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8

The wetting transitions from complete to partial wet-
ting and to complete dewetting are identified within a
membrane compartment. The dependences of wetting
transitions on material parameters, such as the intrin-
sic contact angles, the interaction strengths between the
polymers and between the membrane and polymer ηp,
and impermeability of the membrane to the enclosed
polymers, are investigated.
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A biomimetic membrane in contact with several aqueous phases is theoretically studied using a
combination of Helfrich curvature elasticity theory for fluid membranes and self-consistent field the-
ory for polymers in solutions. Two phases that are thermodynamically formed by phase separation
of aqueous solutions, as well as stable and metastable shapes of fluid vesicles, have been observed.
The wetting transitions from complete to partial wetting and to complete dewetting are identified
within a membrane compartment. The dependences of wetting transitions on material parameters,
such as the intrinsic contact angles θin, the interaction strengths between the polymers χαβ and
between the membrane and polymer ηp, and impermeability of the membrane to the enclosed poly-
mers ζp, are investigated. For a given χαβ , impermeability ζp and affinity to membrane ηp, θin is
found to be a constant and independent of the reduced volume of vesicles and the volume fraction
of two phases.

I. INTRODUCTION

Liquid droplets on flat surfaces may exhibit the con-
tact angle in the range from 0 to 1800, and the wetting
transitions from complete to partial wetting and to com-
plete dewetting correspond to a certain change in contact
angles1,2. Such transitions have been intensively stud-
ied for fluid-fluid interfaces in binary mixtures, for liquid
droplets at solid substrates and at chemically patterned
or topographically structured substrates1–3. However,
the wetting transitions within a mesoscopic membrane
compartment are more fascinating due to the relevance
to the force balance along three bending interfaces4–6.
The cytoplasm of living cells is a complex fluid ex-

hibiting spatial self-organization on different scales7. A
range of biological processes are realized by the spatially-
dependent phase separation of cytoplasmic components8.
Recently, lipid vesicles/droplets and two species of poly-
mers such as dextran/DNA and polyethylene glycol
(PEG), have attracted wide attention experimentally
as model cellular systems because of their relevance to
aqueous-aqueous phase separation and shape transfor-
mations of vesicles5,6,9–12. Phase separation within the
vesicles can be induced by changing osmotic conditions
or temperatures. Due to the impermeability of the mem-
brane to the encapsulated polymers and the permeability
of the membrane to water molecules, a volume of the vesi-
cles is reduced and two phases would be formed. Inter-
esting phenomena relevant to the phase separation pro-
cessing, such as partial to complete wetting transitions of
aqueous phases within membrane compartments5,6, vesi-
cle budding and fission10,11, and membrane tube forma-
tion12, are experimentally observed, but remain poorly
understood.
A mesoscopic theory for vesicles encapsulating two

aqueous phases has been developed that starts from the
simple observation of the vesicle state in contact with t-
wo phases in experiments13. A material parameter, the
intrinsic contact angle, θin, has been revealed between
the membrane and aqueous phases. They found that the

angle θin is a constant and independent of the reduced
volume of vesicles. However, the wetting transitions of
aqueous phases, as well as the dependence of wetting
transitions and material parameters, are still unresolved
beyond the theory.
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FIG. 1. (color online) (a) A schematic illustration of an ax-
isymmetric vesicle encapsulating two aqueous phases α and β
indicated by two colors. The γ phase indicates solutions out-
side of the vesicle. The vesicle shape along the contact line
can be characterized by three effective contact angles θα, θβ ,
and θγ with θα+θβ+θγ = 2π, and these contact angles are re-
lated to the three tensions Σαβ , Σαγ , and Σβγ . s denotes the
arc-length along the contour measured from the south pole
of the shape. ψ(s) is the angle between the tangent to the
contour and the r axis: r = 0, ψ(0) = 0 at the south pole,
where r = 0, ψ(s) = π at the north pole. (b) Enlarged view
close to the contact line: Intrinsic contact angle θin between
two planes that are tangential to the αβ interface and the s-
moothly curved vesicle membrane, respectively. The tangent
angle θ is between the plane tangential to the αβ interface
and horizontal plane.

