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Tissue topology, in particular proliferating epithelium topology, is remarkably similar between various species. Understanding
the mechanisms that result in the observed topologies is needed for a better insight into the processes governing tissue formation.
We present a two-dimensional single-cell based model for cell divisions and tissue growth. The model accounts for cell mechanics
and allows cell migrations. Cells do not have pre-existing shapes or topologies. Shape changes and local rearrangements occur
naturally as a response to the evolving cellular environment and cell-cell interactions. We show that the commonly observed
tissue topologies arise spontaneously from this model. We consider different cellular rearrangements that accompany tissue
growth and study their effects on tissue topology.

1 Introduction

During the development of multicellular organisms cells are
packed into tissues with various functionality. Having a pre-
cise topology is essential for proper tissue development and
functioning. One example is the packing of cells in eye lens1.
Fibre cells in eye lens are tightly packed into hexagonal struc-
tures which reduce light scattering. Throughout the tissue de-
velopment, cell divisions, cell-cell interactions and rearrange-
ments alter tissue topology. Understanding the mechanisms
that govern cellular packing in tissues is one of the challenges
in developmental biology.

Simple epithelium is commonly used to study cell pack-
ing geometries. Epithelium is essentially a monolayer of cells
that tightly adhere to each other. Based on the observations on
cucumber epithelium, Lewis2 characterized epithelium topol-
ogy as mainly hexagonal, with asymmetric distribution of
pentagons and heptagons. This topology is often conserved
among species3, which suggests a unified mechanism behind
tissue formation. Gibson et al.3 showed that in the absence of
large-scale rearrangements a topological model with stochas-
tic cell divisions is sufficient to obtain epithelium topology.
Topological models have been used to study effects of cell di-
visions and division plane orientation on tissue topology3,4.
Cellular geometry and mechanics, which are not considered in
topological models, are known to play role in the packing of
cells5,6 and mechanical properties of tissues60. Alternations
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in cell-cell interactions lead to cellular rearrangements that, in
some cases, take place during tissue formation7,8. To address
these issues, various mechanistic models of tissue at different
scales have been proposed. Continuum models describe tissue
growth and remodelling, and the macroscopic level based on
local intercellular interaction functions62,63. Mechanical ver-
tex models9–11 treated tissues as networks of cells. In these
models, cells are considered to be polygons in the junctional
network. Vertex models have been used to explore the impact
of cell mechanics, rearrangements and growth rate on prolif-
erating epithelium topology9,10,12,13. They, however, do not
take into account cell migrations.

Collective cell migrations are common in various biological
processes14,15. Along with cell shape changes, they are an es-
sential part of embryonic morphogenesis16,17,58,59. Directed
cell migrations involve coordinated cycles of protrusion, con-
traction and adhesion that are regulated by the actomyosin cor-
tex18,57. As in the case of cell division, migration also de-
pends on the mechanics of the cell20 and, in fact, cell motil-
ity can be achieved by cortical contraction alone21,22. More-
over, comparison between cell morphogenesis and the asso-
ciated mechanical properties for cell divisions and migrations
suggests common regulatory mechanisms that govern cortex
remodelling in both cases23.

A more realistic way to model cell shapes and their me-
chanical properties requires treatment of individual cells. In-
dividually modelled cells do not carry pre-existing shapes and
topologies. Cellular Potts models regard each cell as a col-
lection of spins with energy functional that characterizes cell
mechanics and intercellular interaction. An extended Potts
model suggested in a seminal work by Graner and Glazier48,49

considered cell’s elasticity and cell-cell interactions to predict
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cell sorting. Cellular Potts models have since been utilized
to explain cell packing topologies6,57, collective cell motil-
ity53, and tumor growth61. Dirichlet models50–52 reproduce
the polygonal shapes of cells by considering the distribution
of their centres’ of mass in space. Drasdo et al. mod-
elled cells as colloidal objects capable of growth, division
and migration. The model was used to analyse morphologies
of monolayers, multi-cellular spheroids and tissue layers un-
der different growth conditions24,25, but it did not consider
the influence of cell morphologies on tissue formation. Pals-
son and Othmer26 presented a model, where cells are treated
as deformable viscoelastic ellipsoids. Their model predicts
cellular morphologies due to cell-cell signalling and collec-
tive migration. The viscoelastic model proposed by Rejniak
et al.27 describes cells as an incompressible fluid immersed
within elastic boundaries. Growth of the trophoblast bilayer,
tumor development and the development of epithelial acini
were among the applications of the model27–29. Another sub-
cellular element model developed by Newman30 present a cell
as a cloud of mass points that bind to each other. Newman et
al. focused on the dynamics of multicellular system31–33.

