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Disordered filamentous networks with compliant crosslinks exhibit a low linear elastic shear modulus at small strains, but stiffen
dramatically at high strains. Experiments have shown that the elastic modulus can increase by up to three orders of magnitude
while the networks withstand relatively large stresses without rupturing. Here, we perform an analytical and numerical study
on model networks in three dimensions. Our model consists of a collection of randomly oriented rigid filaments connected by
flexible crosslinks that are modeled as wormlike chains. Due to zero probability of filament intersection in three dimensions,
our model networks are by construction prestressed in terms of initial tension in the crosslinks. We demonstrate how the linear
elastic modulus can be related to the prestress in these network. Under the assumption of affine deformations in the limit of infinite
crosslink density, we show analytically that the nonlinear elastic regime in 1- and 2-dimensional networks is characterized by
power-law scaling of the elastic modulus with the stress. In contrast, 3-dimensional networks show an exponential dependence
of the modulus on stress. Independent of dimensionality, if the crosslink density is finite, we show that the only persistent scaling
exponent is that of the single wormlike chain. We further show that there is no qualitative change in the stiffening behavior
of filamentous networks even if the filaments are bending-compliant. Consequently, unlike suggested in prior work, the model
system studied here cannot provide an explanation for the experimentally observed linear scaling of the modulus with the stress
in filamentous networks.

1 Introduction

The mechanical properties of biological cells are governed
by the cytoskeleton, a viscoelastic composite consisting of
three main types of linear protein polymers: actin, micro-
tubules, and intermediate filaments. These filamentous poly-
mers are crosslinked by various binding proteins and consti-
tute a dynamic complex network that maintains the structural
integrity of the cell with the capacity for dynamic reorganiza-
tion needed for active processes. Many in vitro studies have
focused on reconstituted networks with rigid crosslinks. =12
In the cytoskeleton, however, many of the crosslinks are them-
selves extended and highly compliant proteins. Such flexible
crosslinks can strongly affect the macroscopic network elas-
ticity. 132! Indeed, experimental studies show that composite
networks can have a linear modulus as low as ~ 1Pa, while
being able to stiffen by up to a factor of 1000. 114

Here we analyze 3-dimensional (3D) composite networks
theoretically, and we offer physical simulations thereof. Our
networks are composed of randomly oriented rigid filaments
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that are connected by highly flexible crosslinks, each of which
is modeled as a wormlike chain (WLC),2%23 which has been
shown to accurately describe flexible crosslinkers, such as fil-
amin.?*?3 In our approach we assume that the filaments are
much more rigid than the crosslinks, meaning that the network
elasticity is dominated by the entropic stretching resistance of
the crosslinks.

In our theoretical analysis we adopt the widely employed
assumption of affine deformations. %1926 Under this premise,
the network is assumed to deform affinely on the length scale
of the filaments, which in turn is assumed to be much longer
than the contour length of the crosslinks. Using a single fil-
ament description in the limit of a continuous distribution of
crosslinks along the filament, we obtain the asymptotic scaling
behavior of the elastic modulus with the stress in the nonlin-
ear regime. We show that in 1-dimensional (1D) networks,
the elastic modulus scales with the second power of the stress,
whereas it scales with the third power in 2-dimensional (2D)
networks. Remarkably, there is no power law scaling in 3D—
in fact, the elastic modulus of a 3D composite network in-
creases exponentially with the stress. Numerical evaluation of
the affine theory at finite crosslink densities—as opposed to a
continuous distribution of crosslinks—shows that (i) the only
asymptotic scaling is that of the modulus scaling with an ex-
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ponent 3/2 with the stress and that (ii) the dependence on di-
mensionality of the system is limited to an intermediate-stress
regime. These findings are in agreement with our extensive
physical simulations of 3D composite networks. For all cases,
the elastic modulus diverges at a finite strain.

Our theoretical analysis is inspired by the mean-field model
proposed by Broedersz et al. 1%2¢ In sharp contrast to our the-
oretical analysis and to the results of our physical simulations,
however, these authors predict linear scaling of the elastic
modulus with applied stress. In particular, for any finite strain,
the elastic modulus remains finite in their model. While this
linear scaling of the elastic modulus is in accordance with
what has been observed experimentally, 132921 we here ar-
gue that this model does not adequately capture the elastic re-
sponse of networks with rigid filaments and permanent (i.e.,
non rupturing or rebinding) crosslinks of finite length.

In Ref. !, the authors ruled out that the experimentally ob-
served approximate linear scaling of the modulus with the
stress might be be due to enthalpic (linear) stretching com-
pliance of the crosslinks or filaments. Here, we complement
their analysis by physical simulations that take into account
bending of filaments. Our results empirically show that the in-
clusion of bending rigidity does not impact the nonlinear stiff-
ening behavior of composite networks either. We therefore
conclude that the theoretical explanation for the linear scaling
of the modulus with stress in experiments remains an chal-
lenging open problem.

By physical simulations, we also study the role of prestress.
We show that in contrast to 1D and 2D networks, 3D networks
experience an initial tension due to non-intersecting filaments
resulting in initially stretched crosslinks, and are therefore pre-
stressed. The modulus in the linear deformation regime is then
governed by this prestress; indeed, it is higher than the mod-
ulus expected from the affine theory. Our simulations addi-
tionally indicate that if the network is allowed to relax initial
tension by unbinding and rebinding of crosslinks, the impact
of prestress on the elastic modulus in the linear regime be-
comes insignificant, although the prestress does not relax all
the way to zero.

The remainder of the article is organized as follows. First,
we present the affine theory of composite networks in Sec-
tion 2. Under the assumption that deformations of the net-
work are affine on the length scale of the filaments, we derive
expressions for the stress and modulus in 1D, 2D, and 3D. We
then present our physical simulation model and describe our
network generation procedure in Section 3. We expand on the
implications of our 3D simulation procedure in Section 4; in
particular, we explain the emergence of prestress. We then
discuss the results of our simulations in the linear deforma-
tion regime in Section 5 and indicate which results from the
affine theory are still valid. Finally, we analyze the simulation
results in the nonlinear regime in Section 6.

