) coarse-

grained potentials, we develop constant-DPD simulations of
polymer melts formed by 40 polymer chains of 40 beads.
A first DPD simulation of 10 000 steps was performed with
the initial w0

bond(ri,i+1), w0
bend(qi,i+1,i+2) and w0

nb(ri, j) poten-
tials. From these mesoscopic simulations, we re-calculate
the corresponding radial distribution functions gn

bond(ri,i+1),
gn

bend(qi,i+1,i+2) and gn
nb(ri, j), respectively. We observe that

the target RDFs in eqns (7),(8) and (9) are not accurately re-
produced. By calculating the ratio between these intermediary
RDFs and the target RDFs according to the Iterative Boltz-
mann Inversion process, we obtain new potential functions as

wn+1(r) = wn(r)+ kBT ln
✓

gn(r)
g(r)

◆
(10)

where gn(r) and wn(r) refer to the bonding, bending and
non-bonded distribution and potential functions at the step n,
respectively. g(r) is the target RDF. This scheme is reiterated
until convergence is obtained.

An iteration consists of a constant-NVT DPD simulation
of 10 000 steps and 5 iterations were required to obtain a
good convergence. Additional constant-NPT DPD simula-
tions were performed to modify these intermolecular poten-
tials by using an attractive linear function18 in order to make
the pressure in line with a pressure of 0.1 MPa. Fig. 2a shows
that the intramolecular target RDFs obtained from atomistic
simulations are very well reproduced by the CG models af-
ter the iterative process for the cis-1,4-PB, PIB and PDMS
polymers. The resulting CG potential functions used in the
DPD simulations are given in part b of Fig. 2. We ob-
serve some significant changes in the distribution functions
between the different polymers indicating that the presence of
the methyl groups and their resulting excluded-volume in the
PDMS and PIB chains are well-reproduced by oscillations in
the distribution functions in spite of a coarse-graining degree
of five. Figs. 2c and 2e show the bonding and bending dis-
tribution functions and the corresponding CG potentials are
represented in Figs. 2d and 2f, respectively. It is worth not-
ing that the CG potential for the bond stretching resembles
a simple harmonic potential that has been widely applied to
model the interactions between consecutive beads36,50,51,61 at
the mesoscale. The deviation from this simple harmonic po-
tential are polymer-microstructures dependent. From Fig. 2f,
we observe that the CG bending potentials tend to disfavor
the small angles in line with the bending potentials used for
flexible and semi-flexible polymer chains46.

Since the dissipative forces are present in the simula-
tions, another issues concern the choice of the friction coef-
ficient7,38,39 that has been shown to significantly impact on
the dynamical properties of the polymer chains. It is well-
known that the dynamical properties of polymer melts can

Fig. 2 a) Nonbonded radial distribution functions calculated from
MD and DPD simulations and b) nonbonded CG potential functions
used in the DPD simulations obtained from the CG procedure . c)
bonding and e) bending CG distribution functions built from MD
and DPD simulations . Corresponding d) bonding and f) bending
CG potential functions obtained for a degree of coarse-graining of 5
monomers.
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be significantly affected by the choice of these adjustable pa-
rameters8,38 rc and g. Based on the work38 of Lahmar and
Rousseau who have studied the influence of rc and g on the
global and local dynamics of a polymer melt, we checked that
g = 300 kg mol�1ns�1 was a good choice for the observation
of long-time dynamical processes. Indeed, by using this value
of g, we have shown in a previous work18 that the diffusion
coefficient of the cis-1,4-PB is slightly faster than that calcu-
lated from atomistic simulations but it remains on the same
order of magnitude.