In this work, we present a single-cell based mechanical
model which accounts for cell’s cortex contractility and cell-
cell adhesion. Each cell is assigned internal pressure, which
controls cell growth. The choice of the growth mechanism is
inspired by the observations that mitotic cells modulate inter-
nal hydrostatic pressure before mitosis34. Changes in cell
shapes and their local rearrangements are governed by the
interplay between cortex contractility, adhesion and internal
pressure governs. Individual treatment of cells allows to al-
ter physical properties and growth mechanisms of cells on a
single cell level. Additionally, modelling of individual cells
provides a way to control the extent of local rearrangements.
We show that our model can reproduce commonly observed
tissue topologies. We also consider the extent of cellular rear-
rangements and study their effects on tissue topology.

2 Model and Methods

In this section, we describe the model and provide the com-
putational details used in the simulations. A model for an iso-
lated cell is developed first. That cell is then embedded in a
tissue where it interacts with its neighboring cells. These inter-
actions are modelled through repulsion, adhesion, and viscous
damping. Importantly, the cells are able to grow, divide and
migrate.

2.1 Model

2.1.1 Isolated Cell. A single cell is modelled as a closed
loop of mass points connected through springs. Our starting

Fig. 1 Mass-spring model for a cell. (A) Forces acting on mass
point i in an isolated cell are the spring tension forces (σi and σi+1)
and the pressure forces ((Pl)i and (Pl)i+1). A cell grows by
gradually increasing its pressure force. (B) Cell divides through a
random division line (dashed blue line). During the division, new
mass points (red) are added along the division line.

point is the model originally proposed by Åström and Kart-
tunen in their studies of cell aggregation in a confined space35.
We use this model as the basis and extend it to include cell di-
vision and migration.

Each mass point experiences tension forces from the two
neighbor springs as shown in Fig. 1A. These tension forces
define the cell actomyosin cortex’s contractility that favours a
rounded structure for an isolated cell34,36. Each cell is also
assigned an internal pressure P. The pressure force is opposed
by the spring tension forces from the two nearest neighbors.
With the above, the net force acting on mass point i belonging
to an isolated cell is given as

~Fcell
i = σi~ηi−σi+1~ηi+1 +

Pl
2
(~νi +~νi+1), (1)

where ~ηi and ~νi are the tangential and normal vectors, σi is the
tension force and Pl represents pressure force, Fig. 1 (A). For
a linear elastic spring, tension is given as σi = Kspr

i (l− l0),
where l0 and l are give equilibrium and instantaneous lengths
of springs, respectively. For simplicity, we assume that all
cells are identical and homogeneous, i.e., all springs have the
same spring constant Kspr

i ≡ Kspr.

2.1.2 Cell in tissue. Next, we place the cell as described
above in a tissue, i.e., we define its interactions with other
cells. Inside the tissue each mass point is subject to additional
forces that arise due to cell-cell interactions. We model them
using three terms: 1) repulsion, 2) adhesion, and 3) viscous
damping.

1. Repulsion: In order to prevent cells from penetrating into
each other, we use spring-like repulsion forces

~Frep
i j =

{
−Krep(Rrep

c −Ri j)R̂i j if Ri j < Rrep
c

0 otherwise.
(2)
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Two mass points are considered to be in contact if they are
within a distance Rrep

c from each other.
The repulsion force should be strong enough to counteract

the pressure force Pl pushing the mass points of a cell into the
interior of one (or more) of its neigboring cells. In addition,
cell rigidity needs to be taken into account for estimating the
repulsion force. Rigidity may vary at the different stages of
the cell cycle37, and since the displacement of the mass points
depends on the strength of the spring forces, more rigid cells
require stronger repulsion forces. Taking the two above fac-
tors into account, we can estimate the numerical value for the
repulsion force coefficient to be

Krep ∼ KsprPl. (3)

2. Adhesion: Tissue integrity is maintained by adhesion be-
tween the neighbor cells. Cells adhere to each other through
adhesive molecules, often located in specific areas known as
cell junctions38. In our model, each mass point acts as a poten-
tial site for adhesive interaction. When two mass points i and
j that belong to different cells are within the interaction dis-
tance Radh

c , they attract each other through linear spring-like
forces

~Fadh
i j =

{
Kadh

i j (Radh
c −Ri j)R̂i j if Ri j < Radh

c
0 otherwise.

