
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

www.rsc.org/softmatter

Soft Matter

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Gas bubble dynamics in soft materials†

J. M. Solano-Altamirano,a,∗ John D. Malcolm,a,‡ and Saul Goldmana,§

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX

First published on the web Xth XXXXXXXXXX 200X

DOI: 10.1039/b000000x

Epstein and Plesset’s seminal work on the rate of gas bubble dissolution and growth in a simple liquid is generalized to render it

applicable to a gas bubble embedded in a soft elastic solid. Both the underlying diffusion equation and the expression for the gas

bubble pressure were modified to allow for the non-zero shear modulus of the medium. The extension of the diffusion equation

results in a trivial shift (by an additive constant) in the value of the diffusion coefficient, and does not change the form of the rate

equations. But the use of a Generalized Young-Laplace equation for the bubble pressure resulted in significant differences on the

dynamics of bubble dissolution and growth, relative to an inviscid liquid medium. Depending on whether the salient parameters

(solute concentration, initial bubble radius, surface tension, and shear modulus) lead to bubble growth or dissolution, the effect

of allowing for a non-zero shear modulus in the Generalized Young-Laplace equation is to speed up the rate of bubble growth,

or to reduce the rate of bubble dissolution, respectively. The relation to previous work on visco-elastic materials is discussed,

as is the connection of this work to the problem of Decompression Sickness (specifically, “the bends). Examples of tissues to

which our expressions can be applied are provided. Also, a new phenomenon is predicted whereby, for some parameter values,

a bubble can be metastable and persist for long times, or it may grow, when embedded in a homogeneous under-saturated soft

elastic medium.

1 Introduction

More than sixty years ago, Epstein and Plesset published

a seminal article in which they showed how to semi-

quantitatively estimate the rate of gas bubble growth or disso-

lution, for a bubble embedded in a liquid medium containing

the dissolved gas of which the bubble is comprised1. They

applied their expressions to air bubbles suspended in water,

containing dissolved air. Their rate expressions have been ex-

perimentally found to be largely correct, and the precise de-

gree of validity of their model remains the subject of active

research2–4. For small dissolving bubbles, the predictions of

Epstein and Plesset’s model were found to be within about

9% of the observed values for the surface tension and satura-

tion level dependencies2 when the surrounding medium is a

simple liquid.

Their work was subsequently applied to a variety of prob-

lems that arise in volcanology5–7, cavitation in liquids8,9 and

physiology10,11. Here we extend Epstein and Plesset’s ap-
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proach to a gas bubble embedded in a soft slightly compress-

ible elastic solid. This extension is required in order to cor-

rectly model gas bubble growth and dissolution in soft ex-

travascular tissue in the human body. The latter application

arises in the problem of Decompression Sickness, which is of

interest to us11,12.

Decompression Sickness arises due to the growth of gas

bubbles in blood and tissues, as a consequence of an overly

rapid decompression (i.e., drop in external pressure), which

may arise from an overly rapid ascent from a scuba dive,

or from too rapid a drop in external pressure in aviation or

space exploration. Two basic causative mechanisms of De-

compression Sickness are currently distinguished, depending

on whether the expanding bubbles are in arterial circulation,

or whether they are lodged in extravascular tissue13. The ex-

pansion of gas bubbles that get into arterial circulation - Ar-

terial Gas Emboli (AGEs) - is believed to initiate Cerebral,

Spinal, Inner Ear, and Skin Decompression Sickness, while

the expansion of extravascular (or “autochthonous”) bubbles is

believed to be responsible for joint and musculoskeletal pain

(colloquially, “the bends”)13. In an earlier article11 we ap-

plied Epstein and Plesset’s work to AGEs in relation to their

connection to Inner Ear Decompression Sickness. We would

like to extend our work to include the dynamics (growth and

dissolution) of gas bubbles lodged in soft extravascular tis-

sues. Consequently, we focus here on developing the theoret-

ical tools needed to do this. These bubbles will be considered

to be lodged in a medium such as muscle or cartilage, which
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much more closely resembles a soft elastic solid than it does

an inviscid liquid (such as water, which has no shear resistance

or intrinsic shape). While Epstein and Plesset’s work was es-

sentially directly applicable to AGEs (since arterial blood is a

liquid medium much like water), it must be significantly mod-

ified before it can be applied to a gas bubble lodged in soft

tissue.

Of course, soft matter includes a broad range of material

types, whose properties may differ considerably from one an-

other. Since our interest here is in materials such as muscle

and cartilage, we will use as their model a soft elastic solid.

