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Abstract 

 

Janus and microcapsule particles are very attractive for drug delivery applications due to their 

capability of targeted and/or programmed drug release. In this paper, a facile yet robust strategy is 

reported for the first time to fabricate both Janus and microcapsule particles in a simple 

microfluidic device via the same protocol. According to the classic spreading and partial wetting 

theory, the key point to fabricate Janus and microcapsule particles in single emulsions is that the 

two immiscible components should undergo a precisely controlled phase separation, i.e., 

dewetting for Janus particle and wetting for microcapsule particle. Herein we show that this 

requirement can be satisfied simply by subtle choice of organic solvents for the dispersed phase. 

As a model hybrid material, PLGA/PCL Janus and microcapsule particles are obtained via 

switching the organic solvents between dimethyl carbonate and dichloromethane. ATR-FTIR 

spectra and acetone treatment demonstrate that PLGA and PCL occupy their own hemisphere in 

Janus particles. In contrast, the shell on microcapsule particle surface is composed of only PLGA, 

and the core is composed of PCL in which tiny PLGA beads are embedded. The applications of 

PLGA/ PCL Janus and microcapsule particles in drug delivery are characterized via in vitro 

degradation test. The results prove that Janus and microcapsule particles exhibit distinct 

degradation behaviors, implying their capability of programmable drug delivery in different 

manners. 
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1. Introduction 

In the past decades, material science community has witnessed an explosion of innovative and 

effective strategies to fabricate advanced materials for drug delivery applications.
1-3

 Among the 

emerging materials so far developed, Janus and microcapsule particles are drawing tremendous 

attention, mainly due to their capability of targeted and/or programmed drug release.
4-10

 

Specifically, Janus and microcapsule particles are two types of particles with distinct architecture: 

the former possesses two well-defined regions of different surface or bulk composition whilst the 

later are of typical core-shell configuration. In other words, Janus particle displays unique 

asymmetry within a single particle and thus offers diverse chemical or physical properties and/or 

directionality inconceivable for homogeneous particles or symmetric patchy particles,
11

 whereas 

microcapsule particles are usually symmetric (at least from the outside surface) and the 

encapsulated core components can be released via either degradation of the shell material or 

stimuli-responsive mechanism (pH, enzyme, temperature, etc).
12

 The state-of-the-art fabrication 

methods for Janus particles include droplet-based microfluidics (often combined with lithographic 

patterning),
13 

Pickering emulsions,
14

 electrohydrodynamic jetting,
15 

phase separation in confined 

volumes etc.
16

 Meanwhile, the most employed approaches to prepare microcapsule particles are 

layer by layer assembly,
17

 emulsion polymerization,
18

 internal phase separation,
19 

flow focusing or 

co-flowing methods.
20

 Although the synthetic methods for Janus and microcapsule particles 

appear partial overlapping at the first glance, one may find after detailed analysis that their 

operating procedures are quite different. To the best of our knowledge, there is still a big challenge 

to fabricate simultaneously Janus and microcapsule particles using the same protocol and 

experimental set-up. 

In this paper, we describe a facile yet robust strategy to synthesize both Janus and microcapsule 

particles in a simple microfluidic device which can solely produce oil-in-water (O/W) single 

emulsions. According to the famous spreading and partial wetting theory in physical chemistry, the 

key point to fabricate Janus and microcapsule particles is that the two immiscible components in 

the as-formed single emulsion should undergo a precisely controlled phase separation, i.e., 

dewetting for Janus particle and wetting for microcapsule particle.
 21, 22 

Herein we show that this 

requirement can be satisfied simply by subtle choice of organic solvents for the dispersed phase. 
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As a concrete example, hybrid particles composed of biocompatible/biodegradable poly 

(lactic-co-glycolic acid) (PLGA) and polycaprolactone (PCL) are fabricated, and their Janus and 

microcapsule configurations are achieved via switching the organic solvents between dimethyl 

carbonate and dichloromethane. In addition to the fabrication and characterization, the possible 

applications of PLGA/PCL Janus and microcapsule particles in drug delivery are also investigated. 