(4)

Cells can bind through several binding mechanisms with dif-
ferent associated binding free energies39. A realistic treatment
of cell-cell adhesion should consider the differences between
the adhesion sites, and Kadh

i j should be different for different
mass point pairs. Here we assume that all adhesive sites are
identical with the adhesion spring constant Kadh

i j ≡ Kadh.
Adhesion favours cell-cell contacts and tends to flatten the

neighboring cell surfaces, whereas cell cortex contractility
favours a rounded cell structure36. We can estimate the re-
lation between the adhesion and contractility spring constants
by using the preferred cell shapes inside a tissue. Majority of
cells in a proliferating epithelium assume hexagonal shapes3.
The change of the shape from circular to hexagonal is accom-
panied by work done against the contractile springs. In the
absence of internal pressure forces, this work is compensated
by the energy stored in the adhesive springs W spr ∼W adh. To
estimate the work required to deform the cell (W spr), we as-
sume that the cell has the shape of a regular hexagon with an
incircle of radius r. The total change in the perimeter can then
be estimated as ∆L = Lhex − Lcir = 12/

√
3r− 2πr. The to-

tal deformation is the result of the deformation of N springs.
Hence, the deformation of each spring is equal to ∆x = ∆L/N.
The total energy associated with the deformation of springs
can be estimated as W spr ∼NKspr ·(∆L/N)2∼ 10−1Ksprr2/N.
For a hexagonal shape, all mass points are in contact with the
mass points of neighbor cells and participate in cell-cell adhe-
sion with the total energy of W adh ∼ NKadh · (Radh

c −Rrep
c )2.

Thus

Kadh ∼ 10−1Ksprr2

N2 · (Radh
c −Rrep

c )2 . (5)

Although this analytical estimate does not include the effects
of the internal pressure force, it predicts the order of magni-
tude for Kadh. The final calibration of Kadh is then done during
the simulation.

3. Viscous Damping: Cells can undergo local rearrange-
ments as well as large scale migrations during tissue forma-
tion. The extent of these rearrangements depends on the inter-
actions of cells with their exteriors. We can control the amount
of cell rearrangements through a viscous damping force that
acts between two neighbor cells. Let i and j be two mass
points that belong to two different cells in contact. When cells
move along each other, the mass point i slides along the mass
point j with the relative velocity ~vi j =~vi−~v j. If ~vi j

τ is the tan-
gential component of the relative velocity, then damping force
acting on mass point i can be given as

~F f ric
i j =−γi~vi j

τ (6)

Furthermore, since we do not consider the cellular environ-
ment explicitly, the effect of motion on the viscous cytoplasm
is mimicked through an additional viscous damping force with
the coefficient c that acts on all mass points.

Fig. 2 Snapshots for a simulation at three different times. This
growth was started from a single cell at t = 0. As time progresses,
tissue grows through growth and divisions and the tissue topology
changes.

2.1.3 Cell Growth and Division. Animal cells modulate
their internal hydrostatic pressures before mitosis34 and hence
we model cell growth by increasing their internal pressure P in
a gradual manner. Once the cell area reaches a threshold value
Adiv, the cell divides into two daughter cells. Since the model
is scale invariant, we can choose the numerical value for Adiv

to be unity, without any loss of generality. This sets the length
scale in our model. During the process of division, new mass
points are added along the division line such that the resulting
two cells form closed loops and have the same amount of mass
points as the initial cell (Fig. 1). To ensure that daughter cells
grow similarly to the mother cell, both cells (after a division)
are assigned a pressure identical to parent cell. In this work,
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we considered division lines which pass through the cells’ cen-
tres of masses and have random orientation (Fig.1 (B)). Asym-
metric cell divisions resulting in daughter cells with different
sizes40 can be incorporated into the model in a straightforward
manner.