Soft elastic solids differ profoundly, for example, from vis-

coelastic fluids such as polymer melts, which we don’t con-

sider. Specifically, a soft elastic solid has a non-zero shear

resistance and manifests a definite intrinsic shape, but its con-

stituent particles (actually, small cells of its constituent mate-

rial) are assumed to not undergo re-arrangement, in response

to processes occurring within the medium — such as bubble

growth or dissolution. A bubble growing or dissolving in a

viscoelastic fluid however, will be accompanied by a molecu-

lar re-arrangement in the surrounding medium, and this fun-

damental difference will be reflected in the different equations

that describe the respective systems.

We derive generalized rate equations that take into account

the influence of a non-zero shear modulus in the medium, un-

der the assumption that the medium has the properties of a

soft elastic solid. The non-zero shear resistance manifests it-

self both on the magnitude of the internal gas bubble pressure

and on the diffusion equation used for the medium. We il-

lustrate our expressions by using them to predict the dynam-

ics of growth and dissolution of an embedded gas bubble in

a soft material with properties similar to soft tissues in the

human body believed implicated in joint and musculoskeletal

Decompression Sickness. We also very briefly compare our

work with earlier work on gas bubbles in various other types

of media, including viscoelastic media.

2 Theory

Epstein and Plesset’s rate laws for gas bubble growth and dis-

solution are obtained from equations (1)-(3) and (5), given be-

low. Combining Eqs. (1)-(3) provides the relation between

dR/dt and (∂c/∂ r)R, and the solution of Eq. (5) provides the

expression(s) for (∂c/∂ r)R.

The Young-Laplace equation for the gas pressure inside a

bubble embedded in an inviscid liquid (i.e. one without shear

forces) is:

PB = Pe +
2γ

R
, (1)

where PB is the gas pressure inside the bubble, Pe is the exte-

rior pressure that acts on the medium, γ the surface tension at

the bubble-medium interface, and R is the radius of the bubble.

Fick’s law for the rate of solute transfer across a spherical

interface is given by:

dn

dt
= 4πDR2

(

∂c

∂ r

)

R

, (2)

where n is the number of moles of gas in the bubble, t the time,

D is the diffusion coefficient of the solute in the medium, and

(∂c/∂ r)R is the dissolved solute concentration gradient at the

surface of the bubble.

Henry’s law is assumed to apply at all the boundaries of the

system:

c(R∗, t) =
P(R∗, t)

KH

. (3)

Here R∗ represents the distance from the center of the system

to any of the boundaries (see Fig. 1), c(R∗, t) is the dissolved

gas concentration at (R∗, t) (in units mol/l), KH the Henry’s

constant for the gas dissolved in the medium and contained in

the bubble, and P(R∗, t) is the dissolved gas partial pressure

at the boundary whose distance is R∗ from the system center.

KH is an equilibrium constant that is related to the solubility

of the gas in the medium14. It gives the ratio of the gas partial

pressure to its concentration in solution at equilibrium.

To derive an expression(s) for (∂c/∂ r)R, we start by con-

sidering the full diffusion equation for a two-component fluid

in the absence of elastic effects15:

∂c

∂ t
=−∇ · ~J−∇ · (c~v) . (4)

Here ~J is the flux of dissolved material within a differential

volume element of the elastic medium, and ~v is the velocity

of the volume element relative to the bubble. In Eq. (4) it is

assumed that any change in density stemming from a change

of concentration of the dissolved substance can be neglected.

The second term on the right of Eq. (4) provides the contribu-

tion to ∂c/∂ t due to any motion of the volume element (e.g.

convective motion due to mixing or flow) relative to the bub-

ble.

In order to derive analytic expressions for the rate of bub-

ble growth/dissolution, Epstein and Plesset made two funda-

mental assumptions. One was to omit the contribution due to

relative motion of the medium i.e., they took ~v in Eq. (4) to

be zero. The other involved a separation of time scales. This

arose through their (tacit) assumption that any perturbation in

the system — specifically, the transfer of a small amount of

solute across the bubble interface — is followed by an instan-

taneous re-equilibration of the solute distribution in the entire

system — i.e. both in the bubble and in the medium. Thus,

equations (1)-(3) are taken apply at all times. We will here

refer to their second approximation as the “quasi-static ap-

proximation”, since it approximates the bubble as static (or
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growing infinitesimally slowly), relative to the very rapid re-

distribution rate of the solute within the bubble and the sur-

rounding medium. As mentioned above, the overall error that

results from both of these approximations, made simultane-

ously, is within about 9% for the predicted dissolutions times

for small bubbles in an under-saturated medium2. Bubble

growth in slightly super-saturated solutions also appears to be

driven mostly by diffusive processes4. Hence, the quasi-static

approximation is in fairly good agreement with experimen-

tal observations both for slightly super-saturated and slightly

under-saturated solutions. Good reviews that critically ana-

lyze the physical conditions under which the approximations

made by Epstein and Plesset are viable and/or useful are pro-

vided in Refs. 6 and 7.

