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Abstract 

Lead-free piezoelectric ceramics have attracted considerable attention owing to 

their environmental friendliness and good electrical properties. Here the new (1-

x)K0.5Na0.5NbO3–x(0.15Bi0.5Na0.5TiO3–0.85Bi0.5Na0.5ZrO3)  [(1-x)KNN–x(BNT–

BNZ)] ternary lead-free piezoelectric ceramics synthesized by conventional solid 

sintering method were reported. The microstructure and electrical properties of 

(1-x)KNN–x(BNT–BNZ) ternary ceramics were systematically investigated, and 

the ceramics with x=0.06 possess the enhanced piezoelectric properties and a high 

TC (e.g., d33~318 pC/N, kp~0.43, and TC~326°C), which are mainly ascribed to 

the involved R-T phase boundary. It is believed that, such a ceramic system is one 

of the promising candidates in the field of lead-free piezoelectric ceramics. 
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1. Introduction 

Lead zirconate titanate (PZT)-based piezoelectric materials are widely used in 

sensors, actuators and other electronic devices, owing to their excellent piezoelectric 

properties and a high Curie temperature (TC).
1-3

 However, the lead is harmful to the 

environment and human health. Therefore, it is a tough issue with great significance 

to develop lead-free piezoelectric materials for the replacement of these lead-based 

ceramics.
4-13

 

In the past decades, several kinds of lead-free piezoelectric ceramics with 

perovskite structure, such as BaTiO3 (BT), (Bi0.5Na0.5)TiO3 (BNT), and (K,Na)NbO3 

(KNN) ceramics, have been studied. BT is the first practically used piezoelectric 

ceramics. However, the poor piezoelectric properties and low Curie temperature of 

BT ceramics greatly limit their wider commercial application. Extensive efforts 

have been carried out to improve the piezoelectric properties and temperature 

stability of BT ceramics.
14-19

 BNT is an important lead-free piezoelectric material, 

but BNT often exhibits poor piezoelectric properties. In order to improve the 

piezoelectric  properties of BNT, a series of BNT-based lead-free piezoelectric 

ceramics with another perovskite components and the doping with other oxides 

were widely investigated.
20-24

 Among those, the KNN-based ceramics are 

considered as the most promising candidates to replace lead-based ceramics because 

of their relatively excellent piezoelectric properties and high TC.
5, 7-9, 11-13, 25-32  

 

Recently, it was reported that a small amount of Bi0.5Na0.5TiO3 (BNT) was used to 

improve the sintering behavior and piezoelectric properties of KNN-based ceramics.
33 

Nevertheless, these systems also show a poor piezoelectric activity. On the other 

hand, previous studies in the Authors’ group have confirmed that the piezoelectric and 
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ferroelectric properties of KNN-based ceramics could remarkably be improved by 

adding Bi0.5Na0.5ZrO3 (BNZ),
34

 and the Authors’ group invented a series of KNN–

(Bi,Na)(Zr,Ti)O3 (KNN–BNZT) and KNN–[Bi,(K/Li)(Zr,Ti)]O3 (KNN–BK/LZT)-

based lead-free piezoceramics very recently.
35-36

 However, there were few reports on 

the microstructure and electrical properties of KNN–BNT–BNZ ternary lead-free 

ceramics in detail.  

In this work, (1-x)K0.5Na0.5Nb–x(0.15Bi0.5Na0.5TiO3–0.85Bi0.5Na0.5ZrO3) [(1-

x)KNN–x(BNT–BNZ)] ternary ceramics were prepared by the conventional solid 

reaction method, the effects of BNT-BNZ content on the microstructure and electrical 

properties of (1-x)KNN–x(BNT–BNZ) ternary ceramics were systematically 

investigated, and some related physical mechanisms were studied. 

 

2. Experimental procedure  

(1-x)KNN–x(BNT–BNZ) ternary ceramics with x=0, 0.01, 0.02, 0.03, 0.04, 0.05, 

0.06, and 0.07 were prepared by the conventional solid-state reaction route. Raw 

materials were K2CO3 (99.0%), Na2CO3 (99.8%), Nb2O5 (99.5%), Bi2O3 (99.0%), 

ZrO2 (99%), and TiO2 (99%) respectively. Raw powders were thoroughly mixed 

with ZrO2 balls for 24 h using ethanol as the medium, and then dried and calcined at 

850°C for 6 h. Calcined powders were mixed with a poly vinyl alcohol (PVA) 

binder solution and compacted into disk samples with a diameter of ~1.0 cm and a 

thickness of ~1.0 mm. Those samples were sintered in air at the temperature of 

1070~1130°C for 3 h after burning out the PVA binder at 850°C for 2 h. Silver 

pastes were fired at 700°C for 10 min on both sides of these samples as electrodes 
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for electrical measurements. All samples were poled at room temperature in a 

silicone oil bath under a dc field of 4.0 kV/mm for 20 min. 