We wish this new strategy could open a new way to fabricate particles with complicated 

architectures in a much easier manner than we had thought before. 

 

2. Experimental section 

Materials and reagents: poly (lactic-co-glycolic acid) (PLGA, lactide/glycolide ratio=50/50, 

Mw=30 kDa) and poly (ε-caprolactone) (PCL, Mw=130 kDa) were purchased from Daigang 

Biomaterials (Shandong, China). Poly (vinyl alcohol) (PVA, 87-89% hydrolyzed, Mw=88 kDa), 

Rhodamine B and dimethyl carbonate were bought from Aladdin Chemistry (Shanghai, China). 

Dichloromethane and acetone were obtained from Tianjing Baishi Chemical Co. Ltd (Tianjin, 

China). Glycerol was purchased from Tianjin Fuyu Chemical Co. Ltd (Tianjin, China). 

Polydimethylsiloxane (PDMS) (Sylgard 184) and negative resist (NR21-20000P) were purchased 

from Dow Corning Company and Futurrex Inc (USA), respectively. Deionized water was obtained 

using a Milli-Q water-purification system. All the reagents were of analytical grade and used as 

received. 

 

Fabrication and surface treatment of microfluidic devices: Microfluidic flow-focusing devices 

were fabricated using standard soft lithography techniques.
 23

 In brief, clean silicon wafer was first 

spin-coated with negative photoresist. After baking at 80 
o
C for 10 min and 150 

o
C for 5 min, the 

resist was exposed to UV light through a photo-mask and developed in RD6 developer solution. 

Mixture of PDMS base and curing agent (10:1, w/w) was then poured onto the silicon wafer and 

cured at 60 
o
C to make a PDMS replica which was subsequently sealed with a glass slide via O2 

plasma. The width of branch channel and collection channel were 100 µm and 250 µm, and the 

depth of all channels was 100 µm. In order to improve the hydrophilicity of microchannels and 

reduce the swelling of PDMS caused by dichloromethane, surface treatment was conducted by 
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injecting PVA/glycerol (2/5 wt%) aqueous solution and curing for 1 h. 

 

Synthesis of PLGA/PCL Janus and microcapsule particles: PLGA and PCL (1:1 or 7:3, w/w) 

dissolved in dichloromethane or dimethyl carbonate with a total concentration of 40 mg/mL were 

used as the dispersed phase, whilst an aqueous solution containing 2 wt% of PVA was used as the 

continuous phase. Both the dispersed phase and continuous phase were delivered into the 

microfluidic devices using syringe pumps (Cole-Parmer, USA). Before introducing the dispersed 

phase, the microchannels were wetted with the aqueous continuous phase for several minutes. In 

the case of Janus particles, the flow rates for the continuous and dispersed phases were held at 0.4 

and 1.6 mL/h. For microcapsule particles, the flow rates of the continuous and dispersed phase 

were set as 0.25 and 0.45 mL/h. Droplets were produced continuously at the junction of the 

microchannels and then collected in 2 wt% aqueous solution of PVA (Figure S1, Movie S1 and S2, 

Supporting information). After settling at room temperature for 24 h, the solidified microparticles 

were centrifuged, washed for 3 times with DI water and finally dried in a freeze-drier (Lyophilizer, 

VIRTIS, USA). 

 

Characterization of PLGA/PCL particles: The fabrication process were monitored using an 

optical microscope (T240C, SunTime, China) equipped with a high-speed camera (Basler ace, 

Germany). Rhodamine B-labeled Janus and microcapsule were observed with a confocal laser 

scanning microscope (CLSM) equipped with a 1 mW helium-neon laser (ZeissLsm-510, Japan). 