2 Theory

In this section we analytically derive the stress and modulus of
a composite network under the assumption of affine deforma-
tions on the length scale of the filaments. We consider a col-
lection of N rigid filaments of length L that are permanently
connected by nN/2 flexible crosslinks of contour length I,
where 7 is referred to as the crosslink density, i.e., the num-
ber of crosslinks per filament. The filaments are assumed to
be perfectly rigid, i.e., they neither bend nor stretch, and the
crosslinks are modeled via the WLC interpolation formula??

B kgT 1 1 u
fcl(“)*f <4(]_u)24+lo> s (D

where kgT is the thermal energy, /, the persistence length and
u > 0 the end-to-end distance of the crosslink. Assuming
lo > 1, this force-extension relation implements a crosslink
rest-length of zero and shows a characteristic stiffening with
divergence of force as u — [y. Equation (1) can be integrated
to yield the energy’ (up to a constant)

ksT l l 2
Ecl(u)—B<0uou+u>. 2)

Iy

Imposing affine deformations on the filament level fully de-
termines the deformation field u on the subfilament level. In
the following analysis, we consider a single representative
filament subject to an extensional strain of the surrounding
medium that it is embedded in and crosslinked to.

2.1 1D network calculation

We start with a one dimensional system, i.e., 1D extensional
strain €, and advance in dimensionality by converting an ap-
plied shear strain ¥ to the orientation dependent extensional
strain g(y) felt by the filament.

In the rest frame of the filament, the end-to-end distance
of a crosslink at distance x from the center of the filament is
given by |u(x,€)| = |ex| (see Fig. 1 (a)). For notational con-
venience, we consider positive € only. Under the assumption
that the crosslink density is high enough that one can consider
the associated distribution as uniformly continuous, the total
energy of a filament in 1D is given by

L2
Ep(e) :2% /O Ea(ex)dx . 3)

Substituting Eq. (2) into Eq. (3), this expression can be inte-
grated analytically (see Appendix A.1).

T More precisely, it is a free energy, which includes both, energetic (bending)
and entropic terms for the crosslinks (not for the filaments).
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Fig. 1 Sketch of the assumptions of the affine theory: (a) 1D: A
filament (green) of length L is connected to its surrounding through
n crosslinks (blue) that have zero extension at zero strain. The
surrounding of the filament is subject to a uniform extensional strain
€ = AL/L. Since the filament itself is assumed to be perfectly rigid,
all deformation goes into the crosslinks (drawn in y-direction for
better visualization). The deformation of a crosslink at distance x
from the center of the filament is given by u# = &x (deformation field
depicted by the horizontal gray arrows). (b) For a 2D system the
extensional strain on a filament at angle 8 with the axis in shear
direction is given by € =~ y/2sin28, for a small shear strain

Y= % =tan 9.

Following the described approach for the linear regime of
the WLC force-extension relation, i.e., for u < lg, the linear
modulus may be extracted as Ggﬂ = ‘f—fz where F / V is the en-
ergy per unit volume V in the network and € is a small strain. >’
For a 1D system this yields Ggff = %pnkclL, with kg = %%—lg
being the linear spring constant of a crosslink and p := NL/V
the total length of filaments per unit volume. The same holds
for the modulus in 2D and 3D, but with different numerical

prefactors: 1/96 and 1/192, respectively. 1619:26

Next we show that one can extract a functional relation be-
tween nonlinear modulus and stress in the nonlinear regime,
based on simple asymptotic scaling analysis. It follows from
above that there is a strain &g := lp/(L/2) at which the outer
most crosslink (at x = L/2) reaches maximum extension. For

€ — &g the energy diverges as

Efg(e)w—éln (18%) , @)
with ‘~" defined via E ~ f < E/f — const. The upper index
‘div’ always indicates that we are only taking into account the
diverging part of the 1D filament energy. We express stress
and differential elastic modulus via ¢ = %,‘fi—g and K = ‘l,dz—f
respectively, in order to obtain o1p ~ 1/(1—¢€/¢&4), and Kjp ~
1/(1—¢/€4)*. We arrive at the asymptotic scaling relation

Kip ~ (o1p)* . (5)

This scaling relation between modulus and stress in 1D has
also been derived in previous work. ' Next we consider scal-
ing relations in 2D and 3D.

2.2 2D network calculation

We perform similar calculations as in 1D, while taking into ac-
count that the extensional strain &€, which results from a shear
strain y on a 2D system, depends on the orientation of the fil-
ament under consideration. In the small-strain limit one thus
obtains

|&(7,0)| = [y/2sin26] , (6)

where 6 € [0,7] is the angle between the filament and the
shear direction (see Fig. 1(b)).

Substituting this expression into Eq. (4) and averaging over
all orientations leads to

) z/2 —1In(1 — n $in26)
div 41y
T R

where we assume Y > 0 for notational convenience; the upper
integration limit is reduced to 7/2 because |sin26| is 7/2-
periodic. Note that we do not take into account a redistribu-
tion of filament orientations under the shear transformation.
This approach, as well as the small-strain approximation for
(7, 0), are justified if L >> I, since then the strain ¥y := 4l /L
at which the integrand diverges is small.

Differentiating Eq. (7) with respect to ¥ and neglecting the
weaker (logarithmically) diverging part of the integrand leads
to an expression for the stress, as Yy — J:

(N

T/2 do
(oap)6(7) N/o W ’ (8)
el
_ m—arccos(1 —y/1a) ' )

1—(y/n)?

The divergence of the stress is of the form oyp ~ 1/(1 —
(y/7a))"/* and hence Kop ~ 1/(1 — v/74)*/>. Therefore, the

This journal is ©@ The Royal Society of Chemistry [year]

Journal Name, 2010, [vol], 1-13 |3



Soft Matter

asymptotic scaling behavior for the differential modulus in
two dimensions is given by

Kop ~ (0ap)° (10)

Note the difference of the scaling relations to the ones in the
1D scenario. Stress shows a weaker divergence with strain
than in 1D but a stronger dependence on the differential mod-
ulus. Integration of the diverging part of the stress further
shows that the energy at maximum strain is finite—in con-
trast to the 1D setting, where the energy diverges at the critical
strain. This is an effect introduced by orientational averaging
only.