We have developed the microscopic theoretical frame-
work by combining the Helfrich curvature theory for vesi-
cle membranes and self-consistent field theory for poly-
mers. This has been used to explore the polymer anchor-
ing vesicle system14–16, and extended to study vesicles
in contact with two aqueous phases17. Both stable and
metastable vesicle shapes including prolates, oblates and
stomatocytes, and spatial distributions of two phases α
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and β have been achieved17. From phase behaviors of a
wide variety of vesicles encapsulating two aqueous phas-
es, we find that the effective contact angle along the three
contact lines exhibits a certain change, and the wetting
transitions are also observed within membrane compart-
ments. As a result, the effective contact angle and in-
trinsic contact angle are determined from mechanical e-
quilibrium, and the dependence of wetting transitions on
material parameters are investigated.

II. MODEL

The vesicle containing two aqueous phases in an ax-
isymmetric coordinate system is shown schematically in
Fig. 1. Two aqueous phases are formed by nα Gaus-
sian polymer chains α with Nα segments and nβ Gaus-
sian polymer chains β with Nβ segments dissolved in nso
solvent molecules distributed in the interior of the vesi-
cle membrane. The lipid membrane provides a semiper-
meable, flexible boundary around polymers. In gener-
al, the solvent molecules can freely permeate through
the membrane, but chain segments can not. In exper-
iments12,13, osmotically balanced vesicles are obtained
after waiting 21 hours, at which time each phase is ho-
mogeneous. Therefore, we assume homogeneous phases
together with incommensurability at the reference den-
sity ρ0 ∝ 1/b3, where b is equal to the Kuhn statistic
lengths of the polymer chains α and β, the size of the
a single solvent molecule, and the lateral unit length of
the vesicle membrane.In general, the thickness of a lipid
bilayer is about 5 nm, thus b ≃ 5 nm. The partition
function of such a system is given by

Ξ∝ 1

nα!nβ !nso!

∫ i=nso∏
i=1

DRi
so

∫
DRm exp{−H0

m[Rm]}(1)

∏
p=α,β

∫ i=np∏
i=1

DRi
p(τ) exp{−H0

p [R
i
p(τ)]} exp{−Hint}

∏
r

δ[1− ϕ̂so(r)−
∑

p=α,β

ϕ̂p(r)]δ[

∫
r∋V [Rm]

dr
∑

p=α,β

ϕ̂p(r)]

where
∫
DR denotes the path integral over all possible

conformations of chain segments, membrane and solven-
t molecules. Ri

so and Ri
p(τ) represent spatial positions

of the solvent i and the segment τ of the ith polymer
chains, respectively. Rm is the spatial position of a vesi-
cle. r ∈ V [Rm] and r ∋ V [Rm] mean that the spatial
positions are located in the interior and exterior of the
vesicle, respectively. In addition, the first Dirac function
is introduced to impose the incompressibility constrain-
t, and the second Dirac function ensures that polymer
chains p remain in the interior of the vesicle. The script
(p) takes the two values α and β, indicating the two d-
ifferent types of polymer chains. The density operators

are defined as ϕ̂p(r) = 1/ρ0
∑np

i=1

∫ Np

0
dτδ[r−Ri

p(τ)] and

ϕ̂so(r) = 1/ρ0
∑nso

i=1 δ[r−Ri
so]. Under the condition that

solvent molecules can freely penetrate the membrane, the
interactions between the membrane and solvent can be
neglected. Therefore, the interaction Hamiltonian, Hint,
includes the polymer-solvent molecules (Vps), polymer α-
polymer β (Vαβ) and polymer-membrane (Vpm) interac-

tions, i. e. Hint = Vps + Vαβ + Vpm. They are V̂αβ =

χαβρ0
∫
drϕ̂α(r)ϕ̂β(r), V̂ps = χpsρ0

∫
drϕ̂p(r)ϕ̂so(r) and

V̂pm = ηpmbρ0
∮
dAϕ̂p[r = Rm], where χαβ , χps and ηpm

are Flory-Huggins interaction parameters of polymer (α)-
polymer (β), polymer-solvent and polymer-membrane
pairs, respectively.