2.1.4 Cell Migration. Collective cell migrations during
embryonic development are an essential part of morphogene-
sis16,17. As a cell migrates, the leading edge extends towards
the direction of motion, while the opposite edge retracts41.
We can model migration by adding a ‘migration force’ to any
mass point to mimic forces causing the migration. The migra-
tion force may vary freely in space and time, and can be set
to model any scenario of interest. This force will modulate
the internal pressure force acting on the mass points. From
the algorithmic point of view one can assign mass point to be
‘leading edge’ or ‘rear edge’ by setting their internal pressure
to a higher or, correspondingly, lower value than that of the
mass points of neighbor cells. As a result, the leading edge
extends outwards in the direction of difference pressure force,
while the rear edge retracts. Consequently, cell moves gener-
ally in the direction of the motion of the leading edge.

2.2 Simulation Details

The system evolves according to the following set of equations
of motion,

M~̈ri = ~Fcell
i +∑

j

~Fadh
i j +∑

j

~Frep
i j +∑

j

~F f ric
i j − c~vi, (7)

where M and~ri are the mass and the position of the mass point
i, and c is the damping coefficient. The forces are given by
Eqs. 1, 4, 2 and 6. The first four terms characterise physical
properties of the cell and the cell-cell interactions. The cellular
environment is taken into account implicitly through viscous
damping with the damping coefficient c as described above.

We use the Verlet algorithm for numerical integration of
Eq. 7. The positions and the velocities at each time step are
obtained through

~ri(t +∆t) = 2~ri(t)−~ri(t−∆t)+
~Fi(t)
mi
·∆t2 (8)

~vi(t +∆t) =
~ri(t +∆t)−~ri(t)

∆t
. (9)

2.2.1 Simulation Procedure. We start the simulation of
tissue growth from a single cell. Initially, the lone cell has a
circular shape. As the system evolves according to Eq. (7),
the cell changes its shape due to its interactions with the en-
vironment, see Fig. 2. At the beginning of the simulation, the
initial cell is assigned an initial pressure Pinit , such that the re-
sulting cell area is about the same as the threshold area Adiv.

Cell growth is achieved by increasing the internal pressure at a
constant rate. Currently, all cells have the same internal pres-
sure and the same pressure growth rate. Different pressures
and growth rates can be used, but for simplicity and to demon-
strate the model, we used same pressures and growth rates.
Every T div time steps we check areas for all cells and the ones
that have the area exceeding threshold value divide accord-
ing the the procedure described in Sec. 2.1.3. We discuss the
choice of T div in Sec. 2.2.2. Following the procedure above,
we grew tissues up to 1500 cells.

We used open boundary conditions to mimic tissue growth
in a natural environment. To study the properties of grow-
ing tissue, data was typically collected from the central part,
which we define as the disc with the radius R= 0.6Rmax, where
Rmax is the longest distance of any cell from the center of mass
of the system at the given time.

The results were averaged over four samples in which we
applied different initial configurations as follows: A single
cell, and clusters of five, ten and twenty cells. Initial con-
figurations of cell clusters were generated by grouping cells
together in tissue-like structure. Systems were equilibrated
prior the production simulations. We considered systems equi-
librated when there were no noticeable changes in cell shapes.
Results are reported in dimensionless units. Error bars corre-
spond to standard deviation.

Fig. 3 Two examples of cells in tissue at the end of two separate
simulations. Left: Snapshot of a simulated tissue. Right: Cells
shown as polygons through Voronoi tessallation. Different colours
indicate different polygon types. The different polygons arise
naturally due to cell-cell interactions as described in the text.
Pentagons, hexagons and heptagons are coloured as green, red and
blue, correspondingly.

2.2.2 Parametrization. Each cell in our model is con-
structed from N mass points. The numerical value of N should
be chosen such that it produces smooth cellular shapes with-
out giving up the computational efficiency. We tested a range
of values from N = 10 to N = 200. Importantly, the results
are robust with respect to variation of N as long as N is above
≈ 40. Using larger N does not change the results. The value
of N = 76 was chosen since it is well above 40 and still com-
putationally efficient; even value was chosen for algorithmic
reasons. Thus, N = 76 is not a ’magic number’. All mass
points have the same mass M. Numerical values for the mass
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should be large enough to prevent rapid oscillations of the
model springs. At the same time, mass should be small enough
such that M~̈ri � 1. Our simulations show that M = 0.1 with
the damping coefficient c = 1 satisfies both conditions.