The morphology of the microparticles was observed via a scanning microscope (Nova Nano 

SEM430, FEI). Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR, 

Nexus Por Euro, USA) was carried out to further clarify the configuration of microparticles. The 

interfacial tension was measured at 25 
o
C with the wilhelmy plate method (DCAT 30, Dataphysics 

instruments GmbH), and the polymer surface energy was determined according to the classic 

Owens-Wendt-Kaelble (OWK) method. 

 

Degradation of PLGA/PCL particles: In vitro degradation test was conducted to investigate the 

degradation-ability of Janus and microcapsule particles. The microparticles were suspended in 50 
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mL of PBS (pH 7.4) and incubated in an orbital shaker at 92 rpm and 37 
o
C for a certain period of 

time (7, 14, 21, 35 days). The PBS buffer was refreshed every week and the microparticles were 

collected at predetermined intervals for SEM observation. 

 

3. Results and Discussion 

3.1 Fabrication and characterization of Janus and microcapsule particles 

A simple flow-focusing microfluidic device was adopted to generate oil-in-water (O/W) single 

emulsions as the precursors of monodisperse PLGA/PCL Janus and microcapsule particles for the 

purpose that the solvent extraction rate, particle size and configuration could be precisely 

controlled (see schematic illustration of the design in Figure S2, supporting information). 
24-26

 

Figure 1a and b show the SEM images of PLGA/PCL particles prepared using dimethyl carbonate 

as the solvent of the dispersed phase. An apparent demarcation can be observed on each particle, 

i.e., one hemisphere exhibits a rough surface and the other displays a smooth surface, indicative of 

a Janus structure. Interestingly, when dimethyl carbonate is replaced with dichloromethane, 

microspheres with smooth surface can be formed under the same condition (Figure 1d and e), 

which implies the material with rough surface might be embedded in the particle so as to generate 

a core-shell structure. To evaluate the size distribution, one hundred particles were chosen at 

random and their size was measured by ImageJ software. It is found that the average diameter of 

Janus particles is 28.42 µm with a coefficient of variation (CV) of 4.25% (Figure 1c). In contrast, 

the smooth microspheres show more narrow size distribution (CV is 2.74%) and their average 

diameter was 47.00 µm (Figure 1f). The low CV values (< 5%) of Janus and microcapsule 

particles prove their excellent monodispersity achieved in microfluidic device. Besides, if a 

mixture of dimethyl carbonate and dichloromethane (for example, 5:1, v/v) is employed, a 

transition structure between Janus and microcapsule, or namely an anisotropic configuration with 

one hemisphere showing smooth morphology and the other hemisphere showing sea-island 

morphology, can be obtained (Figure S3a, b, Supporting information). 

The surface composition of Janus and microcapsule particles was identified via ATR-FTIR and 

the spectra are shown in Figure 2. Only the characteristic peaks belonging to PLGA (2998, 2951, 

1759, 1129 and 1086 cm
-1

) can be detected on microcapsule particle surface (curve c), confirming 
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that PCL is located inside the particle in this case. Comparatively, in addition to the peaks of 

PLGA at 2997 and 1755 cm
-1

, the absorption peaks of PCL at 2946, 2865, 1737 and 731 cm
-1

 can 

be observed on Janus particle surface (curve d). This proves that the surface of Janus particle is 

composed of both PLGA and PCL. 

To figure out the distribution of PLGA and PCL in the Janus and microcapsule particles, we 

further introduced acetone treatment method since acetone is a good solvent for PLGA but 

difficult to dissolve PCL in a very short time. After treated with acetone, the smooth half part of 

Janus particle disappears and the whole particle turns out to be a hemisphere (Figure 3a). This 

phenomenon validates the existence of a clear interface between PLGA and PCL hemispheres, 

possibly resulted from the complete phase separation in the formation of Janus particle. To explain 

the reason why the surface of PCL part is so rough, pure PCL particles were prepared via the same 

protocol. As can be found, pure PCL particles originally exhibit rough surfaces (Figure 3b), and 

there is not much difference in particle morphology before and after acetone treatment (Figure 3c). 