The Hamiltonian of the Gaussian polymer chain has
been formulated as

H0
p [Rp] = 3/2b2

∫ Np

0

dτ [dRp(τ)/dτ ]
2. (2)

The Hamiltonian of the membrane18,19 has the form

H0
m[Rm] = κ/2

∮
A=Rm

dA[2H + c0]
2 + λ

∮
A=Rm

dA

+∆P

∫
r∈V [Rm]

dr,(3)

where κ, c0 and H are the bending rigidity modules,
spontaneous curvature and curvature of the fluid mem-
brane, respectively. For a bilayer membrane containing
two leaflets with an identical composition, c0 = 0, and
we focus on this case in this work. The tensile stress
λ acting on the membrane and the pressure difference
∆P = pout−pin across the membrane are Lagrange mul-
tipliers of the vesicle surface area A and vesicle volume
V , respectively.

Performing Hubbard-Stratonovich transformations20,
the Lagrange multiplier ξ is introduced to ensure the in-
compressible constraint of the system and one material
parameter ζp is introduced to express the impermeability
of the membrane to the polymer, which is opposite to the
permeability coefficient of membrane to polymer as mea-
sured by experiments. The external auxiliary fields ωp(r)
and ωso(r) are self consistent molecular fields conjugated
to local volume fractions ϕp(r) and ϕso(r), respectively.
The partition function can be expressed as a function
integral of the density and external fields

Ξ ∝
∫
DRm

∫
Dϕso

∫
Dωso

∫
Dξ

∏
p=α,β

∫
Dϕp (4)∫

Dωp

∫
Dζp exp{−F [ϕp, ωp, ζp, ϕso, ωso, ξ,Rm]}
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where the free energy functional F is defined as

F [ϕp, ωp, ζp, ϕso, ωso, ξ,Rm] (5)

= χαβ

∫
drϕαϕβ +

∑
p=α,β

χps

∫
drϕpϕso −

∫
drωsoϕso

−
∑

p=α,β

∫
drωpϕp +

∑
p=α,β

ηpmb

∮
A=Rm

dAϕp

− nso lnQso(ωso)−
∑

p=α,β

np lnQp(ωp) + λ

∮
A=Rm

dA

−
∫
drξ[1−

∑
p=α,β

ϕp − ϕso] +
∑

p=α,β

ζp

∫
r∋V [Rm]

drϕp

+
1

2

∮
A=Rm

[2H + c0]
2dA+∆P

∫
r∈V [Rm]

dr

In Eqn. (5), the partition function of a single polymer
chain Qp(ωp) and solvent molecules Qso(ωso) under the
potential fields, ωp and ωso, are Qso(ωso) =

∫
dre−ωso and

Qp(ωp) =
∫
drqp(r, τ)qp(r, Np−τ), respectively. The τth

segment distribution function qp(r, τ) obeys the modified
diffusion equation

∂

∂τ
qp(r, τ) =

b2

6
∇2qp(r, τ)− ωp(r)qp(r, τ) (6)

which is subject to the initial condition qp(r ∈
V [Rm], 0) = 1.
By the mean-field approximation, the free energy in E-

qn (5) is minimized with respect to ϕp, ϕso, ωp, ωso, ξ and
ζp, respectively, obtaining a stable or metastable state of
the system and yielding the self-consistent equations for
polymers and solvents as follows,

ωα =


ζα + χαβϕβ + χαsϕs + ξ r ∋ V [Rm]

ηαm + χαβϕβ + χαsϕs + ξ r = Rm

χαβϕβ + χαsϕs + ξ r ∈ V [Rm]

, (7)

ωβ =


ζβ + χαβϕα + χβsϕs + ξ r ∋ V [Rm]

ηβm + χαβϕα + χβsϕs + ξ r = Rm

χαβϕα + χβsϕs + ξ r ∈ V [Rm]

, (8)

ωs =
∑
p

χpsϕp + ξ (9)

ϕp =
ϕpV

Qp

∫ Np

0

dτqp(r, τ)qp(r, Np − τ) (10)

ϕso =
ϕsV

Qs
exp [−ωso] (11)

1 =
∑
p

ϕp + ϕso (12)

∫
r∋V [Rm]

drϕp = 0 (13)

According to the variational algorithms given in Ref-
s.15,16,18,19, the further minimization of the free energy F
is performed with respect to the membrane. The derived
shape equation of one vesicle in contact with two aqueous
phases is∑

p=α,β

{ηpmb[n · ∇ϕp(r = Rm)]− ζpϕp(r = Rm)}

+∆P − 2H[
∑

p=α,β

ηpmbϕp(r = Rm) + λ]

+ κ(2H + c0)(2H
2 − c0H − 2K) + 2κ∇2H = 0 (14)

where K is the Gaussian curvature of the membrane,
which is neglected due to the Gauss-Bonnet theorem19,
and the term n · ∇ϕp(r = Rm) denotes the concentra-
tion gradient along the direction normal to the vesicle
membrane.

