

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	The preparation of Fe_2O_3 nanoparticles by liquid
2 3	phase-based ultrasonic-assisted method and its application as enzyme-free sensor for the detection of H_2O_2
4 5	Chen Hao ^{a,*} , Feng Feng ^a ,Xiaohong Wang ^{a,*} , Min Zhou ^a , Yutao Zhao ^b , Cunwang Ge ^c ,Kun Wang ^a
6 7 8 9	 ^a School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China ^b School of Material Science & Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China ^c School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
10	Abstract: Iron oxide nanoparticles with high electrocatalytic activity for hydrogen peroxide
11	was developed by liquid phase-based ultrasonic-assisted method using sodium lignosulphonate
12	as surfactant. The influence of the different preparation conditions including additions of
13	sodium lignosulfonate (SLS) and calcining temperatures was investigated by X-ray diffraction
14	(XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), and
15	Brunauer- Emmett-Teller (BET) specific surface area. Then, the as-prepared Fe ₂ O ₃ with
16	graphene (G) was further fixed on the surface of glassy carbon electrode (GCE) using chitosan
17	(CS) as a crosslinking agent. The electrochemical properties of the prepared
18	G-Fe ₂ O ₃ -NPS-CS/GCE senor were estimated by cyclic voltammetry and chronoamperometry.
19	Finally, the G-Fe ₂ O ₃ -NPS-CS/GCE (1.0g SLS, calcined 400 $^\circ \! \mathbb{C}$) senor showed an excellent
20	electrocatalytic activity towards hydrogen peroxide, which displayed high sensitivity (385.59
21	μ A mM ⁻¹ cm ⁻²), wide detection range (0.5- 7800 μ M), low detection limit (0.5 μ M) and a fast
22	response time less than 2s. Furthermore, the sensor also exhibited good anti-interference for
23	ascorbic acid and uric acid, excellent repeatability and long-term stability. These results
24	indicated that the G-Fe ₂ O ₃ -NPS-CS/GCE (1.0g SLS, calcined 400°C) senor held great potential
25	for the detection of hydrogen peroxide.

^{27 *}Corresponding author. Tel.: +86 511 88791800; fax: +86 511 88791800.

²⁸ E-mail addresses: chhao@ujs.edu.cn (C. Hao); xhwang@ujs.edu.cn (X.H. Wang).

30 Keywords: Iron oxide; Liquid phase; Enzyme-free sensor; Electrochemical properties;

- 31 Hydrogen peroxide.
- 32 Introduction

33 Nanomaterials has become one of the most active research orientations in the areas of 34 physics, chemistry, and engineering since 1990, due to the small particle size, large specific 35 surface area, high surface energy and unique surface effect, small-size effect, and macroscopical quanta tunnel effect, etc.¹⁴ In the past several decades, various types of 36 37 nanomaterials such as Au, Ag, TiO2, SiO2, and ZnO etc. have been widely applied as photocatalyst, functional ceramics, sensor, solar cell and biology functional material.⁵⁻⁹ Among 38 39 the various kinds of nanomaterials, iron oxide as an important oxide has been studied for a wide 40 range of applications because it is environmentally friendly, non-toxic, heat-resistant, and corrosion-resistant material.^{10,11} At the same time, because of the low density, large surface, 41 42 high stability, and remarkable sensitivity of the conductivity to temperature, humidity and 43 concentration, the Fe₂O₃ semiconductor shows a broad and good prospect for application in the 44 field of sensing materials.

45 On the other hand, the reliable and rapid determination of hydrogen peroxide (H_2O_2) is of 46 great importance in biology and chemistry fields because it is not only used as an important 47 oxidizing agent in food and chemical industries, but also widely used as a mediator in food, pharmaceutical, clinical, industrial and environmental analysis.¹²⁻¹⁵ Many techniques have been 48 49 successfully used for the detection of H_2O_2 , such as titrimetry, spectrophotometry, fluorescence, 50 chemiluminescene and electrochemistry. Compared with other detection methods, 51 electrochemistry has attracted more and more interest of researchers, due to the convenience, high sensitivity, and excellent precision of the technique.¹⁶⁻¹⁸ Some electrochemical sensors 52

53	with a high sensitivity and specificity for detection of H_2O_2 , such as
54	NF/CAT/MWCNTs-COOH/Cys-AuNPs/GC, CAT/MgO-NPs/CPE, GC/MWCNT-NiO/CAT and
55	GC/MWCNTs/[bmim][PF ₆]/CAT have been successfully developed. ¹⁹⁻²² Most of the above
56	mentioned electrochemical sensors were constructed based on enzymes or proteins.
57	Enzyme-modified electrochemical sensors can achieve high sensitivity and excellent selectivity,
58	however, there are many defects of enzyme-based electrochemical sensors, such as instability,
59	limited lifetime, high cost and complicated modification procedure. Its activity, meanwhile, can
60	be easily affected by temperature, pH value and oxygen. ²³⁻²⁷ In comparison with the
61	enzyme-modified sensors, the enzyme-free sensor's research becomes very meaningful duo to
62	their long lifetime, high environmental suitability and high durability.

63 Iron oxide has been a good choice to be used as substrate for enzyme-free sensors due to its good chemical stability, low-cost and narrow band gap (-2.1 eV).²⁸ It is well-known that the 64 65 excellent performance of the material depends not only on the characteristic of the material itself, but also on the size, crystallinity and morphology of the material particle.²⁹ There are 66 67 always some problems like agglomeration of particles, large particle size, etc. exist during the 68 preparation of iron oxide. Therefore, control of the size and morphology of Fe₂O₃ has attracted 69 more and more attention of researchers. Up to now, some Fe₂O₃ particles with excellent 70 properties have been synthesized through various methods with the assistance of different surfactants.30-32 71

In this paper, a technically simple and cost-effective ultrasonic method for synthesizing Fe₂O₃ nanoparticle in the presence of SLS has been developed in order to obtain the desired sensor materials. Then, the as-prepared Fe_2O_3 nanoparticle and graphene, were immobilized onto the GCE surface by chitosan. Cyclic Voltammetry and Chronoamperometry are used to

76 determine the electrochemical properties of the sensor. The resulting sensor exhibited high

sensitivity, a wide linear range and a lower detection limit for hydrogen peroxide.