With these approximations, the full diffusion equation (4)

is reduced to the familiar diffusion equation:

∂c

∂ t
= D∇

2c. (5)

In this work, we also make both of these assumptions, for the

same reasons as in Epstein and Plesset’s work. In addition,

neglect of the medium’s motion is further necessitated by our

application of linear elasticity theory, which requires that our

system undergoes only coherent deformations. By a “coherent

deformation” is meant that the coordinates of the deformed

body are isomorphic functions of the coordinates of the un-

deformed body16.

In order to allow for the effects of a non-zero shear modulus

in the medium we need, in addition to the above approxima-

tions, extensions of Eqs. (1) and (5). The extension of Eq. (5)

for describing the diffusion of a gas within a solid has been

known for some time (see Refs. 17 and references therein):

∂c

∂ t
= D∗

∇
2c−M∇σ ·∇c. (6a)

D∗ = D+Nσ , (6b)

In Eqs. (6), M and N are phenomenological constants char-

acteristic of the medium, σ is the trace of the stress tensor of

the medium, and D∗ is an effective diffusion constant. How-

ever, for the isotropic elastic media which are considered here,

these equations simplify. Since the trace of the stress tensor in

an isotropic medium of arbitrary shape is a constant18,19, the

second term on the right-hand side of Eq. (6a) vanishes for

isotropic media. The resultant equation is:

∂c

∂ t
= D∗

∇
2c. (7)

In what follows, we provide the extension of Eq. (1), and

subsequently use it derive a generalization of Epstein and Ples-

set’s solution for a soft elastic medium.

We consider a gas bubble embedded in an elastic medium,

as illustrated in Fig. 1.This physical model is identical to the

R

cB(R, t)

Soft Elastic Material

Gas

Rsys

cWSR(Rsys, t)

WSR ∞

Fig. 1 A gas bubble of radius R surrounded by an elastic medium

through which dissolved gas diffuses either toward or away from the

bubble. The elastic medium is split into an inner spherical shell

whose thickness is (Rsys −R), and a “well stirred region” (WSR),

wherein the dissolved solute concentration (cWSR) is constant and

uniform. The scheme represents a “snapshot” of the dynamical

system, which is assumed to always be in a quasi-static state,

throughout the growth or dissolution of the bubble.

one introduced by Epstein and Plesset, except that we here

allow for a positive shear resistance in the diffusive medium.

The general purpose of the approximate model shown in Fig.

1 is to simplify the problem by physically separating the re-

gions wherein diffusion and convection (or mixing) are pre-

sumed to occur. Diffusion alone is presumed to occur in the

diffusive region via a concentration gradient within this re-

gion. The well-stirred region, which is comprised of the same

elastic material as that of the diffusive region, is presumed to

be perfectly well-mixed, i.e. it has no solute concentration

gradient(s).

The entire system is taken to be in a quasi-static state at

all times. Dissolved gas diffuses either toward or away from

the bubble due to a solute concentration gradient within the

diffusion shell that surrounds the bubble. This gradient stems

from the solute concentrations at Rsys and at R being different.

The concentration is fixed at the constant value cWSR at Rsys,

and it is determined by the bubble pressure PB, and Henry’s

law, at R. Since PB is a function of R (see Eqs. (8a), (9), and

(10)), and R varies with t, cB will vary as the bubble shrinks or

grows. The bubble will dissolve if cB > cWSR, it will grow if

cB < cWSR, and it will be stable or meta-stable, and persist for

relatively long times (or indefinitely) if cB = cWSR.
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2.1 Modification of the diffusion equation to allow for

elastic effects

Recently, Goldman generalized the Young-Laplace equation

by considering the effect of an elastic body on the internal

pressure of a gas bubble embedded within it20. For a spherical

elastic shell containing a spherical embedded gas bubble at

its center, the result was found to be given by the system of

coupled equations:

PB = Peh(ν)+4a1G [1−νh(ν)]+
2γ

R
, (8a)

h(ν) =
1+δ

1+νδ
, δ =

4G

3K
, (8b)

ν =

(

R

Rsys

)3

, (8c)

R3
sys = R3 +(3V

(el)
in /4π)(1+3a2) , (8d)

a2 =
4Ga1ν −Pe

3K +4Gν
. (8e)

Here, V
(el)
in is the initial volume of the elastic shell (i.e. prior

to compression by the application of non-zero pressures to its

surfaces), G is the shear modulus of the elastic medium, K

is its modulus of compression (aka bulk modulus), Pe (as in

Eq. (1)) is the external pressure applied at the outer radius

of the spherical shell, and a1 is a constant related to the vol-

umetric change of the gas in the bubble due to compression.