2.3 3D network calculation

For a 3D network, the extensional strain on a filament in the
small-strain limit is given by

|&(,60,0) = [y/2sin20 cos | , (11)

in the usual spherical coordinates.In direct analogy to the 2D
case (see Eq. (9)), the averaged stress close to 1y = 4y /L can
be written as

T/2m/2

oo~ [ [N )
o o 17<y—7;)sin29cos¢

with ¥ > 0; the upper integration limit for the ¢ integration
is reduced to /2 because |cos@| is z-periodic and sym-
metric about 7/2 on [0,7]. If we carry out the ¢ integral
and expand the integrand around 6 = m/4, in order to inte-
grate over 0 (see Appendix A.2 for details), we obtain osp ~
—In(1 —¥/7a) and hence K ~ 1/(1 — y/14)-Consequently, K
does not scale with ¢ as a power law; instead, one obtains

Kip ~ &P | (13)

with a real constant ¢. The absence of asymptotic power law
scaling sets 3D networks apart from 1D and 2D networks. In
3D, we observe the weakest (logarithmic) divergence of stress
with strain. Integrating the diverging part of the stress shows
that the energy again remains finite for y — ;.

Finite crosslink density. By considering the limit of infinite
crosslink density, we have derived theoretical scaling relations
for strain stiffening by integrating along a filament’s backbone
(see Eq. (3)). For any real system, however, the crosslink den-
sity is finite and Eq. (3) turns into a sum

F = Ecl(ex,‘) s (14)

I

where x; are the crosslink binding sites along the filament.
Fig. 2 shows numerical results for the behavior of the cor-
responding differential modulus K for finite n, obtained by
numerical evaluation of Eq. (14) and proper orientational av-
eraging. Note that the asymptotic scaling behavior of K in

10° p—rrrrrm

108
107 E

10 F

10°

K/Go

102 107! 10° 10! 102 103 104

Fig. 2 Differential modulus K as a function of shear stress ¢ in the
affine limit, with finite number of crosslinks (n = 60), rescaled by
the linear elastic modulus Gy := K|, and critical stress

o, := 0(}), respectively, where 7, is defined via K(%.) = 3Gy.
Straight line indicates power law scaling K ~ 63/2. Tnset shows
local slope dIn K /d1n o; dotted lines indicate power law scaling
with exponents from affine theory {2,3} and single WLC scaling
{3/2}. Independent of dimensionality, the asymptotic large stress
scaling is K ~ 03/2. In an intermediate-stress regime, the theoretical
values for infinite crosslink densities are approached.

the limit of infinite crosslink density influences a finite net-
work’s behavior in the infermediate-stress regime (see inset
of Fig. 2); however, near the critical strain, the differential
modulus scales as K ~ 03/2, i.e., like the response of a sin-
gle WLC. Furthermore, for 1D and 2D systems the theoretical
scaling exponents in the limit of infinite crosslink densities can
(in the intermediate regime) indeed be approached by increas-
ing 7. In contrast, as shown above, in 3D the theoretically de-
rived scaling of X is exponential in 6. Such an exponential in-
crease is quantified by an (in principle) indefinitely increasing
maximal slope with increasing 7 in the InK versus In ¢ plots;
e.g., for n = 60 the maximal slope is 3.49, for n = 3000 it is
5.82. However, for any finite n, eventually there is always a
universal scaling of K ~ /2, resulting from the single WLC
force-extension relation, independent of the dimensionality of
the system. Indeed, for any given 7, the integral representation
Eq. (3) becomes invalid close to ¥ = 74 due to the divergence
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of the WLC energy.

The numerical results in Fig. 2 have been obtained with-
out the small-strain approximation for the extension of the fil-
aments. However, redistribution of the filament orientations
under shear has not been taken into account in Fig. 2. Calcula-
tions including this effect show that it may both decrease and
increase the maximum intermediate slope in the InK versus
Ino plot and shift the peak to larger stress values depending
on the maximum strain J4. In any case, the asymptotic scaling
regime remains unchanged.

In the next section we introduce the simulation framework
that we use to study 3D networks consisting of many fila-
ments and crosslinks, relaxing the assumption of affine de-
formations.

3 Simulation model

We perform quasistatic simulations of 3D networks that con-
sist of N rigid filaments of length L, permanently crosslinked
by a collection of nN /2 crosslinks of length [y. All lengths are
measured in units of the side length of the cubic periodic sim-
ulation box. A typical set of parameters is N = 3000, L = 0.3,
n =060, l[p =0.03.

Each filament is modeled as perfectly rigid, implying that
its configuration can be described by its two endpoints only,
which are constraint to stay at distance L. The flexible
crosslinks are modeled as a central force acting between the
two binding sites. In particular, we use the WLC interpola-
tion formula (Eq. (1)) and the corresponding energy (Eq. (2)).
In all data that is presented, forces are measured in units of
(kgT)/l,. There are no additional degrees of freedom in-
troduced through the crosslinks, since their configuration is
represented via the endpoints of the filaments, in terms of
barycentric coordinates.

In order to generate an initial network configuration we pro-
ceed as follows. We generate N randomly distributed fila-
ments by first randomly choosing their centers of mass in our
simulation box and by then picking a random orientation for
each filament. For crosslinking we apply the following iter-
ative procedure. We randomly choose two points on distinct
filaments and insert a crosslink if the corresponding point-to-
point distance is shorter than a certain threshold o/y. Here
o € [0,1) serves as a parameter to vary the initially allowed
crosslink lengths in the system. This procedure is repeated un-
til the desired number of crosslinks is reached; see Fig. 3 for an
illustration of the final configuration. Since we perform qua-
sistatic simulations, the system must be at static equilibrium
at all times. As practically all crosslinks will be stretched be-
yond their rest-length after the initial network generation, we
minimize the energy (of the crosslinks) before subjecting the

Fig. 3 Example of an initially generated network that has not been
relaxed into static equilibrium yet. Rigid filaments are shown in
green, flexible crosslinks in blue. Short crosslink or filament
fragments correspond to filaments/crosslinks that cross the periodic
boundaries of the simulation box. For the sake of visual appearance,
the network is much sparser than the systems that are studied in the
remainder of this article, and the ratio of filament to crosslink length
is much smaller, N = 300, n =10, L=0.3,[j = 0.1, « = 0.9.

simulation box to any deformation.¥ For energy minimization
we use the freely available external library IPOPT,?® which
requires the gradient and the Hessian of the system’s energy
function. It might happen during the optimization process,
that individual crosslinks reach extensions u larger than their
contour length /y. Acceptance of these solutions is prohibited
by setting the energy to infinity (10'°) for u > [y in Eq. (2);
without this modification it would become negative in that
regime. The length constraints for the filaments are realized
via Lagrange multipliers.