In our opinion, the roughness of PCL surface should be ascribed to its semi-crystalline state. At 

the same time, after acetone treatment, microcapsule particle still remains the intact spherical 

structure except that the particle surface is roughened (Figure 3d). Considering the FTIR data as 

well as the conclusion drawn from Janus particle, it can be deduced that the outmost shell of 

microcapsule particle is PLGA and the inner core is PCL. More surprisingly, the cross-section of 

microcapsule particle shows many tiny beads encapsulated in the PCL matrix (Figure 3e). Once 

subjected to acetone, these beads dissolve quickly, leaving a porous PCL matrix (Figure 3f). These 

results illustrate that the shell and tiny beads are composed of PLGA and the inner matrix is 

composed of PCL respectively. For the particle with transition structure shown in Figure S3, one 

hemisphere and the island on the other hemisphere are dissolved away after acetone treatment, 

which leads to the formation of a remaining hemisphere with many dents on the surface (Figure 

S3c). Obviously, in this case, PLGA occupies the smooth hemisphere and the island, while PCL 

occupies the sea of the other hemisphere.  

The fine structure of Janus and microcapsule particles can be tuned by changing the mass ratio 

of PLGA and PCL. Figure 4 shows the Janus and microcapsule particles synthesized under a mass 

ratio of 7:3. As can be seen in Figure 4a, Janus particle can be still harvested if dimethyl carbonate 
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is used. However, the interface between PLGA and PCL doesn’t stay at the centerline of the Janus 

particle but intrudes towards the PCL side. After acetone treatment, PLGA is dissolved away and 

chesspiece-like PCL particle remains (Figure 4b). With respect to microcapsule particle, no 

obvious change can be observed on the face of it after increasing the mass percentage of PLGA 

(Figure 4c), but the sliced particle reveals a remarkable thickening of the PLGA shell (Figure 4d). 

What’s more, PLGA beads are also found in the core matrix (Figure S4, supporting information). 

 

3.2 Formation mechanism of Janus and microcapsule particles 

The significant structure difference between Janus and microcapsule particles induced only by 

organic solvents can be explained according to the classic spreading and partial wetting theory,
 21

 

in which the equilibrium configuration of two immiscible phase and a third phase can be rationally 

determined and predicted from the interactive interfacial tensions between different phases 

( , , ) and spreading coefficients ( ), as defined in Equation (1): 

         (1) 

Herein, the oil phase containing PLGA, the aqueous solution containing PVA and the oil phase 

containing PCL are designated as phase 1, phase 2 and phase 3, respectively. Table 1 lists the 

interfacial tensions measured by the Wilhelmy plate method and the calculated spreading 

coefficients. Since dimethyl carbonate owns high solubility in water (13.9 wt% at 20 
o
C 

27
) and 

can be extracted from the emulsion very fast (less than 30 s), the interfacial tension between 

dissolved PLGA and PCL in dimethyl carbonate is calculated based on the surface energy of 

PLGA and PCL (see Table S1, Supporting information). Compared with dimethyl carbonate, 

dichloromethane shows much lower solubility in water (2 wt% at 20 
o
C). As a result, the dissolved 

PLGA and PCL in dichloromethane are completely miscible for a considerable long time (~3-4 h) 

and their interfacial tension is assumed as zero. In terms of the emulsion using dimethyl carbonate 

as organic solvent, the spreading coefficient  is positive and the other two ( and ) are 

negative, satisfying the condition of dewetting. The dewetting process is schematically illustrated 

in Scheme 1a. As dimethyl carbonate in oil phase diffuses into water, phase separation between 

PLGA and PCL occurs. These two materials segregate towards the opposite poles and a clear 
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interface gradually builds at the centerline of the particles, ultimately causing the formation of 