Next, we set the threshold area for cell division to unity.
With the assumption of circular cell shapes, we can evaluate
the distance between the neighboring mass points to be ∼ 0.1.
The cutoff distance Rrep

c for the repulsion force was set to 0.1
as well. The cutoff distance for cell-cell adhesion Radh

c was set
to twice of the distance Rrep

c .
Division times for the individual cells are characterized by

the parameter T div. The choice of T div sets the time scale
in our model. Typical cell division time is of order of ∼ 1h,
while characteristic time for tissue development is∼ 10h34,42.
Thus, cell division time is roughly 10 times shorter than the
time scale of tissue morphogenesis. We pick T div such that
the characteristic time for tissue growth and formation in our
model is of the order of ∼ 1 in reduced units. This leads to
T div to be of the order of ∼ 10−1.

The initial pressure force Pinit l and cell cortex contractility
were chosen such that the resulting cell area was close to the
threshold area Adiv. Krep and Kadh were first estimated with
the help of Eqs. 3 and 5. We then calibrated these coefficients,
along with the pressure force growth rate ∆(Pl) and damp-
ing coefficient for cellular rearrangements γ , by methodically
varying these parameters and comparing the resulting tissue
topologies with experimental data. The list of computational
parameters and their numerical values in dimensionless units
are shown in Table 1.

Table 1 List of simulations parameters and their values in
dimensionless units

Parameter Notation Numerical Value
Mass points per cell N 76
Mass M 0.1
Damping of the system c 1
Equilibrium spring length l0 0.1
Cell cortex contractility Kspr 1400
Cell-cell adhesion coefficient Kadh 56
Damping of cellular rearrangements γ 20
Threshold area Adiv 1
Initial pressure force Pinit l 15
Pressure force growth rate ∆(Pl) 5 ·10−5

Repulsion cutoff distance Rrep
c 0.1

Adhesion cutoff distance Radh
c 0.2

Simulation time step ∆t 0.0001
Division checkpoints T div 0.2

To check the model’s sensitivity to parameter choices, Kspr,
∆(Pl) and T div were varied. We considered softer springs
with values as low as Kspr = 600, faster growth rates up to
∆(Pl) = 5 · 10−4 and division times down to T div = 0.1. We

then compared the resulting topologies obtained with the dif-
ferent sets of parameters and found that while at the transient
initial stages the topology is somewhat sensitive to the choice
of parameters, there are no significant differences within the
parameter ranges tested after the initial transient stage.

Next, we provide the relation between the parameters in our
model with the experimentally observed physical properties of
cells. The parameters in our model are in reduced units, and
to define the base for conversion to real units, we matched
the model cell mass, diameter and internal pressure force with
experimental values.

Typical average cell diameter is about 10µm. The diame-
ter of the cell is set to unity in reduced units. The unit length
has the real value of [l] = 10−5 m. Cells were chosen to have
a mass of an average human cell43, or 10−12 kg. Number
of mass points in cell is of order ∼ 100. Hence, the total
mass of the cell is ∼ 10. leading to the mass unit value of
[m] = 10−13 kg. To estimate the real value of the unit force, we
used the experimentally measured value for the pressure force
in the mitotic cell based on the work of Stewart et al.34. The
experimental pressure is of the order of ∼ 0.1 nN/µm2. The
reduced pressure force throughout all simulations is of the or-
der Pl∼ 10⇒P∼ 10/l∼ 100[F ]/[l] in two dimensions. Sim-
ilarly, the three dimensional pressure in reduced units has the
numerical value of P ∼ 100[F ]/[l]2. Substitution of the real
value for the unit length and comparison with the real mitotic
pressure leads to the unit of force of [F ] = 10−10 N. The unit of
time is [t] =

√
[m][l]/[F ]∼ 10−4 sec. To summarize: the con-

versions of base units are given as [m] = 10−13kg, [l] = 10−5 m
and [t] = 10−4 s. With these definitions, we can compare the
physical properties of our model cell with the experimentally
observed cell cortex contractility and cell-cell adhesion.