In order to extract elastic properties of the network we per-
form quasistatic shearing by applying an affine incremental
shear strain 67 to the network, with subsequent rescaling of
filaments to length L (see Fig. 1). We apply Lees-Edwards
shearing periodic boundary conditions.?® The magnitude of
07y is determined by calculating the maximum affine shear that
leaves all crosslinks below their contour length. Due to the
rescaling of filament lengths, a nonaffine deformation com-
ponent is introduced. This nonaffinity may lead to crosslinks
being overstretched after all. In this case, we iteratively halve

I We do neither take into account fluctuations of the filaments nor excluded-
volume effects.
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the shear strain until the length of all crosslinks remains below
their contour length. After each shear increment, the energy
is minimized. We apply a fixed upper bound of 1% strain
on §7y in order to stay reasonably close to the previous so-
Iution. This increases numerical efficiency and accelerates
convergence because it allows us to use a warm-start proce-
dure that reuses Lagrange multipliers from one minimization
as initial guesses for the next one. Moreover, the application
of small shear steps reduces the likelihood of discontinuously
jumping between local energy minima.

We stop shearing when achievable increment in shear strain
becomes smaller than a chosen threshold due to crosslinks that
are very close to their maximum extension. During the en-
tire simulation process, we record network parameters in the
equilibrated states—in particular, the energy E as a function
of shear strain y. This allows us to extract the shear stress
o= %,‘%/ as well as the differential shear elastic modulus

2 o . .
K= ‘ji—‘; = %dd—f. Derivatives are taken by first interpolating

E(y) with a cubic spline. We define the linear shear elastic
modulus as
G() = K|y:0 . (15)
In the following section we discuss the implications of our
specific simulation model, in particular with respect to net-
work structure, and contrast it with previous studies that have
been carried out mostly in 2D.

4 Initial tension and prestress

As mentioned in Section 3, our network generation results in a
non-zero initial energy Ey at zero strain. Indeed, by randomly
placing (zero-diameter) filaments in a 3D container, filaments
have zero probability to intersect; thus, crosslinks have finite
initial extension with probability one. This is different from
2D, where randomly placed filaments mutually intersect with
a probability approaching one as their number increases. In-
deed, so-called Mikado models, %932 where filaments are
crosslinked at their intersection sites only, exhibit no forces at
Zero strain.

In contrast, the initial stretching of crosslinks in our net-
works results in an initial tension before any deformation. For
a quantitative analysis we measure a global variant of this ef-
fect by what we call fotal prestress oy, which measures the
normal stressS component orthogonal to the shear planes.!
More precisely, we measure the single sided (e.g., upward)

§ Note that our notion of prestress is not to be confused with the constant pre-
stress externally applied in bulk rheology experiments, which is a shear stress
in general.

q Although we could in principle define total prestress as the normal component
of the stress acting on any plane in our system we prefer to use shear planes
as this simplifies the forthcoming analysis.

normal component of the force that is acting on a given shear
plane, by summing up the normal components of the forces
exerted by each crosslink and filament passing through the
given shear plane, see Fig. 4 (a). The normal stress is then

f (a) ()
1 f2 f4

fi+1; f;

Fig. 4 (a) Measuring the total prestress Gy by extracting the normal
component of the total force acting on a shear plane. We sum up all
the forces acting on one side of the plane exerted by (i) the
crosslinks passing through (here f5 and f4) and (ii) the filaments
passing through (here f; + f3)—then we project onto the normal
vector n. (b) A tensegrity structure (here: Snelson’s X >3) remains in
static equilibrium without application of boundary conditions. The
forces acting on any plane add up to zero, i.e. no plane carries any
total prestress although it is under tension locally.

given by dividing by the surface area of the shear plane. Note
that op does not depend on the choice of a particular shear
plane; indeed, if the total stress was changing during vertical
movement of a shear plane, then this would immediately con-
tradict force balance in the system.

Intuitively, one might expect negative normal stresses
(pulling down on the upper face of the simulation box), since
crosslinks are contractile. However, since filaments withstand
compression, it is possible to construct systems that exhibit
positive normal stress. This suggests the existence of config-
urations with zero normal stress.| Indeed, so-called tensegrity
structurexvﬁ4 which are in static equilibrium in the absence of
boundary conditions satisfy this criterion—while still being
able to store arbitrary amounts of energy (see Fig. 4 (b)). Em-
pirically, our simulations show that the random networks gen-
erated by the procedure described in Section 3 exhibit negative
initial normal stresses throughout. Their integrity is provided
through the application of periodic boundary conditions. Note
in particular, that our setup enforces conservation of volume
of the simulation box. In general, it would be possible to re-
lax the prestress by letting the volume of the simulation box
change. However, we did not follow this approach in the study
presented here, in order to ensure that the filament length re-
mains significantly smaller than the size of the simulation box.

In the following, we relate total prestress to the linear elastic
response of our networks.

H Note that individual crosslinks are still under tension; however, the total nor-
mal force acting on the shear plane vanishes.
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5 Linear regime

In previous work, 141926 an expression for the linear modulus
in 3D was derived under the assumption of affine deforma-
tions and in absence of any initial tension in the network. Our
simulations show that the linear elastic modulus depends on

the initial tension in the network.

10°

——
108;—.—
——
——

107

1072 107! 10°

Fig. 5 Differential elastic modulus K as a function of strain ¥ for
different levels of initial tension. The initial tension in the network is
varied by changing the initially admissible maximal crosslink length
alg. The linear modulus Gy = K |y:0 increases with the initial
tension in the network (initial tension increases with ). It is also
evident that the divergence of K occurs at a strain 7, that decreases
with increasing o. Here: N = 3000, n = 60, L = 0.3, [y = 0.03.