3 Discussions

3.1 Prediction of the thermomechanical and structural
properties

It is now well-established that the combination of the CG mod-
els with DPD is able to equilibrate polymer melts containing
high molecular mass chains18,32 with a significant computa-
tional reduction (see Fig. S1 and Fig. S3 (ESI†) ). Fig. 3a
shows the density of the different polymer melts as a func-
tion of time. These trajectories resulting from stable constant-
NPT simulations allow to extract time average densities that
are given in Table 1 for each polymer. Interestingly, the CG
potentials allow a very good reproduction of the melt den-
sity with a maximum deviation of 1% from experiments62.
Additionally, the change in the density due to the chemical
nature of the monomers is also very well predicted by these
mesoscale simulations. Fig. 3b shows the end-to-end distance
of the polymer chains versus time. The different trajectories
show that the CG models are able to distinguish the different
polymers on this structural property even if the chemical de-
tails of the polymer are no longer explicitly described. The
comparison with the experimental end-to-end distance shows
a quantitative prediction with a maximum deviation of 7% for
PIB (see Table 1). The ratio of the end-to-end distance to the
radius of gyration, given for each polymer in Table 1 is in line
with the expected value of 6 for ideal gaussian chains63. The
bottom-up approach developed in the constant-NPT ensemble
becomes predictive for the density and reproduces also accu-
rately the end-to-end distance.

We now focus on the transferability of the CG potentials to
the polymer chain length, temperature and pressure. Whereas
the CG potentials have been developed from simulations of
polymer chains of 200 monomers (40 beads), we use these
potentials to simulate larger polymer chains of 800 monomers
corresponds to a length of 160 beads. The polymer melt den-
sity and the end-to-end distances are given in Table S1 (ESI†).
The deviations from experiments are not larger than those cal-
culated with smaller chain lengths. This is an interesting re-
sult that shows the possibility of developing the CG potentials
from shorter polymer chains. We now turn attention to the

Fig. 3 a) Simulated and experimental polymer melt densities as a
function of time for cis-1,4-PB, PIB and PDMS polymers; b) mean
square end-to-end distances as a function of time. The experimental
data, shown in dotted lines in a) and b) are taken from Ref. 62.
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Fig. 4 Specific volume (1/r) of the three polymer melts as a
function of temperature calculated using the CG models where r is
the average polymer melt density. The solid and dotted lines
represent to the simulated and experimental values of ap at 300 K.

temperature transferability of the CG potentials by calculat-
ing the specific volume of the polymer melt in the [200..500]
temperature range above the glass transition temperature. The
simulated specific volumes result from constant-NPT simula-
tions and their evolution with the temperature are represented
in Fig.4 at different temperatures. The linear temperature-
dependence of the specific volume on the temperature allows
to determine the thermal expansion coefficient defined by eqn
11. The value of the thermal expansion, given in Table 1,
is calculated from the slope of the different lines at 300 K.
We also report for comparison the experimental17 and simu-
lated values of ap at 300 K by dotted and solid lines in Fig.4,
respectively. We observe a good agreement between experi-
ments and simulations for cis-1,4-PB and PIB polymers with
a deviation of less of 5%. The deviation is more significant
with PDMS leading to a deviation of 35%. We can conclude
however that the order of magnitude for ap is reproduced with
the CG models developed in this work. A better agreement be-
tween experimental and calculated values of ap for PDMS is
possible but would require some refinements of the CG poten-
tial. The temperature dependence of the polymer melt density
is then well-reproduced by the CG models in the temperature
range above the glass transition temperature.

ap =
1
V

✓
∂V
∂T

◆

p
(11)

To complete the analysis, we investigate the pressure de-
pendence of these CG potentials through the calculation of the
isothermal compressibility kT from the volume fluctuations in
the constant-NPT ensemble as

kT =� 1
V

✓
∂V
∂p

◆

T
=

<V 2 >�<V >2

kBT <V >
(12)

The CG models give values of kT at 300 K equal to
1090⇥10�5, 130⇥10�5, 120⇥10�5 bar�1 for cis-1,4-PB, PIB
and PDMS polymers, respectively. The corresponding ex-
perimental values17 for cis-1,4-PB, PIB and PDMS polymers
are 7.2⇥10�5, 4.8⇥10�5, 11⇥10�5 bar�1, respectively. This
comparison establishes the inability of the CG potentials to re-
produce any pressure dependence leading to deviations from
experiments of two orders of magnitude as already observed
for other CG models32,64. The procedure applied here allows
to reproduce some thermodynamic properties at a target pres-
sure but excludes any transferability to other pressures due
to the deficiency of reproducing the incompressibility of the
polymer material at equilibrium.