In their experiments with single mitotic cells, Stewart et
al.34 evaluated the Young’s modulus of mitotic HeLa cells
to be of the order of Y ∼ 1 nN/µm2. Y ∼ 103 [F ]/ [l] in di-
mensionless units. The three dimensional Young’s modulus is
related to the two dimensional as Y2D ∼ 4Y3D ∼ 103 [F ]/ [l].
Young’s modulus estimated for our model cells can be ex-
pressed through spring constant Kspr as Y = Ksprl/d, where
l is the spring length and d is the cortex thickness. We set
the cortex thickness to be 100 nm44, or 10−2 in reduced units.
The numerical value for Young’s modulus estimated with our
model will then be Y ∼ 104 [F ]/ [l], roughly 10 times higher
than the experimentally observed stiffness for the HeLa cell
cortex. This difference of an order of magnitude can be ex-
plained by the fact that our model is two dimensional whereas
the experimental data is for three dimensional cells. Quanti-
tatively more accurate estimates are expected from the three-
dimensional extension of the model (work in progress).

In nature, cell-cell adhesion is mediated by adhesion pro-
teins. Depending on the type of adhesion proteins, protein-
ligand binding can have varying binding free energies. The
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strength of adhesion depends both on the type of the binding
proteins and their distribution. Protein-ligand binding free en-
ergies vary from 5kBT 39,54 up to 35kBT 45, whereas the num-
ber of bonds per unit area has been estimated to be in the range
of 100−1000 bonds/µm2 24,45,55,56. Taking the average bind-
ing energy as 25kBT , we calculate the binding energy density
to be 2.5 ·10−18−2.5 ·10−17J/µm2. Let’s use 2.5 ·10−17J/µm2

for further calculations. Conversion to reduced units gives
2.5 [F ]/ [l]. For lower bond density this is an order of mag-
nitude smaller. Adhesion energy per single bond used in our
simulations was W adh ∼ Kadh · (Radh

c −Rrep
c )2 ∼ 0.56 [F ]/ [l].

The unit length has 10 bonds, and thus the binding energy
density in our model is 5.6 [F ]/ [l]. Thus, the above compari-
son shows that the adhesion energy used in simulations is very
similar to naturally occuring values. Finally, we compare the
time scale in our model with the time scale of tissue growth in
Drosophila wing imaginal disc. The time scale that character-
izes tissue growth in our model can be estimated as the simu-
lation time necessary to form a relatively stable configuration
of nearest neighbors. It takes roughly 25 division cycles, or 5
reduced time units, for a number of cell neighbors to stabilize.
In model units, the units for both damping and time are set to
one. Drosophila wing imaginal disc growth and formation has
the characteristic time of∼ 10h, and the cytoplasmic viscosity,
which corresponds to c is about 103Pa·s42,46. Rescaling the
model parameters reveals that, for computational efficiency,
there is a speed up of the growth rate by roughly a factor 10
compared to Drosophila wing disc.

3 Results

Although many isolated cells prefer spherical shapes, cells in
tightly connected tissues assume polygonal shapes due to cell-
cell interactions2,3. The number of sides of the polygon is de-
fined by the number of the nearest neighbor cells. Thus, to
characterize cell topology in tissue, one can assign each cell
a polygon type based on the number of its nearest neighbors.
For instance a cell with n nearest neighbors can be considered
as an n-sided polygon. In this approximation, tissue is consid-
ered as polygonal network.

This resemblance has served as the basis for vertex mod-
els9,10. Stable configurations of epithelial junctional network
throughout proliferation, and the ability to incorporate cell
mechanics and proliferation, has made vertex models an at-
tractive choice for studying tissue topology. However, cellu-
lar shapes lack detailed modelling and intercellular spaces are
not captured in these models. Additionally, vertex models do
not account for cell migrations and cannot change their initial
topologies.

In this work, we consider tissue growth starting from one
or a few cells that start to grow and divide (Fig. 2). During
the tissue growth, polygonal shapes arise naturally as a result

of cell-cell interactions and topologies can change during the
course of the time evolution (Fig. 3(left)). To characterize the
emerging polygon types in our model, we determine the cen-
tres of masses of all cells and use them to construct a Voronoi
tessellation at each chosen time. Figure 3(right) shows an ex-
ample.