One scenario that clearly demonstrates the dependence of
the linear modulus Gy (defined in Eq. (15)) on the initial ten-
sion is illustrated in Fig. 5 where the admissible maximum
initial crosslink length was varied.

For a more quantitative analysis we have designed a method
that allows us to change initial tension for a network with a
fixed set of simulation parameters. We first randomly gener-
ate a network as described above and let it relax into static
equilibrium. We then remove a given amount (5%) of the
most-stretched crosslinks in the system. Then we reconnect
those crosslinks randomly again, and let the network relax.
This procedure is repeated N times. Thereby, we succes-
sively decrease the system’s initial tension, and therefore also
its total energy, see inset of Fig. 6. Not only does the total
energy decrease, we also observe a change in the distribution
of forces (see Fig. 6). As long as one performs the crosslink
binding-unbinding procedure over a small enough fraction of
crosslinks, the network remains nearly isotropic.

5 1 1 1 1 1
:.-.-.-.-.-. N, rel = 0
4_ﬂ 3 Ner =100 |
3F 1.0 T T —
= 0.8 |-% .
S e ocl
Y 2% 0.6 | -
2 H ~ .
Ky 04 F .
o2} .
1 0.0 ol il i
: 10 100 102 10°
.'.: = . Nrel
0 kqasa—d—— Tt L L

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Fig. 6 Distribution of forces in crosslinks for a system without or
with N, = 100 relaxation steps. The relaxation procedure cuts the
large force tail of the initial distribution and establishes a sharper
peak at small forces. The inset shows the total energy £ in the
system, normalized by the initial energy Ey, as a function of number
of relaxation steps Nyl .

It is apparent from the inset of Fig. 7 that the linear elas-
tic modulus is reduced by increasing the number of relaxation
steps, as expected. Fig. 7 also shows the dependence of linear
modulus Gy on the total prestress oy, which has been intro-
duced in Section 4. We varied 0y via the above described pro-
cedure, and measured Gy with the shearing protocol described
in Section 3. After a certain number of relaxation steps the em-
pirical value for G¢ equals the value Ggﬂ expected from affine
theory (see Section 2.1). Relaxing initial tension further, we
reach moduli even below Ggff. This is possible because the
network can rearrange nonaffinely, thereby softening its re-
sponse. Over a certain range of total prestresses, we observe
linear scaling of Gy with 0y, a phenomenon, which has been
discussed in other contexts before (see for example Ref. 35y,
We explain the linear regime as follows. For small strains the
normal component oy of the stress acting on shear planes is
close in magnitude to the total prestress oy, i.e., On &~ 0¢. For
small strains given by shear angles ¥ ~ 0, total forces acting
on the shear planes make an angle ¢ with the direction normal
to the shear planes (see Fig. 8). Our simulations show that
tan @ o< tan ) and that the constant of proportionality remains
unchanged in the linear scaling regime. Therefore, shear sat-
isfies

y=tand o 25 (16)
oo
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Fig. 7 Linear elastic modulus G normalized by the affine
prediction Ggff as a function of total prestress oy normalized by the
total prestress ¢ immediately after initial network generation. The
total prestress is reduced via the procedure described in Section 5.
For small total prestress, Gy exhibits superlinear dependence on oy.
Up to 6 = oy, we observe linear scaling Gy o< 0p, as predicted by
the model. The straight line is drawn as a guide to the eye,
representing linear scaling. Parameters: N = 3000, n = 60, L = 0.3,
lp = 0.06, o = 0.5. The inset shows differential elastic modulus K
versus shear strain Y for systems with varying number of relaxation
steps Nt € {0,50,100,150}. Gy goes down with increasing Ny
Parameters: N = 3000, n =60, L =0.3, I =0.03, a = 0.5.

where oy is the component of the stress acting on shear planes
in the shear direction, see Fig. 8. Hence, the linear elastic
shear modulus Gy defined via og = Gy is proportional to
the total prestress op via Eq. (16). However, for very small
total prestresses, i.e., after many relaxation steps, the modu-
lus shows a steeper than linear dependence on ¢y. Indeed, in
this regime the aforementioned constant of proportionality be-
comes larger. This effect might be attributed to the fact that for
small oy, tensegrity type elements (see Fig. 4 (b)), which do
not contribute to the total prestress but carry energy, contribute
significantly to the measured shear stress, thereby increasing
¢ (see Fig. 8).

Furthermore, affine theory predicts linear scaling of the
modulus Go with crosslink density n. Fig. 9 shows that this
linear scaling is indeed reproduced in our simulations, inde-
pendent of the prestress. Moreover, by changing the prestress
via our relaxation procedure it is possible to reach comparable
slopes to what is predicted by the affine theory.

The next section deals with the nonlinear elastic response of
the simulated networks, and relates it to the theoretical results

y=0 Y=tan?d

ON

N,

Oo

<=7

Fig. 8 The initial network carries a total prestress 6y. After a small
shear y = tan ¥ has been applied it exhibits a shear stress og and
normal stress oy, with tan ¢ = 0g /0N

that were derived in Section 2.

6 Nonlinear regime

6.1 Critical strain

The networks that we study are inherently nonlinear because
crosslinks are WLCs with finite length I (see Eq. (1)), result-
ing in pronounced strain stiffening at a critical strain 7. Stress
diverges at a higher strain 7. In our simulations, we define
the critical strain 7, to be the strain where K / Gy ~ 3. In the
affine theory, 7y and ¥, scale linearly with the ratio of crosslink
to filament length Iy /L. In our simulations, we cannot conclu-
sively report on this dependence because the accessible ranges
for Iy and L are quite limited. On the one hand, there exists an
upper limit for L (therefore also for o, since lo/L < 1 should
hold) to be significantly smaller than the simulation box. On
the other hand, L and [y are bounded from below due to com-
putational limitations—this is because we need to increase the
number of filaments in order to keep networks homogenous.

For ranges that are accessible to our simulations, we ob-
tain the following results. If we fix /o, then we observe linear
scaling ¥ o< 1/L for systems where no relaxation procedure
has been applied (see Fig. 10 (a)). Relaxed systems, however,
sometimes show a less than linear dependence. This effect
might be due to anisotropies induced by the relaxation proce-
dure. If we fix L, then the dependence of Y, on Iy is slightly
less than linear (see Fig. 10 (b)).