For ideal gases, or real gases at low-to-moderate pressures,

a1 =−1/320.

“a1” which is closely related to the compressibility of the

gas bubble through 3a1 = ∆V (bubble)/V0(bubble)20, plays a

very important role here. Specifically, the magnitude of the

effect stemming from the shear resistance G of the medium

on the bubble’s internal pressure is proportional to this term

(see Eq. (8a), (9), and (10)). It will be shown that the bub-

ble’s pressure profoundly effects its rate of growth or disso-

lution. Therefore a small condensed phase-like compressibil-

ity (such as a1 ≈−
(

10−4 −10−5
)

), which would apply if the

gas bubble were replaced by a liquid bubble, would almost to-

tally eliminate our elastic effect on the dynamics. In fact, the

effects found and reported in this work arise almost entirely

from the combination of the high compressibility of the bub-

ble, together with the soft elastic properties of the surrounding

medium.

For reasons given below we will, in this work, focus on soft

elastic materials that are only slightly rigid. Specifically, we

will only consider materials for which 0 < G ≪ K. Under

these conditions, a2
∼= 0, δ ∼= 0, h(ν) ∼= 1, and the above sys-

tem of coupled equations are reduced to a single equation. We

find:

PB = Pe − (4G/3)(1−ν)+2γ/R (9)

and

PB = Pe −
4G

3
+

2γ

R
, (10)

for a finite and infinite elastic medium, respectively. For rea-

sons also given below, we will here focus on a finite-sized gas

bubble embedded in an infinite elastic medium. Also, as dis-

cussed earlier in the Introduction, we here re-emphasize that

our system is taken to be a soft elastic solid, which is not al-

lowed to flow, nor to rearrange its underlying molecular con-

figuration. Therefore the viscosity of the medium is here not

considered. For this reason, our Eq. (10), for example, does

not contain a term that contains the medium’s coefficient of

viscosity (compare, for example, Eq. (10) with Eq. (1.4) of

Ref. 8).

One can rewrite Eq. (9) to define an effective surface ten-

sion:

γe f f ≡ γ −
2GR(1−ν)

3
, (11)

so that the bubble pressure becomes:

PB = Pe +
2γe f f

R
. (12)

Since 2GR(1− ν)/3 ≥ 0 for all R, we see that the non-zero

shear resistance of the elastic medium lowers the effective sur-

face tension acting on the bubble. This holds for either a finite

or an infinite elastic medium, but is specific to the type of elas-

tic materials we consider here (i.e. only those which are com-

pressible, and for which K ≫ G).

2.2 Generalization of Epstein and Plesset’s solution

Fick’s law (Eq. (2)) is used in order to obtain the formal

growth/dissolution rate expression for a gas bubble embedded

in an isotropic elastic medium. Using the Ideal Gas law, we

find:
dn

dt
=

4π

3BT

d

dt

(

PBR3
)

= 4πD∗R2

(

∂c

∂ r

)

R

. (13)

Substituting the expression for PB given by Eq. (10) into

Eq. (13), gives

dR

dt
=

3BT D∗

3PeR+4γ −4GR

{

R

(

∂c

∂ r

)

R

}

(14)

for a bubble in an infinite medium.

In the limit G → 0, Eq. (14) can be shown to reduce to

Epstein and Plesset’s rate expressions for γ ≥ 0.

2.3 The (∂c/∂ r)R expressions

The working rate equations are obtained by replacing

(∂c/∂ r)R by the expressions obtained for it from the solution

of the diffusion equation. We will consider the expressions
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for (∂c/∂ r)R that arise both from the diffusion equation, and

from its steady-state approximation, the Laplace equation.

It is perhaps not superfluous to point out the distinction

between the “steady-state” and the “quasi-static” approxima-

tions, both of which arise in this work. The former entails

setting ∂c/∂ t = 0 in the diffusion equation, which removes its

explicit time-dependence. The time-dependence is then car-

ried implicitly by constants (r-independent parameters) deter-

mined from the time-dependent boundary conditions (see Eq.

(19)). The quasi-static approximation, on the other hand, in-

volves assuming an instantaneous re-equilibration of the so-

lute distribution in the system, following each incremental gas

transfer between the bubble, the surrounding medium, and the

WSR. The quasi-static approximation is applicable both to the

diffusion equation and to its steady-state approximation (the

Laplace equation).