78 Experimental

79 Materials

80	Ferric chloride, carbamide, potassium permanganate, flake graphite, hydrazine hydrate and
81	hydrogen peroxide were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
82	China). Concentrated hydrochloric acid (36-38%, m/m)and concentrated sulfuric acid (98%,
83	m/m) were purchased from Yangzhou Hubao Chemical Reagent Co., Ltd. (Yangzhou, China).
84	SLS of industrial grade was bought from Fei Wong Xinyi Chemical Co., Ltd (Xuzhou, China).
85	All other reagents were of analytical grade and used without further purification. 0.2% (m/m)
86	chitosan solution was prepared by addition of chitosan in 1% (m/m) acetic acid solution. 0.1 M
87	of pH=7.4 phosphate buffer solution (PBS) was adjusted by 0.1 M K_2HPO_4 and KH_2PO_4 . All
88	as-prepared solution were stored at 4° C when not in use.

89 Preparation of Fe₂O₃ nanoparticle and graphene

90	Fe ₂ O ₃ nanoparticles were synthesized by liquid phase-based ultrasonic-assisted method in the
91	following way: 4.06g FeCl ₃ \cdot 6H ₂ O was dissolved in 250mL double-distilled water with certain
92	amount of SLS and the mixed solution was sonicated in the water bath of 85 $^\circ\!\!\!\mathrm{C}$ until a relatively
93	steady solution system was formed. Then a 50ml solution of $1.2M (NH_2)_2CO$ was added to the
94	system drop by drop, and the reaction system was refluxed for 4h. The resultant solids were
95	collected by filtration and repeated washing. After that, the solid was dried in oven at 60° C, and
96	then calcined at 300°C, 400°C, 500°C and 600°C in furnace for 2h, respectively. The added
97	amounts of SLS were 0, 0.5, 1.0, 1.5, 2.0g, respectively.

Graphite oxide was prepared using flake graphite by a modified Hummer's method³³: First,
graphite powder was oxidized by KMnO₄/ NaNO₃ and H₂SO₄, and the Graphite oxide was

exfoliated into graphene oxide by a KQ-250 ultrasonic reactor (Kunshan, China, P=250W, f=40kHz). Subsequently, the unexfoliated graphite oxide is separated by centrifugation at 2000RPM for 10min. Finally, the obtained back suspension of graphene oxide is reduced into graphene using hydrazine. The graphener was washed for several times and stored at 4° C.

104 **Preparation of the modified electrodes**

105 The preparation of the G-Fe₂O₃-NPS-CS/GCE modified electrode is described as follows: 106 Prior to use, the bare glassy carbon electrode (GCE, 4mm in diameter) was carefully polished to 107 a mirrorlike surface with emery paper and 1.0µm, 0.5µm alumina slurry, respectively. Then the 108 polished electrode was rinsed ultrasonically in acetone, absolute ethanol, deionized water for 109 3min, respectively. The electrode was activated using repeatedly cyclic voltammetry scanned from -1.0 to 1.0V at $50 \text{mV} \cdot \text{s}^{-1}$ in 1.0M H₂SO₄ until a stable voltammogram was obtained. To 110 111 prepare the modified composite, 3 mg of Fe₂O₃ and 2 mg of graphene are mixed in 0.2% (m/m) 112 chitosan solution, and this mixture was sonicated for 30min to acquire a homogeneous and 113 well-dispersed black suspension. Whereafter, $3\mu L$ of the suspension was smeared evenly onto 114 surface of the GCE electrode. In order to obtain a more uniform modified films , the 115 as-prepared electrode was slow dried at 4°C. The obtained G-Fe₂O₃-NPS-CS/GCE modified 116 electrodes was stored at 4°C. Meanwhile, the Fe₂O₃-NPS -CS/GCE modified electrode was also 117 prepared. Iron oxide and graphene easily fall off from the surface of electrode without the 118 adhesive force of chitosan (CS) for the G-Fe₂O₃-NPS/GCE modified electrode. Therefore, the 119 G-Fe₂O₃-NPS/GCE has not been discussed in this work. The G-Fe₂O₃-NPS-CS/GCE (1.0g SLS, 120 calcined 400°C) are denoted as G-Fe₂O₃-CS/GCE-1-400.

121 Characterizations

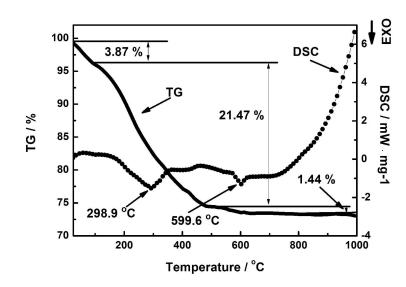
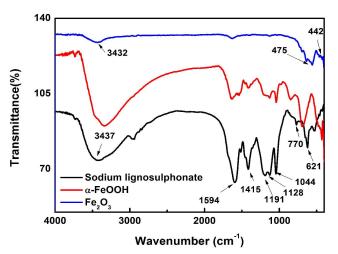
122 Thermogravimetric/differential scanning calorimetry (TG/DSC) analysis was performed