The numerical scheme we use is similar to our pre-
vious studies15–17. This scheme begins with an initial
assumption of a spherical vesicle shape, and then the
self-consistent equations (6)-(13) are solved to obtain
ϕp(r) and ϕso(r). The obtained ϕp(r) is then inserted
into Eq. (14) to calculate the new shape of the vesicle.
The steps are finished until the convergence condition-
s have been reached between two successive iterations.
For a given tension λ and pressure difference ∆P , the
convergence conditions are that the differences for both
dψ(s)/ds and ϕp(r, h) between two successive iterations
are less than 10−4. In order to solve Eqs. (6)-(13), we set

Nα = Nβ = 100, b = 1, ∆τ = 1, ∆r = ∆h = 0.1
√
Nb,

with the box size Lr = 10 and Lh = 40. Due to the
impermeability of the membrane to the chain segments,
the polymer chains are always located in the interior of
the vesicle, and the polymer densities should therefore
be altered together with shape transformations of vesi-
cles. To simply describe the shape transformations of
vesicles, the reduced volume v is introduced to obey with
v ≡ V/[(4π/3)(A/4π)3/2], where V and A are the vol-
ume and surface of the vesicle. With decreasing reduced
volume v, the biconcave character of a isolate vesicle be-
comes more pronounced, giving that v = 1 is for spherical
object, v in the range of 0.65 ∼ 1.0 has an approximately
prolate ellipsoidal shape and v = 0.6 corresponds to the
normal human erythrocyte19,21. It is noted that the total
polymer density encapsulated within a spherical vesicle
(v = 1) is initially chosen. Phase separation with the
vesicles can be induced by changing osmotic conditions
in the experiments, water is released from vesicles during
deflations, and then both the volume and apparent area
of the vesicles would be reduced5, Therefore, the vesicles
after shape transformations generally contain almost the
same number of chain segments with the original spheri-
cal vesicle that has the same surface area. Likewise, after
equilibrium, both the α and β phases arrive at mechan-
ical equilibrium with almost the same particle number
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density of osmotically active particles. As a result, the
resulting polymer densities ϕα and ϕβ that are dependent
on the shape transformation of the vesicle, could be de-
termined, and the detailed procedure has been presented
in Ref. 17.

III. RESULTS AND DISCUSSIONS

For the characteristics of the membrane/polymer sys-
tems studied here, the encapsulated polymer concentra-
tion is about 5 %, and the bending rigidity and interface
tension of the membrane are κ ≃ 10−19 J and on the or-
der of 10 µN/m, respectively, which implies R ≃ 100 nm.
As mentioned in the Section II, b ≃ 5 nm, the vesicles we
calculated have the physical magnitude of diameter close
to 100 nm. We choose the bending rigidity κ value to be
1-25 kBT , as well as λ to be about 10−3 kBT/nm

2, where
T is a physiological temperature. The values of κ and λ,
the size of the lipid vesicle, and the weight percentage
of polymers are all comparable to the values observed
experiments5,12,22,23. In the experiments24,25, the per-
meability coefficients with respect to lipids are measured
in the range from 136× 1015 mol dyne−1 sec−1 for water
to 0.9 × 1015 mol dyne−1 sec−1 for 1,4-butanediol, and
the range of the permeability coefficient for oligomers is
about one order of magnitude. The impermeability of
polymer to membrane ζp, is about one order of magni-
tude and ranges from 1 to 10 kBT, and the adsorption
strength represented by η ranges from 0 to -0.1 kBT,
which are available from real experiments.