We calculated the fraction of n-sided cells at every 10 time
steps and recorded the cell topology distribution. Polygon
types change dramatically at the early stages. After about 25
division cycles, the distribution of polygons stabilizes. Most
of the cells assume shapes of 4- to 8-sided polygons, but small
fractions of 3- and 9-sided polygons also exists. Figure 4
shows the time evolution.

Fig. 4 Time evolution of the polygon distribution. The blue dashed
vertical lines show the time interval when the tissue has a mitotic
index similar to proliferating epithelium in Drosophila wing disk 47.

Next, we measured the mitotic index. It measures the frac-
tion of cells that divide at a given time. The mitotic index
is higher at the initial stages of tissue development when the
growth is faster42, but for most of the epithelial prolifera-
tion stays relatively constant at about 1.7%47. As tissue ap-
proaches its functional size, proliferation ceases.

The mitotic index changes throughout the simulation as
well. We measured the mitotic index in our simulations to
identify the time intervals during which tissue is in the pro-
liferation regime as defined by experiments. The blue dashed
line in Figure 4 shows the regime of proliferating tissue where
mitotic index is approximately 1.5% with a standard deviation
of 1%. We compare the polygon distribution in proliferating
tissue with the experimentally observed tissue topology, Fig-
ure 5. As Fig. 5 shows, our model captures the main charac-
teristics of the experimentally observed tissue topology. The
distribution has a peak for hexagonal cells and is asymmetric
with a slightly higher number of pentagons than heptagons.
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Fig. 5 Polygon type distribution for friction γ = 20 compared with
experimentally observed topology of Drosophila wing epithelium
topology. Simulation data is averaged for four samples. Error bars
indicate standard deviation over all four samples. Experimental data
is from the work by Gibson et al.3

Finally, we investigated the effect of the damping coeffi-
cient γ on tissue topology. As discussed in the Sec. 2.1.2, the
damping coefficient γ influences cellular rearrangements. We
considered four different cases for γ , Fig. 6. In all four cases,
the model reproduced characteristic polygon type distributions
of Drosophila wing disc3. The inset shows the time evolution
of hexagonal cells. This measure was chosen since prolifer-
ation introduces disorder in the preferred hexagonal packing,
and the time evolution of hexagonal cells is correlated with the
mitotic rate3.

A closer inspection of tissue growth reveals that γ affects
the growth mechanism. Figure 7 shows snapshots of simu-
lated tissues with two different γ parameters. The two systems
had the exact same initial conditions and the two snapshots
were taken at the same time. As Figure 7 shows, γ = 0 leads
to a more ordered packing structure as compared to γ = 20.
Importantly, the two cases have different growth mechanism:
One can see from Figure 6 (inset) that γ = 0 case has consis-
tently higher percentage of hexagonal cells throughout the en-
tire simulation. Since proliferation introduces disorder into the
otherwise optimally packed structure3, higher percentage of
hexagonal cells reflects lower proliferation rate. When γ = 0,
the cells were able to move freely along each other and rear-
range themselves close to optimal packing at the early stages
of growth. The growth of the central part of the tissue is
then restricted by surrounding cells and overall tissue growth
is mainly localized within a few outer cell layers. This in-
homogeneous growth quickly terminates cell divisions inside
the tissue and in the absence of proliferation, leads to optimal

Fig. 6 Polygon type distribution for various cell rearrangements.
All four cases reproduce the characteristic polygon distributions in
proliferating tissue. Error bars present standard deviation. Inset
Time evolution of hexagonal cells for one simulation sample.

hexagonal packing.

Fig. 7 Snapshots of tissue for two different γ parameteres, i.e.,
different cellular rearrangements. The two systems were started
from the same exact initial conditions and the snapshots were taken
at the same time. The resulting polygon types are coloured as green
for pentagons, red for hexagons and blue for heptagons
correspondingly. γ = 0 case (left), where cellular rearrangements are
not suppressed. Cellular packing is shifted toward hexagons,
compared with the γ = 20 case, where the amount of cellular
rearrangements is restricted.

4 Conclusions

We have developed a two-dimensional mechanical model for
cell divisions and tissue formation. In contrast to vertex mod-
els, where polygonal cells are defined as a part of the exist-
ing network, we treat each cell independently of its neighbors,
which makes it more realistic. In our model, we consider cell
cortex contractility and cell-cell adhesion. Cell growth is con-
troled by internal pressure. The model accounts for several
cellular processes, including proliferation through various di-
vision mechanisms, cell polarity and migrations.

