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Abstract 

We have investigated recently suggested advantageous analysis in the chain 

linearization experiments with macromolecules confined in a stripe-like channel (Huang and 

Battacharya, Europhysics Letters 2014, 106, 18004) using Monte Carlo simulations. The 

enhanced chain extension in a stripe which is due to the significant excluded volume 

interactions between monomers in two dimensions weakens considerably on transition to an 

experimentally feasible slit-like channel. Based on the chain extension-confinement strength 

dependence and the structure factor behavior for a chain in a stripe we infer the excluded 

volume regime (de Gennes regime) typical for two-dimensional systems. On widening of the 

stripe in direction perpendicular to the stripe plane, i.e. on the transition to the slab geometry, 

the advantageous chain extension decreases and the Gaussian regime is observed for not very 

long semiflexible chains. The evidence for pseudo-ideality in confined chains is based on four 

indicators: the extension curves, variation of the extension with the persistence length P, 

estimated limits for the regimes in investigated systems and the structure factor behavior. The 

slab behavior can be observed when the two-dimensional stripe (originally of one-monomer 

thickness) reaches the reduced thickness D larger than approximately D/P ≈ 0.2 in the third 

dimension. This maximum height of a slab at which the advantage of a stripe is retained is 

very low and has implications for DNA linearization experiments. 
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I. Introduction 

A polymer chain confined to a sufficiently long channel with dimensions smaller than 

the mean span chain dimensions in the bulk is stretched along the channel axis. The 

linearization of biopolymers such as dsDNA molecules under biaxial confinement has found 

important applications in single-chain experiments.
1-8

 They present an efficient, 

nondestructive and simple way of DNA manipulation and characterization when determining 

its structural details in nano- and microfluidic experiments.
9,10

 In order to understand the 

structural and dynamic properties of a single chain confined in a channel and slit a great deal 

of theoretical,
11-14

 experimental
1,2,8,10,15

 and simulation
16-33

 studies have been published. 

Studies have shown that the chain relaxation slows down upon increasing the confinement. 

Earlier studies have not covered very high confinement range and have considered rather 

shorter chains. However, more recent studies have turned attention to longer macromolecules 

in strong confinement and the focus has been shifted also to the behavior of a macromolecule 

in a slit
29,31-34

 and understanding topological properties in confined chains.
29,30

 While from the 

theoretical and simulation viewpoint, the behavior of a polymer confined to a three-

dimensional (3d) channel of different geometry is well characterized, it is difficult to fabricate 

a nanochannel of a perfect symmetric cross-section, i.e. a cylinder or a square channel. The 

experiments are usually conducted using channels of rectangular cross-sections being of a 3d 

slab form or a slit-like channel. 

In addition to the chain contour length L, effective chain width w and persistence 

length P, the new characteristic length D defining the size of the channel cross-section 

appears with D being the size length of a square channel or the diameter of a cylindrical 

channel. The conformation of a confined chain is then the interplay of L, w, P and D. The 

nano- and microfluidic devices usually operate in the moderate confinement regimes with D ≥ 

P whereas the theoretical models are well elaborated for regimes with D << P or D >> P. The 
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existence of the intermediate regime/regimes
20

 brings about more complexity in the 

experimental measurements of DNA stretching carried out in 3d channels. On the other hand, 

it has been shown recently that these regimes are absent in a 2d channel, i.e. in a stripe
27

, due 

to the strong chain excluded volume interactions in a 2d system. At the same time the chain 

extension is more significant in a stripe for the same reason, what is advantageous in 

linearization experiments with DNA. Thus a channel of stripe geometry seems to simplify the 

analysis of the chain extension under certain experimental conditions. However, since it is 

difficult to realize the experiments on the DNA extension in a stripe it is of interest to find out 

which parameters, namely the maximum height of a slab, is needed to avoid the intermediate 

regimes in feasible experimental situation while retaining the higher chain extension that is 

characteristic for a stripe. Thus the goal is to achieve a high extension and a more 

straightforward analysis in a slab with a direct transition from the strong confinement Odijk 

regime
11

 to the moderate confinement de Gennes regime
35

 analogous to rather theoretical case 

of a stripe. 