FIG. 2. (color online) Phases of vesicles encapsulating phase
α (green) and phase β (blue) with ϕα/ϕβ = 0.3/0.7, c0 = 0,
v ≈ 1, χαβ = 0.035 at ∆ζ = 0.4 (a), ∆ζ = 2.0 (b), ∆ζ = 3.6
(c), ∆ζ = 5.2 (d), ∆ζ = 6.8 (e), ∆ζ = 8.4 (f).

Figure 2 presents the morphologies of a spherical
vesicle containing two phases with different parameter-
s, ∆ζ = ζα − ζβ that represent the difference between
the permeability of polymer α and β to the membrane.
Inspection of Fig. 2 shows that these morphological
changes indicate a wetting transition from complete wet-
ting to partial wetting and complete dewetting of phase
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FIG. 3. (color online) (a) The effective contact angle θα and
intrinsic contact angle θin obtained from the quasi-spherical
vesicles (v ≈ 1.0) as a function of ∆ζ, (b) The intrinsic angle
θin as a function of the reduced volume v at varying ∆ζ.

α along with the increasing parameter ∆ζ. The mate-
rial parameter, ζp, represents the impermeability of the
membrane to the polymer, and Fig. 2 confirms that a
polymer with larger ζp tends to remain in the interior
of the vesicle. The three effective contact angles θα, θβ
and θγ in Fig. 1 obey the relation θα + θβ + θγ = 2π,
with regard to the three tensions Σαβ , Σαγ , Σβγ via the
classical Neumann equations for the force balance at the
junction point of three contact lines4. The proposed in-
trinsic contact angle θin has been defined in a previous
report13 as

cos θin =
sin θβ − sin θα

sin θγ
=

Σαγ − Σβγ

Σαβ
. (15)

However, in the quasi-spherical vesicles, v ≈ 1.0, the ef-
fective contact angle θγ is close to 1800, and thus the
intrinsic contact angle θin can be estimated by the effec-
tive contact angle θβ . Meanwhile, as presented in Ref.
13, the value of the intrinsic contact angles θin can also
be determined from the geometrical relation

θin = ψ(s)− θ (16)

where ψ(s) is the local tilt angle at the αβ interface, and
θ is the tangent angle indicated in Fig. 1(b). From these
morphologies, the intrinsic contact angle θin can be cal-
culated via the geometrical relation. The resulting values
for θα and θin are presented in Fig. 3(a) as a function
of ∆ζ. As described in Fig. 3(a), the effective contact
angle θα gradually increases up to 1800 upon the increase
of ∆ζ from 0.0 to 7.0, while the intrinsic contact angle
θin decreases. Likewise, we find that θα+θin ≈ 1800, and
thus θin ≃ θβ in these quasi-spherical vesicles. To further
address the relation between the material parameter ζp
and intrinsic contact angle θin, we studied a series of pro-
late vesicles containing α and β phases (0.8 < v < 1.0)
at three different material parameters ∆ζ = −6.0, 0.0
and 6.0 with a volume fraction of ϕα/ϕβ = 0.3/0.7, re-
spectively. In previous publications13,17, vesicles encap-
sulating two aqueous-aqueous phases usually take pro-
late shapes in a wide range of the reduced volume v from
1.0 to 0.8. Figure 3(b) gives the values for θin obtained
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5

from the geometrical relation as a function of the re-
duced volume v. The intrinsic contact angle is found
to be independent of the reduced volume v and to be
roughly constant with θin = 119.69 ± 3.46 degrees at
∆ζ = −6.0, θin = 89.31 ± 3.14 degrees at ∆ζ = 0.0
and θin = 66.60 ± 5.57 degrees at ∆ζ = 6.0, respective-
ly. Therefore, we claim that the intrinsic contact angle
θin depends on the material parameter ∆ζ, but is inde-
pendent of the geometric parameter, such as the reduced
volume v.

(a)
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FIG. 4. (color online) (a) Phases of vesicles encapsulating
phase α (green) and phase β (blue) with different volume
fractions of ϕα/ϕβ at c0 = 0, v ≈ 1, χαβ = 0.035 and ∆ζ =
6.0, (b) The intrinsic angle θin as a function of the reduced
volume v with different parameters ϕα/ϕβ at ∆ζ = 6.