By solving the diffusion equation, Epstein and Plesset

found:

(

∂c

∂ r

)

R

=
PWSR −PB(t)

KH

(

1

R(t)
+

1
√

πD∗t

)

, (15)

or

(

∂c

∂ r

)

R

= (cWSR − cB(t))

(

1

R(t)
+

1
√

πD∗t

)

= ( f csat − cB(t))

(

1

R(t)
+

1
√

πD∗t

)

. (16)

In going from Eq. (15) to Eq. (16), we used cWSR ≡ f csat =
f Pe/KH , where csat is the dissolved solute concentration in the

well-stirred region of the medium at equilibrium, and f is the

relative solute concentration to its equilibrium value (aka the

“supersaturation ratio”) in the well-stirred region.

Epstein and Plesset noticed that the 1/
√

πD∗t term varied

more rapidly with time than 1/R(t), and they consequently

neglected it in order to derive an approximate analytic expres-

sion for the time evolution of the bubble radius. (Their work

preceded the computer era so that the numerical procedures

that we take for granted were then not an option).

An alternate route to these analytic expressions for the con-

centration gradient is to solve the Laplace equation:

∇
2c(r, t) = 0 (17)

subject to the boundary conditions:

c(Rsys = ∞) = cWSR; c(R, t) = cB(t). (18)

The solution of the Laplace equation under spherical sym-

metry has the general form

c(r, t) = A(t)+
B(t)

r
, r ≥ R(t), (19)

where A(t) and B(t) are constants with respect to r, that are

re-evaluated at each time t, from the time-dependent boundary

conditions. This is an example of the quasi-static approxima-

tion, applied to the Laplace equation.

From Eqs. (18) and (19), the concentration gradient at

the bubble surface, obtained from the solution of the Laplace

equation, is readily found to be

(∂c/∂ r)R = ( f csat − cB(t))/R(t). (20)

Notice that Eq. (16) reduces to Eq. (20), after dropping the

second term in Eq. (16).

3 Integration of the rate equations

The rate equation obtained on combining Eqs. (14) and (16)

involves a numerical instability due to the infinite slope at t =
0. This problem can be eliminated by transforming to t1/2 as

the time variable. It is also more convenient to work with the

equations in dimensionless form.

Therefore we define dimensionless (or reduced) variables

for time, and for the bubble radius as:

x2 ≡
(

2D∗BT

KHR2
0

)

t, ρ ≡
R

R0
. (21)

In Eq. (21) R0 is the initial bubble radius, and to keep the

notation simple, the time-dependencies of x2, R, and ρ are not

explicitly written but are to be understood.

The semi-regularized dimensionless rate equations are ob-

tained by combining equations (14) with (16), and (14) with

(20). The results are:

dρ

dx
=

f −1+α −3β/ρ

ρ(1−α)+2β
(x+λρ), (22)

and
dρ

dx
=

(

f −1+α −3β/ρ

ρ(1−α)+2β

)

x, (23)

for the diffusion equation-based (∂c/∂ r)R, and the Laplace

equation-based (∂c/∂ r)R, respectively. Here we have defined

α ≡ 4G/(3Pe), β ≡ 2γ/(3R0Pe), (24a)

and

λ ≡
√

2BT/(KHπ), (24b)

as dimensionless constants that are measures of the shear mod-

ulus, the surface tension, and the square root of the gas solu-

bility, respectively.

Equations (22) and (23), as written, are not fully regularized

since they may become singular as ρ → 0 (the point at which

the bubble dissolves). While this is irrelevant with respect to
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the Laplace-based Eq. (23), which can be integrated analyt-

ically (below), it does create a problem for dealing with Eq.

(22), which can only be integrated numerically. Therefore, for

this numerical integration we adopted a modified Runge-Kutta

integration scheme, wherein the behavior of ρ is monitored at

the intermediate steps of the integration procedure. The mod-

ification involved stopping the calculation and returning the

values ρ = 0 and τ = τd as the intermediate values of ρ and

τ , whenever negative ρ values were encountered. The validity

of the method was confirmed by checking it against the ana-

lytical solution for the Laplace-based equation (below). The

method yielded results whose relative errors oscillated around

the errors expected for the traditional 4th order Runge-Kutta

integration scheme: O(10−4)−O(10−5).
As indicated above, Eq. (23) can be integrated analytically,

and the final expression obtained is well-behaved. Using a

dimensionless time

τ ≡
2D∗BT

KHR2
0

t, (25)

(x2 = τ) the result is:

τ =
1−α

1− f −α

(

1−ρ2
)

−
2β (2 f +1−α)

(1− f −α)2
(1−ρ)

+
6β 2 (2 f +1−α)

(1− f −α)3
ln

(

(1− f −α)+3β

(1− f −α)ρ +3β

)

.(26)

The dissolution time τd is found from:

τd = τ(ρ = 0). (27)

4 Results

We first identify some actual materials for which G≪K, some

of which are relevant to our interest in modeling gas bubble

dynamics in soft extravascular tissue. These include solutions

of gelatin in water, and a number of soft, largely aqueous tis-

sues in humans and animals. The shear modulus for gelatin

solutions can be made to have a variety of different values

by adjusting the concentration of the polymeric gelatin solute,

the temperature, the pH, and the concentration of any other

solutes that may be present21,22. Partly for this reason, aque-

ous gelatin solutions have been used extensively to model the

influence of shear resistance effects in volcanology23,24, and

in studies related to Decompression Sickness25.