The explanation of this poor reproduction of the incom-
pressibility comes from various origins : 1) the degree of
coarse-graining, 2) the correction of the pressure during the
development of the CG potentials. First, concerning the de-
gree of coarse-graining, we develop CG potentials for a level
of coarse-graining of 4 leading to harder potentials. The re-
sults are presented in Table S1 (ESI†). Fig. S4 (ESI†) shows
that the trajectory of the simulated polymer density shows
weaker fluctuations of the density than with l = 5. This
clearly establishes a relationship between the softness of the
potential and the compressibility property. Second, the modi-
fication of the CG potentials to reproduce the pressure of the
atomistic configurations introduces a pressure dependence in
these CG potentials32,64.

We propose here to analyze the CG configurations of the
different polymer melts by applying the primitive path anal-
ysis (PPA65) methodology, thoroughly described in Ref. 18.
Fig. 5 shows the distributions of the molecular weight (Me)
between entanglements. The average entanglement mass cal-
culated from this distribution is reported in Table 1 along
with the experimental corresponding property. We estab-
lish here a very good performance of the prediction with a
maximum deviation of 10% from experiments. Additionally,
the differences between the entanglement molecular weight
of each polymer are also very well reproduced : the ratios
MPDMS

e /MPIB
e and MPDMS

e /Mcis-1,4-PB
e are equal to 1.7 and 4.2

for CG simulations against 1.7 and 4.1 for experiments, re-
spectively. For PIB, an average entanglement mass of 6238 g
mol�1 corresponds to an entanglement length of 9 beads (45
monomers) and to the presence of approximately 17 entangle-
ment segments per chain formed by 160 beads. As a result,
we model here polymer chain lengths on the order of 20 en-
tanglement lengths Ne whereas the longest chains that can be
simulated by atomistic models within a reasonable computa-
tional cost represent roughly 2 Ne. Since the plateau modulus
G0

N is related to Me through the relationship62 G0
N = 4rRT

5Me
, it
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Fig. 5 Distributions of the entanglement molecular weight for
cis-1,4-PB, PIB and PDMS polymers. The dotted curves represent
the fits obtained from a Poisson distribution.

is then possible to estimate the plateau modulus G0
N of lin-

ear polymer melts. However, this plateau modulus could be
calculated directly from CG simulations without making any
assumption in any theoretical model but would require very
long chains. The values of G0

N are reported in Table 1 and the
agreement with experiments is quantitative with a maximum
deviation of 10% for PDMS and 4% for cis-1,4-PB.

3.2 Application of an uniaxial deformation

We now turn attention to the transferability of the CG models
on the direct calculation of the modulus G0

N of a crosslinked
network of PIB. A crosslinked network allows to observe
a plateau regime within a reasonable computational effort
whereas the same calculation for polymer melts would re-
quire very large chains of polymers. We consider then a
randomly tetrafunctional crosslinked PIB network where the
crosslinking is ensured by an insertion of a few amounts of
isoprene units which allows chemical bonding between chains
through vulcanization. We have checked that the CG po-
tential is not affected with a degree of coarse-graining of 5.
The average molecular weight (Mc = 6379 g mol�1) between
crosslink units is approximately the entanglement molecular
weight of the PIB melt leading to no trapped entanglement
between crosslinks. In a first step, we aim to calculate the
stress-strain curve of the network by applying a tension in
the z-direction and by maintaining a constant pressure in the x
and y-directions. More precisely, uniaxial tensile is applied by
stretching the z-dimension of the simulation box under a neg-
ative normal pressure Pzz. We also apply a positive pressure
Pxx = Pyy = 0.1 MPa in the x and y-directions. We used the
anisotropic Berendsen barostat66 for the control of the pres-

sure. The magnitude of the elongation along the z-axis is mea-
sured through

ez = e =
Lz �Lz,0

Lz,0
(13)

or
lz = l =

Lz

Lz,0
(14)

where Lz and Lz,0 are the box dimensions along the z-axis at
times t and t = 0, respectively. This property is reported in
Fig. 6a at three different values of stress tensor defined as

szz = Pisotropic
zz �Pzz (15)

where Pisotropic
zz = 0.1 MPa was the value of the normal compo-

nent in the system when the pressure was isotropically main-
tained. As Pzz varies from -0.2 to 0, szz decreases from 0.3 to
0.1 MPa.