Fig. 4(a) shows that phase α (green) in these quasi-
spherical vesicles occupies much more volume along with
an increase in ϕα/ϕβ that is not a material property.
Additionally, the junction point between α, β and mem-
brane moves toward the north pole of the spherical vesi-
cle. However, it is found unexpectedly that the intrinsic
angles obtained from the geometrical relation, Eq. (16),
remain roughly constant close to θin = 65.370±5.5. Like-
wise, the intrinsic contact angles are presented in Fig.
4(b) as a function of the reduced volume, 0.8 < v < 1.0,
at different volume fractions, ϕα/ϕβ . The intrinsic con-
tact angle is found to be independent of not only the
reduced volume v but also the volume fraction of α and
β, giving that θin ≃ 69.00 ± 5.1. Here, Flory Huggins in-
teraction parameter, χαβ , is chosen as 0.035, and the sys-
tem is located in the deep quench regime. Flory-Huggins
interaction parameter is expected to be linearly with the
inverse temperature of the system, and depends on Hilde-
brand solubility parameter, the concentration and molec-
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FIG. 5. (color online) (a) Phases of vesicles encapsulating
phase α (green) and phase β (blue) with different Flory Hug-
gins parameters, χαβ at c0 = 0, v ≈ 1, ϕα/ϕβ = 0.3/0.7
and ∆ζ = 6.0, (b) The intrinsic angle θin as a function of
the reduced volume v with different parameters ϕα/ϕβ at
∆ζ = −6.0.

ular weight of polymers26. Whereas, Self consistent field
theory for polymers is confirmed to be effective when
the system at the χ is located in the unstable region
and far way from the critical point (in the deep quench
regime)27. After thermodynamic equilibrium in the deep
quench regime, the volume fraction reaches approximate-
ly to 1.0 in each phase. Indeed, the equilibrium composi-
tions in phase α/β and interface width between phase α
and β would be altered along with the decrease of χαβ to
the binodal curve, where the system is close to the critical
point (in the shallow quench regime)28. Accordingly, the
values of ζαϕα and ζβϕβ on the membrane are expected
to depend on the Flory-Huggins interaction parameter
close to the critical point (in the shallow quench regime).
Fig. 5(a) presents the morphologies of a spherical vesicle
containing two phases at different Flory-Huggins inter-
action parameters, χαβ . It is found in the morphologies
that phase α (green) also undergos the transition from
complete dewetting to partial wetting along with an in-
crease in χαβ . When χαβ increases from 0.02 to 0.035 at
ϕα/ϕβ = 0.3/0.7, the thermodynamic state of phase sep-
aration would be changed and the polymer blends may
undergo the metastable and unstable region of the phase
diagram28. At the metastable region, droplet starts to
form and coarsens during the nucleation and growth pro-
cess. At the unstable region, the clusters rapidly grow
and coalesce until a single macroscopic phase forms. The
intrinsic angle θin is also presented in Fig. 5(b) as a
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6

function of reduced volume, v, at three χαβ . θin is
found to be independent of reduced volume, but depen-
dent of χαβ , giving that θin = 119.69 ± 3.46 degrees at
χαβ = 0.035, θin = 139.13 ± 4.68 degrees at χαβ = 0.03
and θin = 170.64 ± 5.32 degrees at χαβ = 0.025, respec-
tively. With an change of χαβ in the shallow quench
regime, both the interface energy between α and β, and
polymer compositions at two phases would be altered,
as well as the values of ζpϕp on the membrane. There-
fore, the three tensions and the intrinsic contact angle
θin would be changed so as to arrive at the force balance
along with three contact lines.
In the experiment5, transitions from complete to par-

tial wetting were observed with membrane compartments
as the external osmolarity increases. In order to obtain
vesicles containing two phases, the polymer concentra-
tion is raised above binodal curve by the increase of the
the external osmolarity (deflations) and phase separa-
tion occurs in the vesicle. With further increase of the
external osmolarity, the polymer concentration would be
raised above spinodal curve and enter into the unstable
regime. Thus, the quench depth of phase separation is
expected to be changed together with the increase of ex-
ternal osmolarity. As mentioned above, the quench depth
of phase separation is also to be changed along with the
Flory Huggins interaction parameter. Therefore, such
wetting transitions dependent of the Flory Huggins inter-
action parameter that are identified in the calculations,
are in well consistent with those observed experimental-
ly5.
In the presence of interactions between the membrane