The phase structure of these sintered samples was measured using X-ray 

diffraction (XRD) (Bruker D8 Advanced XRD, Bruker AXS Inc, Madison, WI, 

CuKα). The surface morphology of these sintered samples was analyzed by the field 

emission-scanning electron microscopy (FE-SEM) (JSP 7500, Japan). The 

temperature dependence dielectric behavior of these sintered samples was 

characterized using a programmable furnace with an LCR analyzer (HP 4980, 

Agilent, U.S.A.). The d33 of the samples was tested using a piezo-d33 meter (ZJ-3A, 

China), the dielectric properties of the samples were measured using an impedance 

analyzer (HP 4294A), and the hysteresis loops of the samples were characterized 

using a Radiant Precision Workstation (USA). 

 

3. Results and discussion 

Fig. 1(a) shows the XRD patterns of the ceramics as a function of BNT–BNZ 

content in the 2θ  range of 20~60°. All ceramics are of a pure perovskite phase, and 

no secondary phases are observed in the composition range investigated, confirming 

that the stable solid solutions between KNN and BNT–BNZ are formed in this 

work. Their correspondingly expanded XRD patterns in the 2θ range of 44~47° are 

represented in Fig. 1(b). A small amount of BNT–BNZ can not change the crystal 

structure of KNN ceramics, that is to say, an orthorhombic phase is still observed in 

the ceramics with x≤0.02. With the increase of BNT–BNZ content, an 

orthorhombic-tetragonal (O–T) phase coexistence is found in the ceramics with 

0.03≤x≤0.04. For the ceramics with x=0.07, the rhombohedral-tetragonal (R–T) 
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phase is suppressed. So we can confirm that the R–T phase coexistence has been 

existed in the ceramics with 0.05≤x<0.07. 

To further indicate the variation of phase structures, the temperature dependence 

of the dielectric constant (ɛr) of (1-x)KNN–x(BNT–BNZ) ternary ceramics was 

measured in the temperature range of -150~200°C, as illustrated in Fig. 2. As 

represented in Fig. 2(a~e), the TR–O peaks can be clearly observed for the ceramics 

with x=0~0.04, increasing with the increase of BNT–BNZ content, while the TO-T 

peaks are gradually shifted to a lower temperature with rising BNT–BNZ content. 

The TR–O and TO–T peaks gradually develop into a single one as the BNT–BNZ 

further increases, as shown in Fig. 2(f) and (g). Such a result shows that TR–O and 

TO–T peaks get together, and the TR–T peaks appear when the BNT–BNZ content 

raises up to 0.05. However, with continually increasing x (=0.07), the TR–T peaks 

evolve to be much more broadened and even disappear because of the dramatic 

decreased grain size [see fig. 5(d)], indicating that the R–T phase boundary has been 

suppressed.
37-38

 

As shown in Fig. 3(a), the ceramics with x=0~0.04 possess two dielectric peaks 

above room temperature, which are assigned to orthorhombic to tetragonal phase 

temperature (TO–T)  and tetragonal to cubic phase temperature (TC), while only one 

dielectric peak (TC) is observed in the ceramics with x=0.05~0.07. It can be found 

from Fig. 3(b) that the TC of those ceramics generally decreases with the rise of 

BNT–BNZ content, and the composition with x=0.06 shows a relatively high TC of 

326°C, which is much higher than other KNN-based ceramics.
39-42

 As illustrated in 

Fig. 3(c), the TO–T of the ceramics with x=0~0.04 decreases with increasing BNT–

BNZ content, which is consistent with the results of Fig. 2(a~e). 
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For further describing the phase transition of this work, the temperature-

composition phase diagram of (1-x)KNN–x(BNT–BNZ) ternary ceramics has been 

identified by using the temperature dependence of dielectric constant
10, 43

 in Fig. 2 

and 3, as shown in Fig. 4. With the increase of BNT–BNZ content, the TR-O is 

gradually shifted to a higher temperature, and the TC and TO-T have a decreasing 

trend. Both rhombohedral-orthorhombic and orthorhombic–tetragonal phase 

boundaries gradually move close to room temperature, and then the rhombohedral- 

tetragonal phase boundary can been seen in the ceramics with 0.05≤x<0.07. 