 The original Odijk regime
11

 derived for a cylindrical geometry of a channel manifests 

itself by significantly stretched conformation of a chain in the channel of D << P. In this 

regime a chain is composed of rod-like fragments deflecting from the channel walls. The 

characteristic deflection length λ ≈ (D
2
P)

1/3
 is the distance between two consecutive 

deflection points. The relation for the longitudinal chain extension R in a cylinder
14, 22

  

� = � �1 − �� 	

��
/��       (1) 

is extended for the case of a rectangular channel
14

 of side lengths Dy < P and Dz < P to  

� = � �1 − �
 
y�/��
z�/�
��/� �       (2) 
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Here A1 = 0.1701 and A2 = 0.09137 are universal numerical constants for a cylindrical and 

rectangular channel,
14

 respectively. Eqn (2) holds not only for a slab
14

 but equally well for a 

stripe which has been shown by the Brownian dynamics simulations.
27

 

In the moderate-confinement regime known as the de Gennes regime
35

 a chain is 

viewed as a string of self-avoiding spherical blobs each one of size D linearly arranged along 

the channel axis. In a semiflexible chain, the excluded volume (EV) interactions determine the 

organization of g monomers of size a within a blob of the size D ≈ ag
3/(d+2)

(P/a)
1/(d+2) 

where 

d is the spatial dimension.
36

 The longitudinal chain extension is than given by a linear array of 

the blobs as R ≈ (N/g)D. Together this leads to 

� ≈ � 	�

�

���
� 	�

��
�
�
        (3) 

One can recognize R ~ D
−2/3

 dependence which is often referred scaling of the longitudinal 

chain extension in a channel
10, 35

 for d = 3 as well as R ~ D
−1/3

 reported in a stripe
27 

for d = 2. 

As mentioned the transition between the de Gennes regime and Odijk regime is not direct but 

is constituted of intermediate regimes, namely the extended de Gennes and transition regimes 

that appear according to the system parameters.
10

 While the scaling relation for the extension 

in eqn (3) remains the same for the extended de Gennes regime it becomes different in the 

transition regime. Recently, new endeavors appeared in understanding of these confinement 

regimes,
26

 as well as in understanding of the behavior in a slit under strong confinement
34

 and 

the behavior in channels with asymmetric cross-section.
25

 Further specification of regimes of 

confinement is analyzed and discussed below in the part Results and discussion where the 

novel parts are recognized by the absence of references to literature. The results of this study 

bring more insight into the transition between the stripe and the slab confining geometry and 
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might be advantageous for experimental measurements of DNA elongation in nanochannels 

of various geometries. 

 

 

Fig. 1 Fragment of a chain confined to a channel in the form of a slab (upper snapshot) and a 

stripe (lower snapshot). 

 

I. Simulation method 

For the simulations of a semiflexible polymer chain the bead-spring worm-like chain 

(WLC) model was used. This model has been already satisfactorily adopted in previous 

studies of a chain confined in a channel.
17,37

 The discretized version of the WLC model 

consists of N effective monomers (beads) connected by fluctuating effective bonds (springs) 

characterized by the spring constant. The total potential energy of a chain consisted of a 

contribution due to the bond stretching, bending of two consecutive effective bonds and of 

nonbonded pair interactions between the effective monomers. For the bonded and nonboded 

pair interactions between monomers the established model was used.
38

 The effective bonds 

were described by the FENE (finitely extensible nonlinear elastic) potential 

������ !
"#$ = −%�&'() − &*!
 ln �1 − 	  - .

 /01- .�

�    (4) 
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The stretching of bonds was assumed temperature independent with the spring constant 

% = 20 and the maximal allowable bond distance was &'() = 1, which serves as a length unit 

here. The bond lengths varied around the preferred &* = 0.7 with the amplitude &'() − &* =
0.3. The non-bonded interactions were modeled by the shifted and cut Morse potential 

78*9:;�<! = =	?expC−2D�< − <EFG!H − 2 expC−D�< − <EFG!H + 1J (5) 

for r < rmin and zero otherwise, ε was set to 1 kBT while the distance at the minimum and the 

steepness of the potential energy function was set to <EFG = 0.8 and D = 24, respectively. 

Such a combination of parameters gives the bead core radius close to w/2 = 0.38. Considering 

the spherical shape of effective monomers, since the width w of a chain slightly exceeded the 

effective bond length <l> ≈ lo the employed model was from the category of partially fused-

spheres approaches. There were negligible nonbonded interactions between monomers 

separated by more than lmax. 