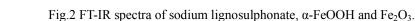
123	using a integrated thermal analyzer (STA449C, NETZSCH) under a nitrogen atmosphere with a
124	heating rate of 5°C ⋅ min ⁻¹ from 25°C to 1000°C. FT-IR spectra of the powders (as pellets in KBr)
125	were recorded using Fourier transform infrared spectroscopy (FT-IR, Nicolet,
126	AVATAR-370MCT) in the range of 4000–400 cm ⁻¹ . The XRD patterns of the Fe_2O_3
127	nanoparticles were recorded using a Bruker D8 Advance X-ray diffractometer at a voltage of 40
128	kV and current of 40 mA with Cu K α radiation ($\lambda = 0.15406$ nm). The specific surface area and
129	pore size data were obtained by Surface area and porosity analyzer (NOVA- 2000e). The
130	morphology of the nanoparticles was examined with the Field Emission Scanning Electron
131	Microscope (FE-SEM, S4800, HI-9140-0006). All electrochemical experiments were
132	performed by a CHI 660C electrochemical workstation (Chen Hua Instrumental Corporation,
133	Shanghai, China). A conventional three-electrode system (including the modified GCE as the
134	working electrode, a platinum foil as the counter electrode and a saturated calomel electrode
135	(SCE) as the reference) was employed to test electrochemical property of modified electrode.
136	Results and discussion
137	TG-DSC measurement was performed to investigate the decomposition behavior and the
138	phase transition temperatures of the as-synthesized precursor (FeOOH) containing 1.0g SLS.

139 The results are exhibited in Fig. 1.

140 141

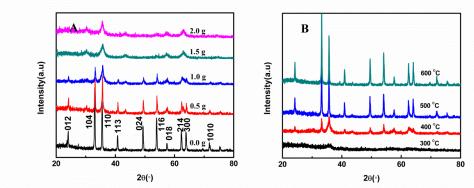
142

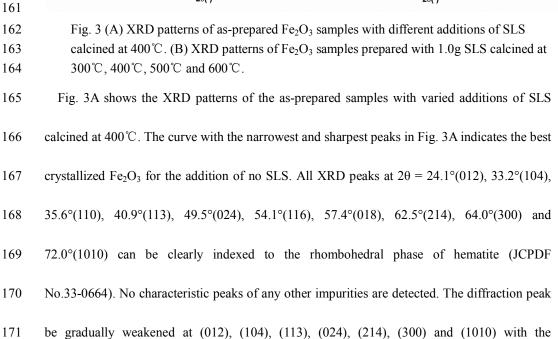



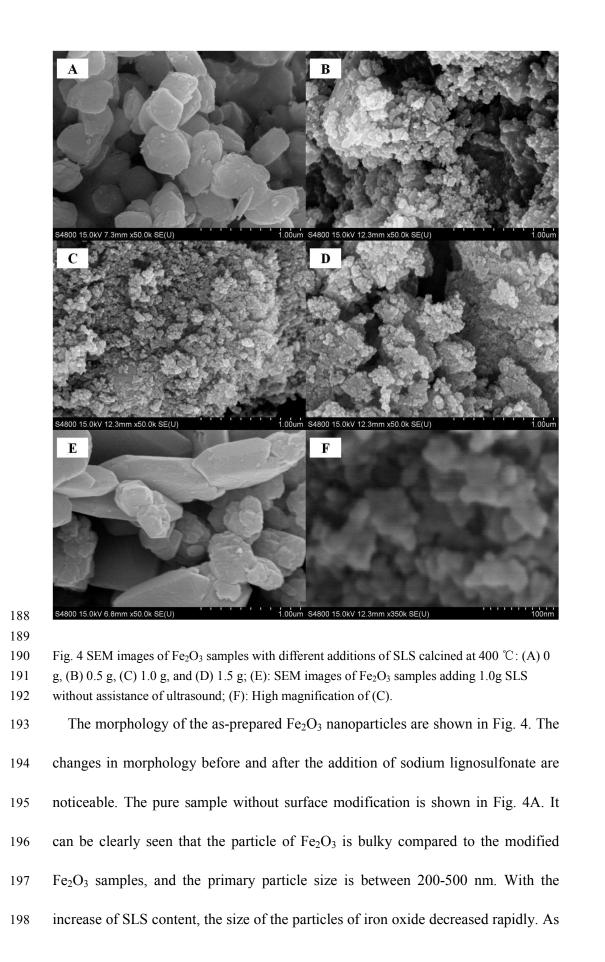

Fig. 1 DSC-TGA curve for α-FeOOH precursor containing SLS

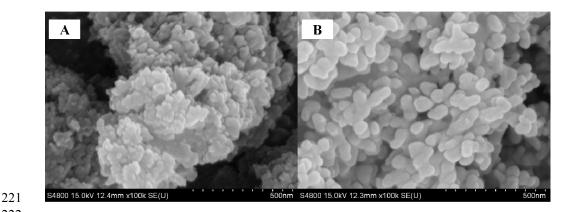
The curve of TG shows that the first weight loss was about 3.87% in temperature range of

143 25° C to 100° C, which is attributed to the dehydration of the physical adsorption on the sample 144 surface. The relatively large weight loss of 21.47% occurred from 100°C to 480°C, and the 145 corresponding exothermic peak was observed at 298.9 °C in the DSC curve. This is because of the decomposition of the α -FeOOH ³⁴ and SLS at high temperature. The third mass loss of 146 147 1.44% from 480° C to 820° C is attributed to the continued decomposition of SLS surrounded by 148 Fe₂O₃. No obvious weight loss over 820°C. Subsequently, the DSC curve shows that the small 149 exothermic peak at 599.6 °C is mainly due to the phase transformation from γ -Fe₂O₃ to α -Fe₂O₃.³⁵ 150


The FT-IR spectra as an important analytical technique was used to evaluate the structural changes of the different samples shown in Fig. 2. It can be found that there are large numbers of functional groups of SLS among the as-prepared α -FeOOH containing 1.0g SLS. The results indicate that the SLS has been successfully embedded in the α -FeOOH precursor. Accompanied by the thermal decomposition of α -FeOOH precursor into Fe₂O₃, the characteristic peaks of SLS almost all disappeared due to the volatilization and decomposition of SLS. The two 157 obvious absorption peaks at 475 cm^{-1} and 442 cm^{-1} are attributed to the vibration of the Fe³⁺-O²⁻.