Fig. 6a shows the stress-strain curve in a wide range of
deformations from the elastic regime to the high elongation
regime. We also plot the stress-strain curves deduced from the
classical theories, the phantom network model67 and the affine
deformation model68,69 of the rubber elasticity. We observe
that the curve deviates from the phantom behavior for an elon-
gation ratio of ez = 0.6 leading to an hardening of the network
in the regime of strong deformations. We also observe that the
stress-strain curve of the crosslinked PIB network exhibits a
linear portion in the range of weak deformations and matches
very well the phantom model. The agreement between the
simulated and theoretical curves of the phantom model is not
surprising since our network corresponds to a weakly con-
strained system due to the absence of additional topological
constraints (no entanglement) between two crosslinks whereas
the affine model describes a strongly constrained network. For
strong deformations (Fig. 6a), the stress-strain curve deviates
from both the affine and phantom theories as expected for the
hardening of the network. In the linear regime (see Fig.S6
(ESI)), the stress-strain curve allows to determine the Young’s
modulus E for uniaxial deformation where E is defined as the
slope of ( ∂szz

∂e ) where (e = l�1)! 0. We find that E = 0.57
MPa. Since G = E/3 in the elastic regime for incompress-
ible systems, i.e, with a Poisson’s ratio of 0.5 (see Fig. 6b
and Fig.S5 (ESI)), we obtain a numerical value of the plateau
modulus G0

N of 0.19 MPa in line with that calculated from
G0

N,phantom = rRT
2Mc

= 0.18 MPa.
It should be noticed that the CG models are able here to

reproduce the Poisson’s coefficient characterizing incom-
pressible systems whereas these same models were unable to
reproduce the incompressibility of polymer melts (see Section
3.1). It means that adding topological constraints improves
the description of the compressibility behavior. It seems that
decreasing the interpenetration between the beads leads to
a better reproduction of the compressibility in line with the

1–10 | 7

Page 7 of 10 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Table 1 Entanglement molecular mass (Me), melt density(r), plateau modulus (G0
N), end-to-end distance (Ree/M), ratio to the mean square

end-to-end distance to the mean square radius of gyration, thermal expansion coefficient ap calculated from CG DPD simulations. The
experimental values for each polymer are taken from Ref. 62. The subscripts give the accuracy of the last decimal(s), i.e., 0.788 means 0.78 ±
0.08.

Me r G0
N Ree/M R2

ee/R2
G ap

(g mol�1) (g cm�3) (MPa) (Å2 mol g�1) (10�4 K�1)
CG Exp. CG Exp. CG Exp. CG Exp. CG Exp.

cis-1,4-PB 2500 2347 0.9109 0.900 0.731 0.76 0.788 0.76 6.1 6.51 6.7
PIB 6238 5686 0.9255 0.918 0.301 0.32 0.615 0.57 6.2 5.21 5.5
PDMS 10588 9613 0.9735 0.970 0.181 0.20 0.423 0.42 6.2 5.61 9.0

Fig. 6 Stress-strain curve of uniaxial deformation as a function of
(l�l�2) over a) a large range of deformations and b) a limited
range of deformations obtained from CG simulations, affine and
phantom models. c) Stress-strain curve as a function of e in order to
focus on the region of weak deformations and on the linear behavior
(black dotted line) of the fitting curve (red curve).

impact of harder potentials on the density fluctuations of
pure polymer melts. In the case of a crosslinked network
of polymer, we can conclude that the CG models developed
here perform very well in the reproduction of the Young’s
modulus and plateau modulus through the calculation of the
stress-strain curve.