6.2 Differential modulus

It remains to discuss the dependence of the differential mod-
ulus on stress, the affine theory of which has been derived
in Section 2. For finite crosslink densities, the only per-
sistent scaling behavior is K ~ o2, as Y approaches Y;—
due to the fact that eventually single WLC response dom-
inates. In an intermediate regime, above the critical stress
0. = 6 (%), we observe slopes (dInK/dIng) > 3/2. The ma-
jority of the simulations shows intermediate slopes around 2
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(diamonds) and N;e; = 50 (squares). Solid line indicates values
expected from affine theory: Ggff = pnk,L/192. Parameters:
N =3000,L=0.3, 1l =0.06, 0 =0.5.

or slightly above, mostly independent of simulation parame-
ters, but there are also realizations that show maximum slopes
up to 3.5 (see Fig. 11). These higher slopes and the final scal-
ing K ~ 6°/? are in accordance with the predictions of affine
theory. Indeed, a slope of 3.5 is the maximum slope predicted
by the affine theory when using the same crosslink density as
in the simulation (Fig. 2). There are, however, differences be-
tween theory and simulation in terms of slope profiles since
various assumption are made by the theory that do not hold in
the simulation: A randomly generated network does not have
a uniform crosslink density along the filaments, these systems
are prestressed, and there is no perfect isotropy. Moreover, the
networks do not deform perfectly affinely.

6.3 Nonaffinity

In order to study to what extent simulation results deviate from
affine theory, apart from prestress, nonuniform crosslink den-
sity, and anisotropy, we analyze the nonaffinity of the network
deformation under shear. For a single filament, we define its
differential nonaffinity with respect to the center of mass by

|| 67 — 6r?

) a7
18712

where Srar and §r are the 3D coordinates of a filament’s cen-
ter of mass after applying an incremental shear strain 6y with-
out and with relaxation, respectively.

os b ’l Nre]I:OI 1 1 1 1 1 i a ]
B Nel =50 A
- [ ] 4 A —
0.4 o ] ¢ N
3] ] A
T3k u e + .
02 F .. M T A‘
** (a) (b)
0.1 ] ] 1 ] ] ] ] 1

2 3 4 5 6 7 003 005 007 009
1/L lo

Fig. 10 (a) Critical strain ¥ versus inverse filament length 1/L for
Niel = 0 and Ny = 50. Other parameters: N = 5000, n = 60,
lp=0.04, a = 0.7. We observe linear scaling y; o< 1/L for Ny = 0;
systems in which relaxation has been applied show deviations from
this behavior (see N,e] = 50 here). (b) Critical strain ¥ versus
crosslink contour length /y for a system with N = 3000, n = 50,
L=03,0=05.

We let 8I" denote the average of the differential nonaffini-
ties over all filaments. Affine approximations imply 6I" = 0.
Fig. 12 shows that center of mass deformations are mostly
affine for small strains. However, the differential nonaffinity
increases starting at a strain around 7, and eventually diverges
as ¥ — 7a. This can be understood, since the networks are
strain stiffening, such that small incremental strain can induce
large increase in the forces of individual crosslinks, thereby
inducing large local rearrangements during energy minimiza-
tion.

While increasing shear strain, there are force chains3%38
developing in the network, which carry most of the tension,
and which cannot reduce their strain due to the fact that they
span the entire system (see inset of Fig. 13). We quantify this
effect by considering tension profiles along filaments. The
tension 7 at position x along a filament is given via T(x) =
Yl >l falui), where {x;} are the crosslink binding sites and
u; their extensions (#; = €x; in affine theory). Fig. 13 shows
tension profiles averaged over all filaments for both, theoret-
ical and simulated systems at various strains. In the simula-
tions there is non-zero tension at zero strain due to prestress.
With increasing ¥, the simulations resemble the profiles ex-
pected from affine theory. However, when approaching the
maximum strain 7Yy, the emergence of selective paths (force
chains) that carry most of the tension becomes evident. The
highly stretched crosslinks dominate the averaged tension pro-
files and therefore lead to jumps in the tension curves at the
respective binding sites along the filament (green solid curve
in Fig. 13).
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Fig. 11 Differential modulus as a function of shear stress, rescaled
by linear modulus and critical stress 0, = 6(%), respectively.
Parameters: N = 3000, n =60, L = 0.3, I = 0.06, a = 0.5, with
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observe power law scaling K ~ c3/? (solid straight line). For
intermediate stresses we recover slopes in the range of those derived
from affine theory.

6.4 Bending

Thus far we have restricted our theory and simulations to rigid
filaments that can neither bend nor stretch. In Ref.!°, the
authors considered finite stretching compliance of filaments,
while bending compliance was assumed to be zero. They re-
port that finite stretching stiffness does not impact the non-
linear stiffening regime of a composite network apart from the
expected convergence (to some constant value) of the modulus
at high strains. Here we complement this analysis by consid-
ering filaments that have finite bending but no stretching com-
pliance. We performed simulations on a 2D network because
of the relative computational ease compared to the 3D case.
In addition to the energy stored in the
crosslinks, we consider bending energy
of the form Ey, = k02 /(2l,y), where k
is the bending rigidity, 8 is the angle
through which the filaments bend lo-
cally, and Iy = (I1 +1,) /2 is the average distance between two
adjacent pairs of crosslinks. We show the results in Fig. 14.
The range of bending rigidity was chosen such that the lin-
ear modulus was still determined by the soft stretching modes
of the crosslinks, so that bending did not impact the linear
regime. As can be seen from these plots, bending compliance
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107! 3

1072 / 3

1073 -

104 I I I I ] I I I
00 02 04 06 08 10 12 14 16 18
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Fig. 12 Differential nonaffinity 8T as a function of scaled shear
strain /%, for a system with N = 3000, n = 60, L = 0.3, Iy = 0.06,
o =0.05.

does not impact the nonlinear stiffening regime either—since
bending modes are geometrically prohibited for large strains.