Janus structure. In the case of dichloromethane, there are two situations in regards of the spreading 

coefficients. At the low concentration of PLGA and PCL (for example, 40 mg/mL) where the 

droplets are initially generated, the positive and negative and  meet the criteria of 

complete wetting. That is, a core-shell structure with PLGA as the shell and PCL as the core can 

be achieved (Scheme 1b). However, with the extraction of more dichloromethane into the water, 

the concentrations of PLGA and PCL increase (In our study, oil phases containing 80 mg/mL of 

PLGA and PCL were used for the measurement of interfacial tension in high concentration), 

accompanying by the increase of  and decrease of . This triggers the inversion of  

and , leading to the encapsulation of PLGA in the PCL matrix. It should be pointed out that the 

movement of PLGA molecules would be greatly slowed down in high concentration and thus the 

coalescence of tiny PLGA beads into bigger PLGA core are restricted. Although Janus and 

microcapsule particles were obtained in dimethyl carbonate and dichloromethane systems 

respectively, it doesn’t mean that the particle configurations were constant in these two solvents. 

Any factor that changes the interfacial tensions between different phases and spreading 

coefficients (such as temperature, concentration of PLGA and PCL, extraction rate of solvent, etc), 

may result in different particle structure. 

  

3.3 Possible applications of PLGA/PCL Janus and microcapsule particles in drug delivery 

In our work, PLGA/PCL Janus and microcapsule particles are fabricated not only because of 

their excellent biocompatibility and biodegradability as approved by the US Food and Drug 

Administration (FDA), but also because of their complementary properties in mechanical strength, 

degradation rate and hydrophobility/ hydrophilicity etc.
28, 29

 Since PLGA is hydrophilic and PCL 

is hydrophobic, it is of much possibility that drugs with different hydrophilicity/ hydrophobicity 

may distribute unevenly in PLGA and PCL. To prove this hypothesis, Rhodamine B, a hydrophilic 

fluorescence dye, was used to stain Janus and microcapsule particles. The fluorescence images 

(Figure 5) show that Rhodamine B mainly dyes PLGA rather than PCL, indicating that 

Rhodamine B can selectively distributes in different compartments of Janus and microcapsule 
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particles. As a result, with the respective degradation of PLGA and PCL, these drugs can be 

released in a controllable mode. To compare the degradation behaviors of PLGA/PCL Janus and 

microcapsule particles, in vitro biodegradation test was performed in phosphate buffered saline 

(PBS, pH 7.4). Figure 6a and b show the particle morphologies after incubation for various times. 

On the 7
th

 day, both Janus and microcapsule particles hardly show any change (Figure 6 a1 and b1). 

However, after 14 days of incubation, PLGA hemisphere in Janus particle displays obvious 

roughening effects, so does the PLGA shell on microcapsule particle (Figure 6 a2 and b2). What’s 

more, ATR-FTIR profile proves that both PLGA and PCL can be detected on microcapsule particle 

surface after 14 days, implying that part of PLGA shell has been degraded (data not shown here). 

When the degradation test proceeds to the 21
st
 day, the PLGA part in Janus particle become much 

smaller and the whole particle loses its spherical architecture, as shown in Figure 6a3. In addition, 

the microcapsule particle returns to sound microsphere again but its morphology resembles pure 

PCL particle (Figure 6b3), indicative of the complete degradation of PLGA shell. By the time of 

the 35
th

 days, the residual PLGA in Janus particles is swollen due to the penetration of water 
30

 and 

the particle looks like a mushroom with a fluffy and porous canopy (Figure 6a4). Meanwhile, 

pores are also observed on PCL-coated microcapsule particle, which can be attributed to the 

degradation of tiny PLGA beads embedded in PCL matrix (Figure 6b4). These data reveal that 

PLGA degrades much faster than PCL, indicating that Janus and microcapsule particles can also 

exhibit distinct degradation behaviors. Although one may argue that drugs can also be released 

from the particles without the degradation of PLGA and PCL, our primary results demonstrate that 

only 7 wt% TanshinoneⅡA (a drug for coronary heart disease and angina pectoris) can be 

released before PLGA starts to degrade (data will be shown in another paper). Therefore, it is still 

reasonable to conclude that the distinct degradation behaviors of PLGA/PCL Janus and 

microcapsule particles prove their capability of programmable drug delivery, as vividly illustrated 

in Figure 6c and d.  