In Table 1, we list values for the shear modulus for gelatin

solutions under different conditions, and for a variety human

and animal soft tissue. This list is by no means exhaustive,

but it illustrates the approximate magnitudes of the reported

G values, and some materials to which our expressions would

be applicable. The entries at the bottom of the table for limb,

muscle and cartilage are probably the most relevant to our in-

terest in modelling gas bubbles responsible for joint pain and

for musculoskeletal Decompression Sickness.

Material G(atm) Ref.

Gelatin solution 0.083−0.434 21

Gelatin solution 0.0002−0.0004 22

Gelatin/Agar 0.07 26

Neural retina ∼ 9.87×10−4 27

Liver 0.001−0.003 28

Liver (Bovine) 0.10 26

Liver 0.001 27

Heart 0.001 27

Fat (Porcine) 0.46 26

Breast (Turkey) 0.10 26

Limb 0.01 27

Muscle 0.005−0.010 28

Articular Cartilage 0.33−5.26 29

Knee Cartilage 2.0−4.0 30

Table 1 Shear modulus for different soft materials for which G ≪ K.

The large ranges provided above for some of the entries re-

flect different ways in which the shear resistance was mea-

sured, the specific tissue used, and the condition (degree of

stress and strain) of the sample at the time of measurement.

The bulk modulus of dilute gelatin solutions will be dom-

inated by the bulk modulus of water, which is known to be

∼ 2.14× 104 atm, and actual measurements suggest that the

shear and bulk moduli of such gelatin solutions differ by three

orders of magnitude (Poisson ratio of 0.4996)31. Also, the

compressibility modulus of soft tissues is usually several or-

ders of magnitude greater than their shear modulus (see Ref.

32 and references therein). Consequently, for both dilute

gelatin solutions, and for the soft tissues listed in Table 1, the

condition G ≪ K is fully satisfied.

It is well known that some materials such as gelatin, which

have solid-like properties at low applied stresses, can behave

as liquids if the magnitude of the applied stress exceeds the

material’s “yield stress”. However, since our main interest is

in applications to soft tissues in human body that always have

solid-like properties, regardless of the magnitude of the ap-

plied stress, the issue of yield stress will here not arise. In

other words, we assume that the stresses applied to the mate-

rial are always smaller than its yield stress.

The parameter values chosen for our calculations were fur-

ther constrained by two considerations.

First, the requirement that the bubble pressure be non-

negative requires that G ≤ 3Pe/4 (see Eq. (10)). This require-
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ment stems from the fact that gas bubbles with negative pres-

sures, embedded in a medium with a positive pressure, are un-

stable on a thermodynamic time scale. Since Pe is here 1 atm,

this produces the constraint G ≤ 0.75 atm in this work. This

requirement is satisfied by many soft elastic materials, includ-

ing most of those listed in Table 1, or by any other material

for which G ≪ K. For materials which do not satisfy this re-

quirement, but do satisfy our other requirements, and whose

bubble pressure is non-negative, the system can be studied by

numerically integrating Eq. (13), and iteratively solving the

system of coupled equations (8) at each time step.

Second, it is known that as the thickness of the elastic

material becomes reduced, the linear response approxima-

tion, which we assumed to hold for the relation between the

stress and strain tensor components20 loses accuracy33–35.

Quadratic and possibly higher-order terms must then be in-

cluded36. Consequently, we will restrict our calculations to a

finite-sized bubble surrounded by an infinite elastic shell.

Our results are given graphically in Figs 2-4, for which the

fixed parameter values were: T = 298.15 K, Pe = 1 atm, D∗ =
2900 µ2/sec, γ = 0.7 µ·atm (70 dynes/cm), and KH = 1614

l·atm/mol. The values for D∗, γ , and KH , correspond to the

diffusion constant of air in water (for the purposes of this pa-

per, we ignore the shift in the diffusion constant due to shear

resistance, since any effect due to this shift would not change

the overall behavior of our system), the surface tension of wa-

ter, and the reciprocal of the solubility of air in water at 1 atm,

respectively. We use these values to illustrate the general form

of our solutions for soft elastic materials of the kind shown in

Table 1.