Another alternative for a direct calculation of the plateau
modulus from equilibrium simulations is to consider the shear
relaxation modulus G(t) from the autocorrelation of the stress
tensor elements44 by running very long equilibrium simula-
tions. The shear relaxation modulus can be calculated from
the autocorrelation of the stress tensor elements44 as

G(t) =
V

5kBT

⌦
sxy(t)sxy(0)+syz(t)syz(0) (16)

+szx(t)szx(0)
↵�

+
V

30kBT

⌦
Nxy(t)Nxy(0)+Nyz(t)Nyz(0)

+Nzx(t)Nzx(0)
↵�

with Nab = saa�sbb where a,b denote the x,y and z com-
ponents. The components of the stress tensor are defined by

sab =� 1
V

✓
Âmiva

i vb
i +

1
2 Â

i 6= j
rb

i j fC,a
i j

◆
(17)

where fC,a
i j is the a component of the conservative force

defined in eq 3 and va
i the a component of the velocity of

bead i.

Fig. 7 reports the calculated stress relaxation function of
the crosslinked PIB network. As expected, the G(t) curve ex-
hibits a plateau region. Very interestingly, the value of the
plateau modulus fits very well with the values predicted by the
nonequilibrium CG simulations and the phantom theory. We
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Fig. 7 Time evolution of the shear modulus G calculated from the
stress relaxation function.

show here in the case a cross linked network that the two dif-
ferent methodologies converge to the same value of the plateau
modulus establishing that the combination of the CG models
with the DPD method as an efficient tool for determining this
property.

4 Conclusions

One of the challenge of the CG models in reducing the number
of degrees of freedom is to incorporate the chemical nature of
the molecules into the CG element. This is an essential step
toward the development of realistic effective potentials. Addi-
tionally, the bottom-up approach addresses fundamental ques-
tions concerning the thermodynamic and structural consisten-
cies of the CG models with the underlying atomistic configu-
rations. This consistency is required for a quantitative predic-
tion of thermomechanical, structural and viscoelastic proper-
ties of polymeric materials that are often only accessible at the
mesoscopic scale.

We have developed CG models of different polymers (cis-
1,4-PB, PIB and PDMS) by using the iterative Boltzmann in-
version method. Nonbonded and intramolecular (bonding and
bending) potentials have been built from distribution functions
of the atomistic configurations. We took the route of devel-
oping the CG models in the constant-NPT ensemble in order
to reproduce the pressure of the atomistic simulations. These
models have been incorporated in the DPD method. We did
not aim to focus on the dynamical properties of the polymer
melt since we have shown recently that the dynamics of our
CG models18 is slightly faster than that of the atomistic mod-
els.

Here, we have established that the (IBI + DPD) combined
approach can be applied to different polymers and different

properties. We have shown that the CG models are able to re-
produce accurately the polymer melt density, the end-to-end
distance, the entanglement mass of different polymer melts.
From theoretical models, it is then possible to estimate the
plateau modulus with a reasonable computational effort with-
out running simulations of very long chains. The temperature
and pressure transferabilities of these potentials have been dis-
cussed. It results a relatively good reproduction of the thermal
expansion coefficient whereas the calculation of the isother-
mal compressibility shows significant deviations of two orders
of magnitude from experiments. We have proposed some as-
sumptions that could explain this behavior requiring however
further investigations.

In order to perform a direct calculation of the plateau modu-
lus with these CG models within a reasonable system-size, we
have opted for a crosslinked network of PIB. We have shown
that the two ways of calculating the plateau modulus either by
applying a deformation either by calculating the autocorrela-
tion of the stress tensor elements lead to the value expected by
the classical theories of linear elasticity. This work underlines
the performance of the bottom-up approach for quantitative
predictions of thermomechanical properties of polymer with a
reasonable computational cost.
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Papakonstantopoulos, M. Poldneff and W. K. Liu, Polymer, 2012, 53,
5935–5952.
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