159 160



172	increasement of SLS. These characteristic peaks almost disappear for the addition of 2.0g SLS.								
173	Meanwhile, it is obvious to compare the JCPDF cards that we can find the transformation of								
174	Fe ₂ O ₃	Fe_2O_3 crystalline structure from the rhombohedral symmetry (JCPDS No. 33-0664) to							
175	Maghen	Maghemite (JCPDS No. 39-1346) with the increasing SLS content. In addition, The influence							
176	of differ	ent calcin	ation tempera	ture was also di	scussed, as	shown in]	Fig. 3B. The F	Fe ₂ O ₃ samples	
177	calcined	at 300°	°C showed v	wider and wea	ıker diffrac	ction peal	ks, and disp	layed poorer	
178	crystalli	zation tha	an the other I	Fe_2O_3 samples.	As expected	d, the diff	raction peaks	' intensity of	
179	Fe ₂ O ₃ constantly reinforced with an ever-increasing calcination temperature, accompanied with								
180	the gradual growth of Fe_2O_3 nanoparticles. $\gamma\text{-}Fe_2O_3$ was successfully transformed to $\alpha\text{-}Fe_2O_3$								
181	with the increase in the annealing temperature. The average crystallite dimension (ACD) of all								
182	samples was estimated through using Scherrer formula, $D=0.9\lambda/\beta\cos\theta$, where D is the average								
183	crystalli	ne size, λ	is the wave	length of Cu K	Γ α (λ=0.154	06 nm),	β is the full	width at half	
184	maximu	m of the c	diffraction pea	lks, and θ is the	Bragg's ang	gle. the res	ults of the con	nputation are	
185	shown in Tab. 1.								
186				nt Fe ₂ O ₃ sample	s.				
-	SLS/g	T/°C	ACD/nm	$BET/m^2 \cdot g^{-1}$	SLS/g	T/°C	ACD/nm	$BET/m^2 \cdot g^{-1}$	
	0.0 0.5	$\begin{array}{c} 400 \\ 400 \end{array}$	32.03 26.78	8.208 27.430	2.0 1.0	400 300	9.26	46.311 76.196	
	0.5 1.0	400 400	26.78 21.86	27.430 81.319	1.0	500 500	32.13	21.367	
	1.5	400	10.06	71.912	1.0	600	36.21	11.709	
107				-					

199	shown in the Fig. 4C, the as-prepared $\mathrm{Fe_2O_3}$ samples are composed of fine and
200	uniform particles with the addition of 1.0g SLS. Fig. 4F is a higher magnification of
201	Fig. 4C, the synthesized Fe_2O_3 nanoparticles showed smallest grain size (ca. 20 nm
202	in diameter) and abundant porous nanostructure. Such structure exhibits a
203	high-developed surface area. Interestingly, the grain size is raised to 30 nm when
204	the quality of SLS increased to 1.5g, as shown in Fig. 4D. Meanwhile, it can be
205	clearly observed that severe agglomeration has occurred between particles, which
206	indicates that an excessive increase in the addition amount of SLS is detrimental to
207	the preparation of Fe_2O_3 . The morphology of the Fe_2O_3 sample added 1.0g SLS to
208	the reaction system without ultrasound was also investigated (Fig. 4E), The results
209	suggest that the growth of Fe_2O_3 is nearly uncontrolled, and the particle size of
210	Fe_2O_3 is even larger than 500 nm. The calcining temperature affects the final
211	quality and performance of the powders, so it is essential to discuss and research
212	the influence of the temperature on the preparation of nanomaterials. The typical
213	SEM image of Fe ₂ O ₃ annealed at 300°C is displayed in Fig. 5A. The heavily
214	agglomerated particles and XRD patterns show that the as-prepared precursor is not
215	successfully transformed to Fe ₂ O ₃ crystal under the lower calcination temperature.
216	It can be observed that the particle size show an increasing trend with increase in
217	temperature, and change from smaller than 30 nm at 400 $^\circ\!\mathrm{C}$ (Fig. 4C) to about 60
218	nm at 500 $^\circ\!\!\!\mathrm{C}$ (Fig. 5B). The results showed that the surfactant and the calcining
219	temperature have great influence on the particle size of Fe ₂ O ₃ .
220	

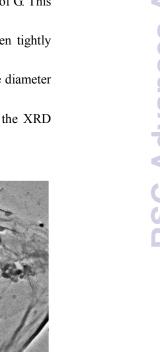

222

Fig. 5 SEM images of Fe_2O_3 samples with the addition of SLS is 1.0 g calcined at 300 °C (A), 500 °C (B).

225 Nitrogen isotherm adsorption-desorption experiment was carried out to examine 226 characteristics of the specific surface areas of the as- prepared Fe₂O₃ under different conditions, 227 the results are shown in Tab.1. Without the addition of SLS, the Fe₂O₃ nanoparticles show small specific surface area of 8.208 $m^2 \cdot g^{-1}$. After that, the specific surface areas of the Fe₂O₃ is 228 229 consistently increasing with the added amount of SLS, and an maximum specific surface areas $(81.319\text{m}^2 \cdot \text{g}^{-1})$ was obtained when the SLS is added to 1.0g. The Fe₂O₃ calcined at 400°C 230 231 display highest specific surface areas than those of 300°C, 500°C and 600°C. By comparing the 232 analysis results of XRD and SEM, We can find that the specific surface areas increases with the 233 decreasing of particle diameter because of the surface effect.