The variation of the chain stiffness was modeled by the bending potential between two 

consecutive bonds in the polymer chain
39

 

7M;NOPNQ�R! = S∗�1 + cos θ!       (6)  

where θ was the valence angle between two consecutive effective bonds in the chain, and b* 

denoted the bending parameter, which quantified the chain rigidity and entered eqn (6) in 

units of interaction energy parameter ε. Since the bending was regarded as temperature 

dependent the actual stiffness of the chain backbone was characterized through the bending 

parameter b = b*/kBT. For the discretized WLC model the bending parameter S was related to 

the persistence length as S = X/Y with the monomer size Y = Z = &[.
40

 In the simulations the 

bending parameter was set to b = 10. A prominent example in this study and frequently 

referred example is a DNA macromolecule. The focus here, however, is on semiflexible 
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macromolecules generally. Although, the commonly accepted bending parameter for double-

stranded DNA under high ionic strength conditions is 50 nm, corresponding to b = 20 in the 

present simulations and a = 2.5 nm, the lower bending parameter b = 10 allowed to increase 

the number of Kuhn segments in a chain. Such a choice was also used in deciphering  DNA 

organization in viral capsids.
41

 In the present work, the chain length was set to N = 2000 

effective monomers, the persistence length was P/a = 9.97 for a free unconfined chain, 

corresponding to L/P = 200.6. Persistence length P was evaluated from the bond orientation 

correlations along the free chain at short distances of the order of single persistence length 

along the chain contour, 〈cos 	 ]F,_〉 = exp	a− �|F-_|
� c, where this relation holds quantitatively in 

contrast to the behavior at longer distances.
42

 The simulations were performed at the constant 

reduced temperature T
*
 = kBT/ε = 1 which corresponds to the good-solvent conditions for a 

given model.  

The walls of the confinement in a slab and a slit were modeled using hard-wall 

potential. The bead centers were not allowed to move beyond the width	deand the real 

confinement corrected for chain thickness was given as d = de + Z in accord with previous 

works.
43-45

 The periodic boundary conditions were applied along the long channel axis 

aligned with the x coordinate.  

Our systems of confined chains are schematically shown in Fig. 1. Throughout this 

paper, the slab is termed a rectangular channel with sides df × dh, both larger than the 

monomer size and a stripe is termed a rectangular channel with one side Dz << Dy of the order 

of the monomer size. In order to investigate the effect and interplay between different stripe 

(Dz/P = 0.194) and slab (in the range of Dz/P = 0.679, 1.535, 2.961, 5.813) geometries and 

chain regime appearance, simulation runs were performed for 16 different parameters of Dy in 

the range of Dy/P = 0.394 – 11.52. To validate the chain extension dependence as a function 
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of the persistence length, the simulations were performed also for 11 different bending 

parameters in the range of b = 0 – 35 for a chain in a channel Dy = Dz = D of cross-section 

D/P × D/P = 1.535 × 1.535. The initial conformation was a completely straight chain aligned 

with the channel axis. The Monte Carlo (MC) simulations were performed using Metropolis 

method, which included chain updates by reptation and small random bead displacements 

with the amplitude of 0.125lo. To analyze chain behavior and average sample properties 

10i	MC steps (including ~ 10
10

 conformation updates, in each of which one reptation move 

was combined with 10 bead displacements) were computed. Analyzing the end-to-end 

distance autocorrelation functions we estimated that the overall simulations extended over 

300 to 1200 coil relaxation times at different confinements. Here, however, we did not 

analyze the reported dependence of relaxation times on confinement.
2,46

 The influence of the 

confinement was also reflected on the changes of acceptance ratio of moves during the 

simulation which decreases approximately to one third on going from the widest slab 

investigated to narrow stripes. The resulting thermodynamic averages formed smooth curves 

and the errors of data are typically of the respective marker sizes. 