We show that our model reproduces commonly observed
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proliferating tissue topologies. We then established a set of
parameters that provide a good match with the experimentally
observed Drosophila wing disc epithelium topology, and com-
pared the numerical values with experimentally measured me-
chanical properties of cells.

In addition, we considered the effect of damping coefficient
γ on tissue growth. We showed that for a wide range of γ ,
we can reproduce the characteristic distributions of cell poly-
gons, however, different γ lead to different growth mechanism.
For γ = 20, we obtained relatively homogeneous proliferation
with the mitotic index 1.5% (compared to the 1.7% of prolifer-
ating epithelial mitotic index47). For lower values of γ , when
cell are moving freely, the tissue displayed inhomogeneous
growth: Cellular rearrangements tended to optimize cellular
packing at the early stages of tissue development. The growth
of tissue then is mainly defined by the growth of the outer cell
layer, with almost no proliferation inside the tissue.

In conclusion, we have demonstrated that the two-
dimensional model presented here is capable of reproducing
the two-dimensional packing topology of developing tissues
such as epithelium. Our model can be extended to three-
dimensions, where an analogous network of springs models
elastic three-dimensional spheroid-like structures that repre-
sent cells in three dimensions. Work is in progress to extend
the model to three dimensions.
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Biol., 2007, 17, 2095 – 2104.
11 H. Honda, M. Tanemura and T. Nagai, J. Theor. Biol., 2004, 226, 439 –

453.
12 P. Sahlin and H. Jönsson, PLoS ONE, 2010, 5, e11750.
13 T. Aegerter-Wilmsen, A. C. Smith, A. J. Christen, C. M. Aegerter,

E. Hafen and K. Basler, Development, 2010, 137, 499–506.
14 D. A. Lauffenburger and A. F. Horwitz, Cell, 1996, 84, 359–369.
15 D. Hanahan and R. A. Weinberg, Cell, 2011, 144, 646–674.
16 R. Keller and M. Danilchik, Development, 1988, 103, 193–209.
17 M. Chuai, W. Zeng, X. Yang, V. Boychenko, J. A. Glazier and C. J. Weijer,

Dev. Biol., 2006, 296, 137–149.
18 J. A. Theriot and T. J. Mitchison, Nature, 1991, 352, 126–131.

57 W.-T. Chen, J. Cell Biol., 1981, 90, 187–200.
20 E. Abu Shah and K. Keren, Curr. Op. Cell Biol., 2013, 25, 550–557.
21 R. J. Hawkins, R. Poincloux, O. Bénichou, M. Piel, P. Chavrier and

R. Voituriez, Biophys. J., 2011, 101, 1041–1045.
22 P. Recho, T. Putelat and L. Truskinovsky, Phys. Rev. Lett., 2013, 111,

108102.
23 C. Roubinet, P. T. Tran and M. Piel, Cytoskeleton, 2012, 69, 957–972.
24 D. Drasdo, R. Kree and J. S. McCaskill, Phys. Rev. E, 1995, 52, 6635–

6657.
25 D. Drasdo, S. Hoehme and M. Block, J. Stat. Phys., 2007, 128, 287–345.
26 E. Palsson and H. Othmer, Proc. Natl. Acad. Sci. USA, 2000, 97, 10448–

53.
27 K. A. Rejniak, H. J. Kliman and L. J. Fauci, Bull. Math. Biol., 2004, 66,

199–232.
28 K. A. Rejniak, J. Theor. Biol., 2007, 247, 186 – 204.
29 K. Rejniak and A. Anderson, Bull. Math. Biol., 2008, 70, 677–712.
30 T. J. Newman, Math. Biosci. Eng., 2005, 2, 611–622.
31 T. J. Newman, Multiscale Modeling of Developmental Systems, Academic

Press, 2008, vol. 81, pp. 157 – 182.
32 S. A. Sandersius and T. J. Newman, Phys. Biol., 2008, 5, 015002.
33 S. A. Sandersius, M. Chuai, C. J. Weijer and T. J. Newman, PLoS ONE,

2011, 6, e18081.
34 M. P. Stewart, J. Helenius, Y. Toyoda, S. P. Ramanathan, D. J. Muller and

A. A. Hyman, Nature, 2011, 469, 226–230.
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