Considering the combination of XRD and the temperature dependence of dielectric 

constant, the phase coexistence of R–T can be confirmed in the compositional range 

of 0.05≤x<0.07. 

Fig. 5(a)-(d) plot the SEM surface morphologies of the (1-x)KNN–x(BNT–BNZ) 

ternary ceramics as a function of BNT–BNZ content with x=0, 0.03, 0.06, and 0.07, 

respectively. The grain size of the ceramics increases sharply with rising BNT–BNZ 

content, reaching a maximum value at x=0.06, showing that a low concentration of 

BNT–BNZ has entered the lattice of KNN ceramics and promoted the grain growth. 

Nevertheless, with further increasing BNT–BNZ content, the grain size of the 

ceramics reduces dramatically because of the increasing of Bi
3+

,  which inhibits the 

grain growth.
44-45 

The dramatic decreased grain size results in a more broadened TR–T 

peak, and TR–T peak even disappears, as shown in Fig. 2(h). 

Fig. 6 shows the composition dependence of the piezoelectric constant (d33) and 

electromechanical coupling factor (kp) of (1-x)KNN–x(BNT–BNZ) ternary ceramics, 

where all samples were poled and measured at room temperature. The d33 values of 

(1-x)KNN–x(BNT–BNZ) ternary ceramics raise with the increase of BNT–BNZ 
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content, reaches a maximum (d33~318 pC/N) for the ceramic with x=0.06, and 

drastically reduces with further rising BNT–BNZ content. The kp values show the 

similar change with rising BNT–BNZ content, and obtain a maximum (kp~0.43) for 

the ceramics with x=0.06. The enhanced polarizability induced by the coupling 

between two equivalent energy states of the tetragonal and rhombohedral phases 

mainly results in large d33 and kp values. The electrical domains in the R–T region 

have more possible polarization states and can rotate much easier by the external 

stresses and electric fields. 

In this work, the ceramics with x=0.06 show a high d33 of 318 pC/N, which is 

much larger than those KNN-based ceramics.
33, 37, 42, 46

 Furthermore, it is of great 

significance that the ceramics with x=0.06 also possess a higher TC (326°C) than 

these KNN-based ceramics,
39-42

 as shown in Table 1, and the higher TC of the 

ceramics facilitates industrial applications in a wide temperature range. 

Table. 1 Piezoelectric properties and Curie temperature of KNN-based ceramics 

Materials system d33/( pC/N) kp TC /(°C) Refs. 

( K0.4Na0.52)(Nb0.84Sb0.08)O3–(0.08-

x)LiTaO3–xBaZrO3 
365 0.45 178 Zuo39  

0.94(K0.4−xNa0.6BaxNb1−xZrx)O3–

0.06LiSbO3 
344 0.32 176 Liang40  

( K0.44−x Na0.52)(Nb0.95−xSb0.05)O3–xLiTaO3  321 0.52 315 Fu41 

(K0.55Na0.45)0.965Li0.035Nb0.80Ta0.20O3 262 0.53 320 Zhang42  

(1-x)(K0.48Na0.52)NbO3–

xBi0.5(Na0.7K0.2Li0.1)0.5ZrO3 
236 0.38 350 Cheng37  

(1-x)K0.5Na0.5NbO3–xBi0.5Na0.5TiO3 195 0.43 375 Zuo33 
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Fig. 7 

displays the 

ɛr and tan δ 

values of (1-x)KNN–x(BNT–BNZ) ternary ceramics as a function of BNT-BNZ 

content, measured at room temperature. The ɛr values of (1-x)KNN–x(BNT–BNZ) 

ternary ceramics rise slightly with increasing BNT–BNZ content (x=0~0.03), then rise 

sharply in the range of 0.03<x<0.05, and almost maintain a constant at 0.05<x<0.07 

due to R–T phase transition near room temperature. A lower tan δ value (tan δ=0.026) 

is demonstrated for the ceramics with x=0.06. 