Thus, in isolation, neither bending nor stretching compli-
ance of filaments impacts the nonlinear stiffening regime of
composite networks. These findings suggest that the theoret-
ical models at present cannot explain the X ~ ¢ scaling ob-
served in experiments.

7 Conclusions

We have studied the elastic properties of composite
crosslinked filamentous networks in 3D analytically and nu-
merically. We modeled such networks as a collection of rigid
filaments connected by WLC crosslinks.

Based on the affine theory introduced in Ref.!® we derived
asymptotic power law scaling exponents for the differential
elastic modulus with stress, in the limit of infinite crosslink
density. In this case, the scaling exponents depend on the
dimensionality of the system. In particular, we showed that
3D systems no longer exhibit a power law. Furthermore, we
showed that for finite crosslink densities, the only persistent
regime (over several orders of magnitude of stress) is the o3
scaling, as it is derived from the single WLC force-extension
relation Eq. (1). This is in sharp contrast with the model pro-
posed in Ref.162 where linear scaling was suggested, inde-
pendent of the dimensionality of the system. There model im-
plies finite stress at any strain and therefore does not apply to
composite networks of rigid filaments with flexible crosslinks
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Fig. 13 Average tension 7 as a function of position x along the
filament for various strain values. Tension 7 is normalized by its
maximum absolute value Ty. Dashed curves correspond to
theoretical results for n = 60 at Y = 7, (blue), ¥~ 73 (green). Solid
curves show simulation data, with N = 3000, n = 60, L = 0.3,

lo =0.06, a = 0.5. Inset shows a snapshot of the same system at
maximum strain ¥ =~ 0.6 where only the 15 most stretched
crosslinks and the corresponding filaments are shown. They form
singular paths that span the whole system, thereby preventing further
stress reduction via nonaffine rearrangements in these finite systems.

of finite length.

We further developed a simulation framework that allows
us to measure the elastic response of random filamentous net-
works with WLC crosslinks. One important property of these
3D networks is that, by construction, they are prestressed due
to initial extensions of the crosslinks. In addition to geomet-
rical constraints, active elements such as motors can induce
prestress as well. > We showed that the prestress in a network
can dominate the linear response and might therefore be a fea-
ture that is worthwhile analyzing in experimental systems.

Regarding nonlinear response, we observed divergence of
stress (and differential modulus) at finite strain. Close to this
strain we measured a power law scaling of the differential
modulus with stress, with an exponent 3/2, just as expected for
a single WLC. In an intermediate-stress regime we observed
local exponents that span the entire range of theoretically de-
rived values for systems of differing dimensionality. The fact
that our simulation results do not always resemble the predic-
tions of a 3D affine theory, in this intermediate regime, may be
attributed to nonaffine deformations. Extracting the exact set
of assumptions—such as uniform crosslink density, isotropy,
or zero prestress—that are responsible for these discrepancies

10% ——r T
E v v x=10"" ]
o o x=10"! ]
N ¢ k=100
10 é A A é
* L 4
l:o 102 =
T
N
10!
100
101 100 10! 102 10°

o/0¢ /e

Fig. 14 (a) Differential modulus K as a function of shear stress o,
rescaled by linear modulus Gy and critical stress 6, = o(¥,),
respectively, for various bending rigidities x. Solid straight line
indicates power law scaling K ~ 03/2. (b) Differential modulus X
as a function of shear strain ¥, rescaled by linear modulus Gy and
critical strain ), respectively. Parameters: N =800, L =1, lp = 0.1,
system-size Ly = Ly = 6.

is left for future investigation.

Experiments (see, e.g., 13’20’21) have shown that in the non-
linear regime the differential modulus scales approximately
linearly with the shear stress. We did not find such a regime in
our simulations—neither when working with rigid filaments
nor when incorporating finite bending stiffness (or enthalpic
stretching as done in Ref.!?). Therefore, we argue that none
of the currently available theories can adequately explain the
linear scaling of the differential modulus observed experimen-
tally. It could possibly be that the WLC model does not ac-
curately describe the elastic response of a single crosslink
throughout the whole experimentally accessible regime. We
speculate, however, that the linear scaling might be due to ther-
mal fluctuations of the filaments, which have not been consid-
ered so far.
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A Derivation of scaling relationships for the
shear modulus

A.1 1D network

The integral Eq. (3) for the total energy of a single filament
can be solved to give

(18)

The divergence of the energy for € — &4 = 2ly/L stems from
Iin(1- f)

we need to con51der for the asymptotic scaling analysis in 2D
and 3D.

the term ~ which is therefore the only one that

A.2 3D network

To approximate the solution of the integral in Eq. (12) we first
carry out the ¢ integration analytically and obtain

sin26
n/2 arctan %]
(@)oo~ | (19)
0 \/ 1 —(y/74)?sin®26
X sin@do . (20)

The integral diverges for ¥ = ¥4 due to a pole at 6 = /4. We

14+(7/7va) sin26
1—(7/7a) sin26
a constant because it takes finite values around the pole. Since

we are interested in the regime close to the divergence of the
integrand, we expand sin®26 up to second order in v := 6 —
7 /4. We arrive at

. 21
Lo e e

can approximately consider tan~! [ X sin @ as

Approximation errors close to the boundary of the interval of
integration that are made by expanding sin?26 are negligi-
ble, regarding the asymptotics, because the integrand diverges
right at the center of the interval. Now we define yt :=1—7y/4
and drop all terms of higher than first order in u, since we are
interested in the behavior close to y = 3. With n? := 4v? and
0 :=2u, we obtain

/n/2 d—n ) (22)
~7/2/N3(1=8)+8

This can be integrated, with the diverging part being

/2
~In (2\/112(1—5)2+6(1—5)+2(1—5)n> :
—/2
(23)
~—Ins, 24)
~—=In(1-7/7), (25)

which is what has been proposed in Section 2.3.

References

1 P. A.Janmey, U. Euteneuer, P. Traub and M. Schliwa, J. Cell Biol., 1991,
113, 155-60.

2 F. C. MacKintosh and P. A. Janmey, Current Opinion in Solid State and
Materials Science, 1997, 2, 350-357.

3 J. Xu, D. Wirtz and T. D. Pollard, J. Biol. Chem., 1998, 273, 9570-9576.

4 M. L. Gardel, J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. Matsudaira
and D. A. Weitz, Science, 2004, 304, 1301-5.