For purposes of checking and benchmarking, additional nu-

merical values of dissolving times are provided in greater de-

tail in tables, in the separate section “Supplementary Infor-

mation”37.

4.1 The effects on bubble growth or dissolution of shear

modulus, surface tension, initial bubble radius, and

external solute concentration.

In Fig. 2 we show the radius vs time dissolution plots ob-

tained by using either the diffusion or the Laplace equations,

and the effect of a non-zero value of the shear modulus, with

both equations. Clearly, using the diffusion equation, as op-

posed to its steady-state approximation (the Laplace equation)

produces a more rapid dissolution, for a given G. This is read-

ily understood from Equations (16) and (20), from which it

is seen that the steady-state approximation, by omitting the

1/
√

πD∗t term, results (at all times, and particularly short

times) in an insufficiently negative value of the surface gra-

dient term (∂c/∂ r)R. The latter controls the dissolution rate

through Eqs. (13) and (14).

It is also evident from Fig. 2, that a non-zero shear modu-

lus reduces the rate of dissolution (for either equation), and

this is also easily understood. From Eqs. (3) and (10),

cB(G > 0) < cB(G = 0), so that for a dissolving bubble, for

which (∂c/∂ r)R < 0, (∂c/∂ r)R for G> 0, is less negative than

(∂c/∂ r)R for G = 0. Consequently (from Eq. (14)), dR/dt is

less negative for G > 0, so that we get a slower dissolution

rate for G > 0, and this remains true whether one is using the

Laplace equation or the diffusion equation.

In Fig. 3 we illustrate the effect of the variables ( f ,G,R0)

on bubble growth and dissolution. The surface shown was

obtained by setting the numerator in either Eqs. (22) or (23)

to zero, setting ρ = 1, and solving the resultant equation for

( f ,G,R0). A bubble will grow or shrink depending on the

sign of ( f −1)+α −3β . As shown (and as expected), bubble

dissolution is favored by a small initial radius, a small G, and

a small f , while bubble growth is favored by a large initial

radius, a large G, and a large f .

In Figure 4 we show that a bubble whose elastic diffusion

shell is embedded in an under-saturated medium will grow, if

the shear modulus of the medium is sufficiently large. The

exact value of G for which the transition from dissolution to

growth occurs is given by the solution of ( f −1)+α−3β = 0.

For the parameters used in Fig 4, this occurs at G = 0.2925

atm. For this value of G, f = 0.75, and the other parame-

ter values given previously, a 10µ bubble will be metastable,

and may persist at that radius for a significant period of time

(Fig. 4, black solid line). To the best of our knowledge, this

is the first time that such behavior — bubble growth or meta-

stability in an under-saturated medium — has been theoreti-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3

ρ

τ

Diffusion, G=0atm
Laplace, G=0atm
Diffusion, G=0.1atm
Laplace, G=0.1atm

Fig. 2 Reduced bubble radius as a function of reduced time for a

dissolving bubble. The results are for the diffusion and Laplace

equations, for fluids with G ≥ 0. The initial bubble radius was the

same (R0 = 10µ) for all four plots. The plots were obtained using

Eq. (22) and Eq. (26), for the Diffusion and Laplace equations,

respectively. The supersaturation ratio “ f ” was here set equal to

0.75 for all the plots.
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Fig. 3 Dividing surface for bubble growth and dissolution. The

surface is the solution of the equation: ( f −1)+α −3β = 0, in

terms of the variables f , R0, and α . All bubbles of initial radius R0

(shown here in microns) lying above the surface will grow; those

located below the surface will dissolve.
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Fig. 4 The effect of the shear modulus on the evolution of a 10µ

bubble embedded in an under-saturated medium ( f = 0.75). The

plots were obtained from Eq. (22). They can be taken to represent

the form of the predicted dynamics of a bubble embedded in gelatin

solutions, and/or in most of the soft tissues listed in Table 1.

cally proposed for bubbles surrounded by a homogeneous dif-

fusive medium. Stable bubbles in under-saturated media have

been experimentally observed at the liquid-solid interface of

some systems (see for example Ref. 38). However, to the best

or our knowledge, the meta-stability of bubbles in a homo-

geneous diffusive medium, which is under-saturated with re-

spect to the dissolved gas in the bubble, has not been theoreti-

cally proposed elsewhere. The physical basis for this unusual

behavior is the negative effect on the gas bubble pressure that

arises for the parameter values: 0<G< 3Pe/4; Pe ≈O(1 atm)
(see Eq. (10), and Ref. 20).