and polymer, the polymer in the interior of a vesicle not
only leads to an extra pressure on the membrane, but also
changes the local tension of the membrane, see Eq. 14.
Likewise, in order to reduce the interaction energy be-
tween membrane and polymer, the configuration of poly-
mer is altered as well. Inspection of Fig. 6(a) shows that
the interface between phase α (green) and membrane is
found to be increased along with the decrease of the pa-
rameter ∆η = ηαm − ηβm. The effective contact angle
θα, however, is found to decrease from 121.620 at ∆η = 0
to 1.010 at ∆η = −0.06. Meanwhile, Fig. 6 (b) shows
that θin still remains roughly constant regardless of the
reduced volume, but the mean value of θin with regard
to the reduced volumes shifts from θin ≃ 66.90 ± 7.45
degrees at ∆η = 0 to θin ≃ 100.97 ± 5.69 degrees at
∆η = −0.04. As a result, θin depends on the interaction
parameter between the membrane and polymer, η, as a
material parameter. In addition, the interfacial tensions
have been proposed to be associated with the interac-
tions between the lipid head groups and the two polymer
phases.

IV. SUMMARY AND OUTLOOK

For the membrane/polymer systems studied in Ref. 12
and 13, the proposed intrinsic contact angle θin repre-
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FIG. 6. (color online) (a) Phase of vesicles encapsulating
phase α (green) and phase β (blue) with different interac-
tive parameters ∆η at ϕα/ϕβ = 0.3/0.7, c0 = 0, v ≈ 1,
χαβ = 0.035 and ∆ζ = 6.0, (b) The intrinsic angle θin as
a function of the reduced volume v with different parameters
∆η at ∆ζ = 6.

sents ’a hidden variable’, and is an essential property of
the system. The wetting transitions within membrane
compartments relevant to the intrinsic contact angle θin
are associated with Flory Huggins interaction paramter
(χαβ) close to the critical point, the permeability of
the membrane with respect to the polymer (ζp) and the
interaction between the membrane and polymer (ηpm).
For suitable concentrations of polymer α and β, this sys-
tem of two aqueous phases may shift from one phase to
the metastable phase that is between the binodal and
spinodal curve, and then from metastable to unstable
phase that is above spinodal curve along with the change
of the temperature. Likewise, for suitable temperature,
the concentrations of polymer α and β within membrane
compartments is also expected to be raised above binodal
curve by the increase of the external osmolarity (defla-
tions) and phase separation occurs in the vesicle. In the
experiment5, the two aqueous phase system shifts from
homogeneous phase to two phases by the increase exter-
nal osmolarity, thereby undergoing metastable and un-
stable phases. Close to the critical point, the composi-
tions of phase α and β are to be changed together with
the quench depth of phase separation, thereby giving that
the formation of phases α/β within a vesicle influences
the vesicle shape via an inhomogeneous pressure and ten-
sion, as well as an intrinsic contact angle. Therefore, the
wetting transitions within a vesicle that are identified a-
long with the Flory Huggins interaction parameter agree
with wetting transitions observed experimentally by the
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increase of the external osmolarity (deflations)5,6. In par-
ticular, for a given ζp and ηp, that is a material property,
the angle θin is found to be constant and independent
of parameters that are not material properties, such as
the reduced volume and volume fraction of phase α and
β, in which is in consistent with the theoretical result
presented in Ref. 13.

In the theoretical framework, the parameters ζp, ηpm
and χαβ are introduced to describe the permeability of
the membrane to polymers, interactions between poly-
mers and the membrane and between polymer α and β,
in which they are associated with different encapsulat-
ed polymers, e.g. different chain segments and molec-
ular weight of polymers, and temperature, because dif-

ferent polymers would possess different permeability to
the membrane and interactions between the polymer and
the membrane and between polymers. The theoretical
results presented here would provide guidance to future
studies that are focused on the wetting transition with-
in membrane compartments, including spherical vesicles,
prolates, oblates and stomacytes. In future research, it
is of great interest to extend the theoretical framework
described here to study the phase behavior of vesicles in-
duced by or modified by other complicated phases under
membrane confinement.
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