234 According to the SEM, XRD and BET results mentioned above, the impacts of SLS, 235 ultrasonic and calcining temperature on the formation of Fe₂O₃ can be described as follows: 236 First, from the FTIR spectrograms it is observed that sodium lignosulphonate contains a large amount of carboxylic (3437cm⁻¹) and sulfonic (1044cm⁻¹ and 621cm⁻¹) groups.^{36,37} After adding 237 238 the surfactant SLS to ferric chloride solution, SLS produces the negatively-charged sulfonic and carboxylic groups that could form a covalent bond with Fe^{3+} by electrostatic interactions.³⁸ The 239 appropriate SLS concentration leads to the lower Fe³⁺ concentration, which will decrease the 240 241 nucleation rate of FeOOH. Meanwhile, these negatively charged groups can be absorbed on the

242	crystal nucleus surface under low nucleation rate. These behaviors will help inhibit the crystal
243	nucleus growth and agglomeration. However, when the excessive addition of SLS, these
244	negatively-charged groups might aggregate with other positively-charged groups by
245	electrostatic interactions, and lose its function to suppress the crystal nucleus growth and
246	agglomeration. On the other hand, higher ultrasonic irradiation can generate more nucleation
247	which leads to smaller grain size and more dispersed particles. ³⁹ The influence of temperature,
248	we can speculate that the decomposition of FeOOH gradually increased with the increase in
249	calcination temperature, and the high decomposition rate will speed up the crystal growth.
250	Finally, the Fe ₂ O ₃ grain size also continuously increased with the rapid crystal growth rate.
251	TEM images of G and G-Fe ₂ O ₃ shown in Fig. 6 provide strong evidence that Fe ₂ O ₃ has been
252	immobilized on the surface of G by a bridge constituted of chitosan (Black spots or gray dots in
253	Fig.6B). It can be seen from Fig. 6A that the G displays typical semitransparent flakelike and
254	some crumpled shapes, which is attributed to the thin thickness and large surface area of G. This
255	is an advantage for electron transfer on the surface of the electrode. Fe $_2O_3$ has been tightly
256	stuck to the wrinkled G surface using the chitosan, As shown in Fig. 6B. The average diameter
257	of Fe ₂ O ₃ was estimated to be about 20nm, which is roughly correspondence with the XRD
258	and SEM analysis results.

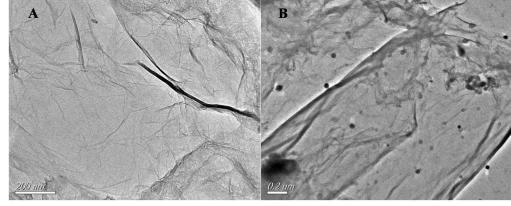
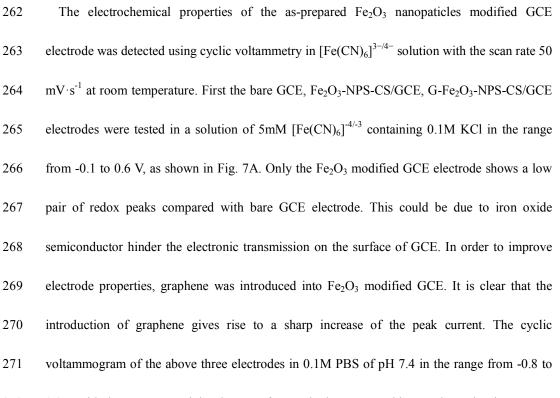
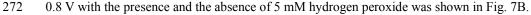




Fig. 6 TEM images of G (A) and G-Fe₂O₃-NPS -CS (B)

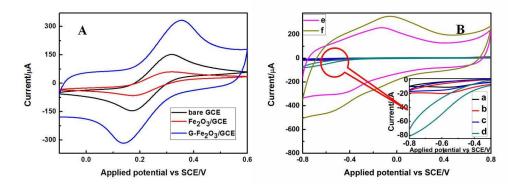
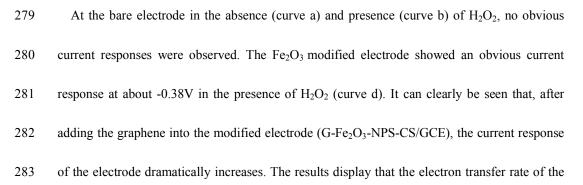
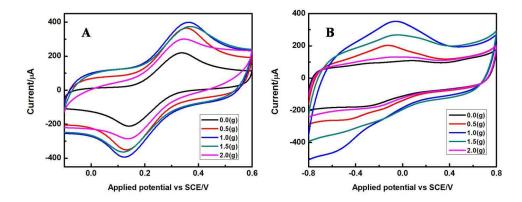




Fig. 7 (A) CVs of the bare GCE, Fe_2O_3 -NPS -CS/GCE and G-Fe_2O_3-NPS -CS/GCE in 5mM [Fe(CN)₆]^{3-/4-} solution (1:1, molar ratio) with 0.1 M KCl. (B) CVs of bare GCE (a and b), Fe_2O_3-NPS -CS/GCE (c and d) and G-Fe_2O_3-NPS -CS/GCE (e and f) in the absence (a, c and e) and presence (b, d and f) of 5mM H₂O₂ in 0.1M PBS. Inset: Local amplification of the selected area.

289

290

Fig.8 CVs of G-Fe₂O₃-NPS-CS/GCE in 5mM $[Fe(CN)6]^{3-/4-}$ solution (1:1, molar ratio) with 0.1 M KCl (A) and in 0.1M PBS (pH=7.4) containing 5mM H₂O₂ (B), the Fe₂O₃-NPS used in this experiment were calcined at 400°C, and with the addition of 0g, 0.5g, 1.0g, 1.5g, and 2.0g SLS.

296 The electrochemical properties of the as-prepared Fe_2O_3 nanoparticles with different addition 297 amount of SLS calcined under 400°C are shown in Fig. 8. Fig. 8A depicts the cyclic voltammogram of these modified electrodes in 5mM [Fe(CN)₆]^{-4/-3} containing 0.1M KCl, it is 298 299 found that all electrodes exhibited a pair of obvious redox peaks, and the current response 300 gradually increased with the addition of SLS. The value of redox peak current reached the 301 maximum at the addition of 1.0g SLS. However, the redox peak current was accompanied by a 302 dramatical decrease with a further increase of SLS. Fig 8B shows the CVs of the Fe₂O₃ 303 modified electrode in 0.1M PBS (pH 7.4) toward the reduction of 5mM H₂O₂. A similar 304 phenomenon in which the current response increased with the addition of SLS was observed for 305 these electrodes. After added 1.0g, the sensitivity of the sensor to hydrogen peroxide started to