The P–E loops of the (1-x)KNN–x(BNT–BNZ) ternary ceramics as a function of 

BNT–BNZ content, measured in the frequency of 10 Hz at room temperature, are 

represented in Fig. 8(a). All the samples have typical ferroelectric P–E loops, 

especially for x=0.05~0.06, standing for their superior ferroelectric properties. To 

further display the composition dependence of their ferroelectric properties, the 

composition dependence of remanent polarization (Pr) and coercive field (Ec) is 

shown in Fig. 8(b). The Pr values significantly rise with increasing BNT-BNZ 

content, reach a maximum with x=0.05~0.06, and then drop dramatically due to the 

change of phase structure. The relatively large Pr values obtained by the samples with 

x=0.05 and 0.06 mainly originate from their unique R–T phase coexistence near room 

temperature, resulting in the instability of the polarization states, which can be easily 

rotated under the action of external electric fields. The Ec values reach maximum for 

the ceramics with x=0.06, and then drop as the x increases. 

The generally used empirical formula of d33~αɛrPr can be introduced to analyze the 

(1-x) K0.5Na0.5NbO3–xBi0.5Li0.5TiO3 172 0.37 381 Jiang46  

(1-x)K0.5Na0.5Nb–x(0.15Bi0.5Na0.5TiO3–

0.85Bi0.5Na0.5ZrO3) 
318 0.43 326 

This 

work 
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new R–T structure and the effect of the dielectric and dipole properties on 

piezoelectric properties of the ceramics.
30, 34

 Fig. 9 shows the d33 and ɛrPr values of (1-

x)KNN–x(BNT–BNZ) ternary ceramics. The d33 and εrPr values of the ceramics have 

simultaneously reached peaks for the ceramics with the R–T phase boundaries, 

indicating that relatively high εr and Pr also play a role on the large d33.  

 

4. Conclusions 

(1-x)K0.5Na0.5Nb–x(0.15Bi0.5Na0.5TiO3–0.85Bi0.5Na0.5ZrO3) [(1-x)KNN–x(BNT–

BNZ)] ternary ceramics were prepared by the conventional solid reaction method. 

The suitable amount of BNT–BNZ to KNN greatly improves the piezoelectric and 

ferroelectric properties. The ceramics with x=0.06 possess enhanced electrical 

properties and a high TC: d33~318 pC/N, kp~0.43, εr~1604, tan δ~0.026, Pr~16.8 

µC/cm
2
, Ec~12.3 kV/cm, and TC~326°C, which are mainly ascribed to the involved 

R–T phase boundary. As result, the material system is a promising candidate for 

lead-free piezoelectric applications in the near future. 
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Figure Captions 

Fig. 1 XRD patterns of the ceramics with different BNT–BNZ content: (a) 

2θ=20~60°, (b) 2θ=44~47°. 

Fig. 2 Temperature-dependence of the dielectric constant (ɛr) of (1-x)KNN–x(BNT–

BNZ) ternary ceramics in the temperature from -150
o
C to 200

o
C: (a) x=0, (b) 

x=0.01, (c) x=0.02, (d) x=0.03, (e) x=0.04, (f) x=0.05, (g) x=0.06, and (h) x=0.07. 

Fig. 3(a) ɛr–T (30~500°C) curves of (1-x)KNN–x(BNT–BNZ) (x=0~0.07) ternary 

ceramics, (b) the expanded ɛr-T (60~200°C) curves of (1-x)KNN–x(BNT–BNZ) 

(x=0~0.04) ternary ceramics, and (c) the TC of the ceramics with different BNT–

BNZ content. 

Fig. 4 Phase diagram of (1-x)KNN–x(BNT–BNZ) ternary ceramics. 

Fig. 5 SEM patterns of (1-x)KNN–x(BNT–BNZ) ternary ceramics as a function of 

BNT-BNZ content: (a) x=0, (b) x=0.03, (c) x=0.06, and (d) x=0.07.  

Fig. 6 d33 and kp values of (1-x)KNN–x(BNT–BNZ) ternary ceramics. 

Fig. 7 ɛr and tan δ values of (1-x)KNN–x(BNT–BNZ) ternary ceramics.  

Fig. 8 (a) P–E loops and (b) Pr and Ec values of (1-x)KNN–x(BNT–BNZ) ternary 

ceramics. 

Fig. 9 d33 and ɛrPr values of (1-x)KNN–x(BNT–BNZ) ternary ceramics. 
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Fig.1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig.7 
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Fig. 8 
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Fig. 9 
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Prime Novelty Statement 

The ceramics possess large d33 and high TC, which can mediate the current 

contradiction of d33 and TC in KNN. 
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