 

4. Conclusion 

In summary, we present a novel and versatile microfluidic approach to fabricate PLGA/PCL 

Janus and microcapsule particles simply by changing the organic solvents of the dispersed phase 
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between dimethyl carbonate and dichloromethane. As confirmed through FTIR and acetone 

treatment, the smooth hemisphere in Janus particle is PLGA and the rough hemisphere is PCL. In 

comparison, the smooth shell in microcapsule particle is PLGA and the core is composed of PCL 

in which tiny PLGA beads are embedded. The formation mechanisms of these two types of 

particles are discussed via the well-known spreading and partial wetting theory. It is revealed that 

the distinct particle configurations are rooted in the variation of interfacial tensions and spreading 

coefficients in the two solvents. We believe this strategy opens a new way when synthesizing 

particles with various architectures. Additionally, in view of the vast difference of PLGA and PCL 

in mechanical strength, hydrophobility/hydrophilicity and especially biodegradation rate, Janus 

and microcapsule particles show promising applications for controllable and programmable drug 

release. 
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Figures 

Figure 1 

 

 

Figure 1. SEM images and size distribution of Janus and microcapsule PLGA/PCL particles. (a-c) 

Janus particles prepared using dimethyl carbonate as the solvent of the dispersed phase, (d-f) 

microcapsule particles prepared using dichloromethane as the solvent of the dispersed phase. The 

flow rates of the dispersed and continuous phase to generate Janus particle were 0.4 and 1.6 mL/h, 

respectively, whilst the flow rates of the dispersed and continuous phase to generate microsphere 

particle were 0.25 and 0.45 mL/h, respectively. The weight ratio between PLGA and PCL was 1:1. 
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Figure 2 

 

 

Figure 2. ATR-FTIR spectra of (a) pure PLGA film, (b) pure PCL film, (c) PLGA/PCL 

microcapsule particle, and (d) PLGA/PCL Janus particle. The weight ratio between PLGA and 

PCL was 1:1. 
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Figure 3 

 

 

 

Figure 3. Effects of acetone treatment on Janus and microcapsule particles: (a, c, d, f) SEM 

images of (a) Janus, (c) pure PCL, (d) microcapsule and (f) cross-sectioned microcapsule particles 

after treatment with acetone for 30 s. For comparison, (b) pure PCL and (e) cross-sectioned 

microcapsule particles without acetone treatment are also included. The weight ratio between 

PLGA and PCL was 1:1. 
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Figure 4 

 

 

 

Figure 4. SEM images of Janus and microcapsule particles prepared under the mass ratio of 

PLGA and PCL (7:3, w/w). (a) Janus particle without acetone treatment; (b) chesspiece-like PCL 

particle after treating Janus particle with acetone; (c) microcapsule particle; (d) sliced 

microcapsule particle. 
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Scheme 1 

 

Scheme 1. Schematic illustration on the formation mechanism of (a) Janus particles and (b) 

microcapsule particles. DMC: dimethyl carbonate; DCM: dichloromethane. 
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Figure 5 

 

 

Figure 5. Fluorescence images of (a) Janus and (b) microcapsule particles after stained by 

Rhodamine B. 
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Figure 6 

 

 

 

Figure 6. Possible applications of PLGA/PCL Janus and microcapsule particles in drug delivery. 

(a and b) in vitro degradation of PLGA/PCL Janus and microcapsule particles in PBS solution 

after (a1, b1) 7 days, (a2, b2) 14 days, (a3, b3) 21 days and (a4, b4) 35 days; (c and d) schematic 

illustration on programmable drug delivery with the degradation of PLGA/PCL Janus and 

microcapsule particles. 
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Table 1 

 

Table 1. Interfacial tensions measured by the Wilhelmy plate method and spreading coefficients. 