306 decline gradually with the continuous addition of SLS. Therefore, we can come to the

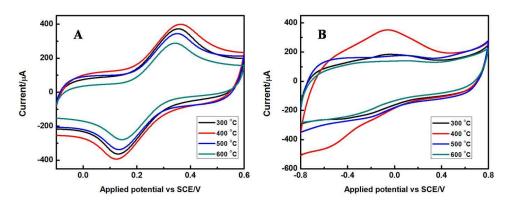
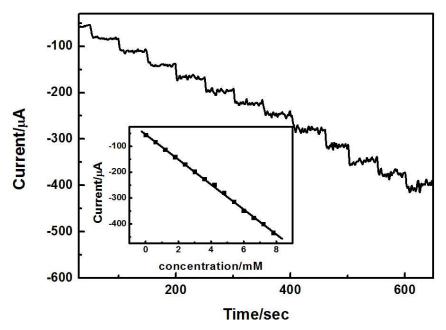


Fig. 9 CVs of G-Fe₂O₃-NPS -CS/GCE in 5mM $[Fe(CN)_6]^{3-/4-}$ solution (1:1, molar ratio) with 0.1 M KCl (A) and in 0.1M PBS (pH=7.4) with 5 mM H₂O₂ (B), the Fe₂O₃-NPS used in this experiment were doped with 1.0 g SLS, and caicined at 300 °C, 400 °C, 500 °C and 600 °C.

312313


308

309

310311

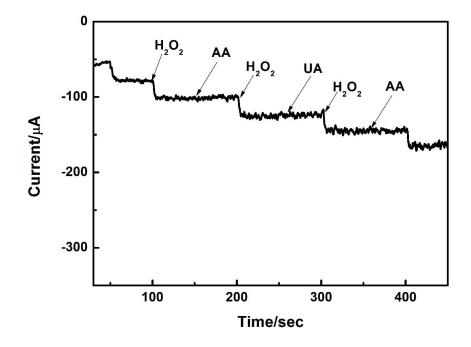
314 Fig. 9 shows the cyclic voltammograms of different G/Fe₂O₃-NPS/CS/CPEs in which the 315 Fe₂O₃-NPS calcined at various temperatures. The electron transfer rate between the G-Fe₂O₃ composite film and electrode surface was studied in 5mM $[Fe(CN)_6]^{-4/-3}$ containing 0.1M KCl, 316 317 as shown in Fig. 9A. When the Fe_2O_3 was calcined at 400°C, the electron transfer rate of the 318 G/Fe₂O₃-NPS/CS/CPE is faster than that of the others. Electrochemical properties of the 319 as-prepared modified electrodes are further detected in the presence of 5mM H₂O₂ in 0.1M PBS 320 (pH=7.4). It can be seen from Fig. 9B that the current response of the G/Fe₂O₃-NPS/CS/CPE 321 modified electrode (Fe₂O₃ calcined at 400 $^{\circ}$ C) at the -0.38v was improved 10%, 20% and 30% 322 respectively, compared with other three electrodes (Fe₂O₃ calcined at 300 $^{\circ}$ C, 500 $^{\circ}$ C and 600 $^{\circ}$ C). 323 Apparently, The above presented results indicated that calcination temperature is an important 324 influencing factor during the preparation process of Fe₂O₃. Combining with the analyses of 325 XRD, SEM and CVs, it can be found that the sensitivity of the H_2O_2 sensor increases with 326 decreasing of Fe_2O_3 nanoparticle size. We speculate that this may be due to the intense surface

- 327 force field, lack of particle coordination and elevated defects of the small particles with larger
- 328 specific surface area, which are beneficial to the absorbance of H_2O_2 in solution .

Fig. 10.Amperometric response of sensor to H₂O₂ concentration in 0.1M pH=7.4 PBS at -0.38 V. Inset: linear plot

333 Finally, the sensitivity of G-Fe₂O₃-CS/GCE-1-400 is estimated by chronoamperometry 334 measuring the current response with the gradually addition of H₂O₂ to 0.1M BPS of pH 7.4 at fixed potential of -0.38 V. As shown in the Fig. 10 the sensor showed a fast amperometric 335 336 response time less than 2s, which is greatly shortened compared to the previous literature reported for other H₂O₂ sensors.^{13,40,41} Meanwhile, with the increasing of H₂O₂ concentration, 337 338 the amperometric response of the G-Fe₂O₃-CS/GCE-1-400 electrode increased linearly (Tab. 2). 339 The linear regression equation was expressed as: $I_p(A) = -53.02 - 48.43$ [H₂O₂](mM) in the 340 wide calibration range from 0.5 to 7800μ M with a correlation coefficient of 0.999. A low 341 detection limit of $0.5\mu M$ is estimated at the signal to noise of 3. The sensitivity of the G-Fe₂O₃-CS/GCE-1-400 electrode is calculated to be 385.59 (μ A mM⁻¹ cm⁻²) by the slope of 342

343	the linear regression curve. The as-prepared electrode exhibits high sensitivity and a low
344	detection limit compared to other modified electrodes, such as the Ag-nanobrous
345	membrane/GCE ⁶ , heme protein-SWCNT-CTAB electrodes ⁴² and CTAB-SAMN/CPE ⁴³ . These
346	results demonstrate that H_2O_2 could be easily detected used as-prepared modified electrode.
347	Anti-interference test, being the crucial influence factor, can never be neglected in the
348	determination of any objects by electrochemical method. Therefore, the influence of common
349	interfering substances such as ascorbic (AA) and uric acid (UA) was studied by amperometric
350	method. The results is shown in the Fig.11, the modified electrode show a weak current
351	response to the addition of 5mM AA and UA with the 0.1M BPS of pH 7.4 at fixed potential of
352	-0.38 V. This illustrates the proposed sensor well prevented the influence of interfering
353	substances. Stability and repeatability studies were conducted to further detection the
354	electrochemical performance of G-Fe ₂ O ₃ -CS/GCE-1-400 senor. The stability is evaluated by
355	testing the average current response of the modified electrode after prepared 1 day, 1 week, 1
356	month and 2 month and the biosensor retained over 90% response of its initial sensitivity to the
357	reduction of H ₂ O ₂ , demonstrating its good long-term stability. Cyclic Voltammetry experiments
358	were repeatedly performed for 15 times with the G-Fe ₂ O ₃ -CS/GCE-1-400 sensor in the
359	presence of H_2O_2 . The relative standard deviation was approximately 1.89%, which indicated
360	that the reproducibility of as-prepared sensor was excellent.