It is worth noting that the growth illustrated in Fig. 4 is

strictly valid only for short times and for a bubble embedded in

an infinite elastic medium. For real physical systems and long

times, the results we show are approximate limiting values,

and the dynamics will deviate somewhat from what is shown

here. This is because in a real system, the elastic medium is

not infinite, and after the bubble has grown sufficiently, non-

linear effects will start to make themselves manifest.

Some further comments regarding actual bubble dissolution

within a real physical system, and how it relates to our treat-

ment are worthwhile. If the initial bubble radius were large

enough, the elastic medium may experience wrinkling and/or

crumbling in the final stages of the dissolution process, which

we didn’t consider. Thus, the validity of our treatment is lim-

ited to small bubbles (a few tens of microns), or alternately, to

large bubbles constrained to dissolve up to only a fraction of

their initial size. Under these constraints our neglect of wrin-

kling and crumbling instabilities39 is justified.

Also, it should be borne in mind that our initial state, by def-

inition, had a pre-existing bubble lodged in the un-deformed

medium, and its evolution is carried out starting from this un-

deformed state. Therefore, the initial size of the bubble is not

the main constraint; rather it is the difference between the ini-

tial and final size of the bubble, ∆R = R
(

t f

)

−R(t0), which is

constrained to be of a few tens of microns.

4.2 Approximate asymptotic growth law for large bub-

bles

For bubbles sufficiently large so that the surface tension term

can be neglected, β can be approximated by zero in Eq. (23),

so that the bubble’s radius grows or shrinks, approximately,

according to:

ρ =
√

1+
(

feff −1
)

τ, (28)

feff = f/(1−α). (29)

From Eq. (28), we see that the sign of ( feff −1) determines

whether a large bubble in an elastic medium contracts or ex-

pands. It will expand if this function is positive; otherwise, it

will contract. Also, it is seen from these equations, that the

shear resistance in the elastic medium can be thought of as

increasing the value of the effective dissolved solute concen-

tration in the well-stirred region from f csat to feff · csat .

5 Relation to previous work on visco-elastic

materials

There exists a body of previous work on the elastic effects

of a medium on the dynamics of an embedded gas bubble,

but significant differences exist on exactly what was meant by

the term “elastic effects”. A particular focus in the past was
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the dynamics of a bubble in a foam. These studies on foams

also differed from one another, depending on the nature of

the elastic shell surrounding the bubble40–42; or by requiring

the medium to be an infinite viscous liquid42,43, or an elastic-

plastic material44. Furthermore, in some cases, the mathemat-

ical form of the growth law for the bubble was imposed as an

a priori assumption40. Also, in some of the previous work

it was assumed that the bubble pressure is affected by an ad-

hoc polynomial term45, or by postulated phenomenological

rules44.

In this work we used a functional form for the bubble pres-

sure which arises entirely from the general theory of elasticity,

in the limit of the linear response regime19. In addition, all the

previous work of which we are aware has ignored the effect of

the medium’s compression on the diffusion of the dissolved

gas within it. We formally included this effect by using Aifan-

tis’ fundamental diffusion equation for elastic solids17.

Despite our somewhat more fundamental approach, and sig-

nificant differences in the nature of the elastic materials con-

sidered, it is noteworthy that we obtained qualitatively similar

results for the effect of elasticity of the medium on the bubble

dynamics — for example, a reduction of the bubble’s dissolu-

tion rate — as was reported in some of the earlier work (e.g.,

compare Fig. 2 (above), with Ref. 42).

6 Summary

By extending the diffusion equation to allow for elastic ef-

fects, and using a recently derived Generalized Young-Laplace

equation to account for the effect of shear resistance on the

pressure in an embedded gas bubble, we derived a general-

ization for the bubble’s growth/dissolution rate equations that

is applicable to gas bubbles embedded in soft elastic materi-

als with properties resembling those of many soft tissues in

the body. It was shown that if the shear modulus is suffi-

ciently large (but less than 3Pe/4, for Pe ≈ O(1 atm)), a gas

bubble may be meta-stable and remain at a constant size for

some time, or it may grow, in a medium that is under-saturated

with respect to the dissolved gaseous solute. To the best of

our knowledge, this is the first report of the possibility of

gas bubble meta-stability or growth in a homogeneous under-

saturated medium. Also, this indicates that gas bubbles in ex-

travascular soft tissue in the body arising from decompression

will tend to persist for longer times than they would if they

were suspended in a simple (non-elastic) liquid containing the

same dissolved gas partial pressure. This has implications for

the duration of symptoms of “the bends”.
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Gas bubbles dissolve slower and expand faster in a soft solid elastic medium,

relative  to a simple (inviscid) liquid medium.
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