Emulsion system γ12 γ13 γ23 S1 S2 S3 Type 

PLGA/DMC-PVA-PCL/DMC 3.08 7.48 2.92 -7.64 +1.48 -7.32 Dewetting 

PLGA/DCM-PVA-PCL/DCM
(a)
 2.17 0 2.33 +0.16 -4.50 -0.16 Wetting 

PLGA/DCM-PVA-PCL/DCM
(b)
 2.87 0 1.72 -1.15 -4.59 +1.15 Wetting 

a) 
The concentrations of PLGA and PCL in the oil phase are 40 mg/mL; 

b)
 the concentrations of 

PLGA and PCL in the oil phase are 80 mg/mL. The units of interfacial tensions and spreading 

coefficients were all mN/m. DCM: dichloromethane, DMC: dimethyl carbonate. 
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(1) Stable generation of droplets in microchannels 

 

 

Figure S1. Optical images showing (a, c) generation of droplets in the flowing focusing region and (b, d) 

monodisperse droplets collected at the outlet of microfluidic devices. The solvent used in a and b is 

dimethyl carbonate, whilst the solvent used in c and d is dichloromethane. All the scale bars are 200 µm. 

 

 

(2) Schematic illustration of droplet-based microfluidic device 
 

 

 

Figure S2. Schematic illustration of the microfluidic device used for synthesis of Janus and microcapsule 

particles. Fabrication and operation procedure is described in detail in experimental section. CP: continuous 

phase, DP: dispersed phase. 

 

 
 

(3) Fabrication of PLGA/PCL particles using a mixture solvent containing dimethyl 

carbonate and dichloromethane  
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Figure S3. SEM images of PLGA/PCL microparticles prepared using the mixture of dimethyl carbonate 

and dichloromethane (5:1, v/v) as solvent for the dispersed phase. (a, b) microparticle without acetone 

treatment; (c) microparticle after treated with acetone. 

 

(4) Calculation of interfacial tension between PLGA and PCL in dimethyl carbonate 

system 

PLGA and PCL solutions were first spin-coated on clean glass slides to form a uniform film after 

solvent evaporation. Then, two standard probe liquids (pure water and diiodomethane) with well-known 

surface energy (γL), dispersive (���) and polar component (���), were dropped on the surface of polymer 

film for contact angle measurements (OCA15, Data Physics Instruments GmbH). According to the classic 

Owens-Wendt-Kaelble (OWK) equation, 

���� � 	
��
 � �������� ��������� 

The dispersive (���) and the polar component (���) of PLGA and PCL could be obtained, and their 

surface energy were calculated as �� � ��� � ���. The interfacial tension between PLGA and PCL is the 

D-value between the surface energy of PLGA and PCL. These data were summarized in Table S1.  

 

 Table S1. Calculation of interfacial tension between PLGA and PCL in dimethyl carbonate system 

Entry Water-PLGA Diiodomethane-PLGA Water-PCL Diiodomethane-PCL 

Contact angle (
O
) 85.5 44.5 102.7 38.8 

Surface energy 

(mN/m) 
37.28 44.76 

Interfacial tension 

(mN/m) 
7.48 
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(5) SEM images of the sliced microcapsules prepared under the mass ratio of PLGA and 

PCL (7:3, w/w). 
 

 

Figure S4. SEM images of the sliced microcapsules prepared under the mass ratio of PLGA and PCL (7:3, 

w/w). 

 

Movie S1: Video of droplets generation for the synthesis of Janus particle in microfluidic 

device. The flow rates of disperse phase and continuous phase were 0.4 and 1.6 mL/h, 

respectively. 

Movie S2: Video of droplets generation for the synthesis of microcapsule particle in 

microfluidic device. The flow rates of disperse phase and continuous phase were 0.25 and 

0.45 mL/h, respectively. 
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