361	
202	

Tab. 2 Comparison of the linear range (LR), sensitivity, detection limit (DL) and response

362 time (RT) of hydrogen peroxide sensors

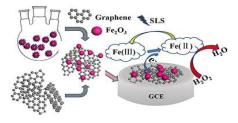
Electrode materials	LR (µM)	Sensitivity	$DL(\mu M)$	RT	Reference
Ag-nanobrous membrane/GCE	10-16500	$157 \mu A m M^{-1} cm^{-2}$	4		6
Au/graphene/HRP/CS/GCE	5.0-5130		1.7	< 38	13
AgNPs/Ox-pTTBA/MWCNT	10-260		0.24	< 5S	40
Hb/HMS-modified GCEs	0.4-6.0		1.86×10-3	< 5S	41
α-Fe ₂ O ₃ NR arrays	0.2–5000	135.36 µA mM ⁻¹ cm ⁻²	0.1		42
CTAB-SAMN/CPE	10-1500	$58 \mu A m M^{-1} cm^{-2}$	2.78		43
G-Fe ₂ O ₃ -NPS-CS/GCE	0.5-7800	$385.59 \ \mu A \ mM^{-1} \ cm^{-2}$	0.5	< 2S	This work

363

364

Fig. 11.Amperometric response of sensor to 5mM H_2O_2 , AA and UA in 0.1M pH=7.4 PBS at -0.38 V.

367


368 Conclusion

369 In summary, a convenient, economic method for preparing a Fe₂O₃ nanoparticles using SLS 370 as a surfactant by liquid phase-based ultrasonic-assisted method was proposed in this paper. The 371 as-prepared Fe₂O₃ nanoparticles show a small and homogeneous size distribution with a high 372 specific surface area when the addition amount of SLS in the synthetic system was 1g, and the 373 α-FeOOH precursor was calcined at 400°C. The G-Fe₂O₃-CS/GCE-1-400 modified electrode 374 showed highest electrocatalytic activity toward the detection of H₂O₂. Chronoamperometry 375 measuring revealed that the prepared senor exhibits high sensitivity, low detection limit, wide 376 linear range, fast response time, good stability and anti-interference ability. Hence, the 377 as-prepared G-Fe₂O₃-CS/GCE modified electrode provides a effective way for the preparation 378 of the high-performance enzyme-free sensor.

379	
380	Acknowledgment
381	We gratefully acknowledge the National Natural Science Foundation of China (21375050,
382	61171015), the Open Project Program of State Key Laboratory of Analytical Chemistry for
383	Life Science (Nanjing University) (KLACLS1010), the Program of Department of Education of
384	Jiangsu Province (12KJD610003), and the Natural Science Foundation of Jiangsu Province
385	(BK20131249) for financial support of this research.
386	References
387 388	[1] B. H. Kim, M J. Hackett, J. Park, and T Hyeon, Chem. Mater., 2014, 26, 59-71.
389 390	[2] X. S. Liu, N. Huang, H. Li, Q. Jin, and J. Ji, Langmuir, 2013, 29, 9138-9148.
391392393	[3 J. S. Son, J. S. Lee, E. V. Shevchenko, and D. V. Talapin, J. Phys. Chem. Lett., 2013, 4, 1918-1923.
394 395	[4] Y. D. Yin, and D. Talapin, Chem. Soc. Rev., 2013, 42, 2484-2487.
396 397	[5] N. Iqbal, A. Afzal, and A. Mujahid, RSC Adv., 2014, 4, 43121-43130.
398399400	[6] D. W. Li, L. Luo, Z. Y, Pang, X. D. Chen, Y. B. Cai and Q. F. Wei, RSC Adv., 2014, 4, 3857-3863.
401 402 403	[7] A. Sarkar, A. K. Singh, G. G. Khan, D. Sarkar, and K. Mandal, RSC Adv., 2014, 4, 55629-55634.
403 404 405 406	[8] J. Lyytinen, M. Berdova, P. Hirvonen, X. W. Liu, S. Franssila, Q. Zhou, and J. Koskinen, RSC Adv., 2014, 4, 37320-37328.
407 408 409	[9] X. H. Wang, Y. K. Zhang, C. Hao, F. Feng, H. B. Yin, and N. C. Si, Ind. Eng. Chem. Res., 2014, 53, 6585–6592.
410 411 412	[10] H. Y. Zhao, W. Zheng, Z. X. Meng, H. M. Zhou, X. X. Xu, Z. Li, Y. F. Zheng, Biosens. Bioelectron., 2009, 24, 2352–2357.
412 413 414 415	[11] Z. L. Liu, K. X. Wang, L. Xiao, X. J. Chen, X. D. Ren, J. T. Lu, and L. Zhuang, RSC Adv., 2014, 4, 37701-37704.
415 416 417	[12] S. H. Chen, R. Yuan, Y. Q. Chai, L. G. Zhang, N. Wang, X. L. Li, Biosens. Bioelectron., 2007, 22 , 1268-1274.