5 M. L. Gardel, J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. A. Matsu-
daira and D. A. Weitz, Phys. Rev. Lett., 2004, 93, 1-4.

6 C. Storm, J. J. Pastore, F. C. Mackintosh, T. C. Lubensky and P. A. Jan-
mey, Nature, 2005, 435, 191-194.

7 A.R.Bausch and K. Kroy, Nature Physics, 2006, 2, 231-238.

8 G. H. Koenderink, M. Atakhorrami, F. C. MacKintosh and C. F. Schmidt,
Phys. Rev. Lett., 2006, 96, 138307.

9 0. Chaudhuri, S. H. Parekh and D. A. Fletcher, Nature, 2007, 445, 295-8.

10 P. A. Janmey, M. E. McCormick, S. Rammensee, J. L. Leight, P. C.
Georges and F. C. MacKintosh, Nature Materials, 2007, 6, 48-51.

11 K.E.Kasza, A. C. Rowat, J. Liu, T. E. Angelini, C. P. Brangwynne, G. H.
Koenderink and D. A. Weitz, Curr. Opin. Cell Biol., 2007, 19, 101-7.

12 J. Liu, G. H. Koenderink, K. E. Kasza, F. C. MacKintosh and D. A. Weitz,
Phys. Rev. Lett., 2007, 98, 198304.

13 M. L. Gardel, F. Nakamura, J. H. Hartwig, J. C. Crocker, T. P. Stossel and
D. A. Weitz, Proc. Natl. Acad. Sci. U.S.A., 2006, 103, 1762-1767.

14 M. L. Gardel, F. Nakamura, J. Hartwig, J. C. Crocker, T. P. Stossel and
D. A. Weitz, Phys. Rev. Lett., 2006, 96, 088102.

15 B. A.DiDonna and A. J. Levine, Phys. Rev. E: Stat., Nonlinear, Soft Mat-
ter Phys., 2007, 75, 041909.

16 C. P. Broedersz, C. Storm and F. C. MacKintosh, Phys. Rev. Lett., 2008,
101, 118103.

17 P. Dalhaimer, D. E. Discher and T. C. Lubensky, Nature Physics, 2007, 3,
354-360.

18 H. Lee, B. Pelz, J. M. Ferrer, T. Kim, M. J. Lang and R. D. Kamm, Cel-
lular and Molecular Bioengineering, 2009, 2, 28-38.

19 A. Sharma, M. Sheinman, K. M. Heidemann and F. C. MacKintosh, Phys.
Rev. E: Stat., Nonlinear, Soft Matter Phys., 2013, 88, 052705.

20 K. E. Kasza, G. H. Koenderink, Y. C. Lin, C. P. Broedersz, W. Messner,
F. Nakamura, T. P. Stossel, F. C. MacKintosh and D. A. Weitz, Phys. Rev.
E: Stat., Nonlinear, Soft Matter Phys., 2009, 79, 041928.

21 K. E. Kasza, C. P. Broedersz, G. H. Koenderink, Y. C. Lin, W. Messner,
E. A. Millman, F. Nakamura, T. P. Stossel, F. C. Mackintosh and D. A.
Weitz, Biophys. J., 2010, 99, 1091-100.

22 C. Bustamante, J. F. Marko, E. D. Siggia and S. Smith, Science, 1994,
265, 1599-1600.

23 J. E. Marko and E. D. Siggia, Macromolecules, 1995, 28, 8759-8770.

24 1. Schwaiger, A. Kardinal, M. Schleicher, A. A. Noegel and M. Rief, Na-
ture structural & molecular biology, 2004, 11, 81-85.

25 S. Furuike, T. Ito and M. Yamazaki, FEBS letters, 2001, 498, 72-75.

12| Journal Name, 2010, [vol], 1-13

This journal is © The Royal Society of Chemistry [year]

Page 12 of 14



Page 13 of 14 Soft Matter

27
28
29

30
31

32
33
34
35
36
37
38

39

C. P. Broedersz, C. Storm and F. C. MacKintosh, Phys. Rev. E: Stat.,
Nonlinear, Soft Matter Phys., 2009, 79, 61914,

L. Landau and E. Lifshitz, Elasticity theory, Pergamon Press, 1975.

A. Wichter and L. T. Biegler, Math. Prog., 2005, 106, 25-57.

A. W. Lees and S. F. Edwards, J. Phys. C: Solid State Phys., 1972, 5,
1921-1928.

J. Wilhelm and E. Frey, Phys. Rev. Lett., 2003, 91, 108103.

D. A. Head, A. J. Levine and F. C. MacKintosh, Phys. Rev. Lett., 2003,
91, 2-5.

P. R. Onck, T. Koeman, T. van Dillen and E. van der Giessen, Phys. Rev.
Lett., 2005, 95, 19-22.

R. Connelly and A. Back, American Scientist, 1998, 86, 142.

A. Pugh, An introduction to tensegrity, University of California Pr, 1976.
S. Alexander, Physics Reports, 1998, 296, 65-236.

C. Heussinger and E. Frey, The European Physical Journal E, 2007, 1-8.
E. M. Huisman, T. van Dillen, P. R. Onck and E. Van der Giessen, Phys.
Rev. Lett., 2007, 99, 2-5.

G. Zagar, P. R. Onck and E. Van der Giessen, Macromolecules, 2011, 44,
7026-7033.

G. H. Koenderink, Z. Dogic, F. Nakamura, P. M. Bendix, F. C. MacKin-
tosh, J. H. Hartwig, T. P. Stossel and D. A. Weitz, Proc. Natl. Acad. Sci.
U.S.A., 2009, 106, 15192-7.

This journal is © The Royal Society of Chemistry [year]

Journal Name, 2010, [vol], 1-13 | 13



Soft Matter

Elasticity of 3D networks with rigid filaments and
compliant crosslinks
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We extract the elastic properties of 3D random net-

works of rigid filaments and compliant crosslinks via
physical simulations and derive asymptotic scaling re-
lations of the elastic modulus with the stress in the
context of an affine theory.
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