418	
419	[13] K. F. Zhou, Y. H. Zhu, X. L. Yang, J. Luo, C. Z. Li, S. R. Luan, Electrochim. Acta, 2010,
420	55, 3055-3060.
421	
422	[14] K. J. Huang, D. J. Niu, X. Liu, Z. W. Wu, Y. Fan, Y. F. Chang, Y. Y. Wu, Electrochim. Acta,
423	2011, 56, 2947-2953.
424	
425	[15] M. G. Li, S. D. Xu, M. Tang, L. Liu, F. Gao, Y. L. Wang, Electrochim. Acta, 2011,
426	56,1144-1149.
427	
428	[16] Z. F. Wang, F. Liao, T. T. Guo, S. W. Yang, C. M. Zeng, J. Electroanal. Chem., 2012, 664,
429	135-138.
430	
431	[17] T. S. Liu, T. F. Kang, L. P. Lu, Y. Zhang, S. Y. Cheng, J. Electroanal. Chem., 2009, 632,
432	197-200.
433	
434	[18] S. H. Chen, R. Yuan, Y. Q Chai, L. Y. Zhang, N. Wang, X. L. Li, Biosens. Bioelectron.,
435	2007, 22, 1268-1274.
436	
437	[19] M. Shamsipura, M. Asgari, M. G. Maragheh, A. A. Moosavi-Movahedi,
438	Bioelectrochemistry, 2012, 83, 31-37.
439	
440	[20] J. Hong, W. Y. Yang, Y. X. Zhao, B. L. Xiao, Y. F. Gao, T. Yang, H. Ghourchian, Z.
441	Moosavi-Movahedid, N. Sheibani, J. G. Li, A. A. Moosavi-Movahedi, Electrochim. Acta, 2013,
442	89, 317-325.
443	
444	[21] L. Aghebati-maleki, B. Salehi, R. Behfar, H. Saeidmanesh, F. Ahmadian, M.
445	Sarebanhassanabadi, and M. Negahdary, Int. J. Electrochem. Sci., 2014, 9, 257 - 271.
446	
447	[22] M. Shamsipur, M. Asgari, M. F. Mousavi, R. Davarkhah, Electroanaly., 2012, 24, 357-367.
448	
449	[23] A. T. Ezhil Vilian, and S. M. Chen, RSC Adv., 2014, 4, 55867-55876.
450	
451	[24] B. B. Jiang, X. W. Wei, F. H. Wu, K. L. Wu, L. Chen, G. Z. Yuan, C. Dong, Y. Ye,
452	Microchim. Acta, 2014, 181, 1463-1470.
453	
454	[25] L. M. Li, Z. F. Du, S. Liu, Q. Y. Hao, Y. G. Wang, Q. H. Li, T. H. Wang, Talanta, 2010, 82,
455	1637-1641.
456	
457	[26] A. P. Liu, W. J. Dong, E. J. Liu, W. H. Tang, J. Q. Zhu, and Ji. C. Han, Electrochim. Acta,
458	2010, 55, 1971-1977.
459	
460	[27] Z. Y. Miao, D. Zhang, and Q. Chen, Materials, 2014, 7, 2945-2955.
461	
462	[28] H. Y. Sun, H. Q. Yuan, Z. M. Liu, B. X. Han, and X. R. Zhang, Adv. Mater., 2005, 17,
463	2993-2997.
464	

465	[29] M. Y. Zhu, Y. Wang, D. H. Meng, X. Z. Qin, and G. W. Diao, J. Phys. Chem. C, 2012, 116,
466	16276-16285.
467 468	[30] S. W. Cao, and Y. J. Zhu, J. Phys. Chem. C2008,112,6253-6257.
469	[50] S. W. Cao, and T. J. Zhu, J. Phys. Chem. C2008,112,0255-0257.
470	[31] Q. Zhang, X. w. Lu, L. Y. Chen, Y. X. Shi, T. Xu, M. L. Liu, Mater. Lett., 2013, 106,
471	447-451.
472	
473	[32] X. M. Liu, S. Y. Fu, H. M. Xiao, C. J. Huang, J. Solid State Chem., 2005, 178,
474	2798-2803.
475	
476	[33] S. Bai, X. P. Shen, X. Zhong, Y. Liu, G. X. Zhu, X. Xu, K. M. Chen, Carbon, 2012, 50,
477	2337-2346.
478	
479	[34] X. H. Liao, J. J. Zhu, W. Zhong, H. Y. Chen, Mater. Lett., 2001, 50, 341-346.
480	
481	[35] B. Zhao, Y. Wang, H. Guo, J. Wang, Y. He, Z. Jiao, M. Wu, Mater. SciPoland, 2007, 25,
482	1143-1148.
483	
484	[36] G. Yu, B. Li, H. S. Wang, C. Liu, and X. D. Mu, BioResources, 2013, 8, 1055-1063.
485	
486	[37] D. Ji, Z. Y. Luo, M. He, Y. J. Shi, X. L. Gu, Cement Concrete Res., 2012, 42, 1199-1206.
487	[20] T. T. Mice, V. D. Cue, O. I. Den, I. Nenemert Bee, 2012, 15, 1725, 1727
488 489	[38] T. T. Miao, Y. R. Guo, Q. J. Pan, J. Nanopart Res., 2013, 15, 1725-1737.
490	[39] S. Allahyari, M. Haghighi, A. Ebadi, S. Hosseinzadeh, Ultrason. Sonochem., 2014, 21,
491	663-673.
492	
493	[40] A. Abdelwahab, Y-B. Shim, Sensor. Actuat. B-Chem., 2014, 201,51-58.
494	
495	[41] Z. H. Dai, S. Q. Liu, H. X. Ju, H. Y. Chen, Biosens. Bioelectron., 2004, 19, 861-867.
496	
497	[42] X. J. Liu, J. F Liu, Z. Chang, L. Luo, X. D. Lei, X. M. Sun, RSC Adv., 2013, 3, 8489-8494.
498	
499	[43] M. Magroa, D. Baratella, N. Pianca, A. Toninello, S. Grancarab, R. Zboril, F. Vianello,
500	Sensor. Actuat. B-Chem., 2013, 176, 315-322.

The as-prepared G-Fe₂O₃-NPS-CS/GCE senor using the synthesized Fe_2O_3 under the ultrasonic-assisted method displayed an excellent electrochemical activity for hydrogen peroxide.