 

II. Results and discussion 

For strong confinement the chain extension along a channel as a result of confinement 

in two directions y and z is given by eqn (2). However, here we concentrate on a moderate 

confinement where the situation is more complex for semiflexible chains and where most of 

linearization experiments are performed. For weak or moderate confinement the scaling 

analysis of the chain extension R along the channel with the geometry of a two dimensional 

stripe (or a classical 3d channel) is based on the linear arrangement of blobs
35

 in a channel of 

the width D equal to the blob size, R ≈ (N/g)D. Here, the arrangement of g segments in each 
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blob depends on the regime of a coil determined by D and is given as D ~ g
ν
, where the 

exponent ν is defined according to the Flory theory as ν = 3/(d+2) for an excluded volume 

chain. A chain with the weak excluded volume interactions between monomers behaves as a 

pseudoideal (theta) chain with ν = 2/(d+1), determined by remaining EV from ternary 

interactions,
47

 rather than as an ideal chain with the exponent ν = 1/2. A realistic pseudoideal 

chain (with a finite backbone thickness) under confinement differs from an ideal chain and 

slightly expands in comparison to a free pseudoideal chain that has a size of an ideal coil.
48

 

The difference between the pseudoideal and ideal states should be considered especially in 

confined systems. This is because for an ideal chain the extension R along a channel does not 

depend on D since the ideal chain does not change its size along the unrestricted directions.
48

 

On the other hand a chain even with weak excluded volume interactions expands along the 

channel due to the confinement. This is accounted for in the blob analysis where the blobs in a 

channel are self-avoiding even if the chain fragments within the blobs are pseudoideal. 

 Together, the blob analysis using the above relations leads to the extension 

R ≈ L(a/D)
n 

, where L = Na is the chain contour length, and to the general eqn (3) for a chain 

with strong EV interactions. For example, the corresponding exponent for a chain with EV 

interactions in a stripe
27

 is n = 1/3. If the excluded volume interactions in a channel- and 

stripe-confined semiflexible chain are weak we can furnish a general analogy to strong or 

moderate excluded volume interactions given by eqn (3). Thus in the case of pseudoideal state 

for a channel (d = 3) or for a stripe (d = 2) one arrives at  

� ≈ � 	�

�

���
� 	�

��        (7) 

In eqn (7), the size D ≈ ag
2/(d+1)

(P/a)
2/(d+1)

 of a blob containing a chain fragment of g 

monomers with the screened EV interactions was used. Resulting chain extension relation 
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R ≈ LP/D applies well in a 3d channel where not ultimately long semiflexible chains are 

reported to lack the excluded volume to a high extent and exhibit the pseudoideal 

behavior.
18,20,23

 The exponent n for a stripe-confined chain increases thus from 1/3 for an 

excluded volume chain to 1/2 for a pseudoideal chain in eqn (3). However, it has been shown 

that the pseudoideal regime and similarly the extended de Gennes regime are absent in a 

stripe and the behavior is governed by eqn (3) instead.
27

 

For macromolecules with the semiflexible backbone such as DNA confined to a 3d 

channel the pseudoideal transition regime also called the Gaussian de Gennes regime is 

developed between the extended de Gennes and Odijk regime.
17,18,20,23,49

 In this regime, the 

pseudoideal behavior of a confined chain dictates its conformation which is rich in typical 

back-folded chain fragments the so-called hairpin substructures.
17

 The extension of a 

semiflexible chain confined in a slit, slab and stripe is compared with the size of a free chain 

in both the excluded volume regime and the pseudoideal regime in Tab. 1. 

Slit confinement. In the case of a slab confinement the situation is somewhat different 

from a channel. Before concentrating on a slab it is instructive to remind the situation in a slit 

because features of a slit are present in the slab confinement. It was shown from the 

investigation of the structure factor of a chain in a slit that in a slit a combined 3d/2d behavior 

is observed on different length scales.
32

 Since a slab combines the channel and slit geometry 

we can expect a combination of 3d/2d/1d behavior on different length scales which is 

analyzed in the further section devoted to the structure factor of a confined chain. According 

to the scaling and blob theory the extension in a slit can be described as Rslit ≈ (N/g)
y
D , where 

the exponent describing the arrangement of blobs along the slit walls is y = 3/4 for an 

excluded volume chain and 2/3 for a pseudoideal chain. Using the excluded volume behavior 

in a blob,
36

 D ≈ ag
3/5

(P/a)
1/5

, and y = 3/4 we obtain the extension of a chain as 
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Rslit ≈ aN
3/4

(P/D)
1/4

 for a semiflexible excluded volume chain in a slit, where the scaling 

exponent for D has been already reported.
29

 For a pseudoideal chain in a slit using y = 2/3 and 

the pseudoideal chain behavior in each blob, D ≈ (gaP)
1/2

, one obtains the extension 

Rslit ≈ aN
2/3

(P/a)
2/3

(a/D)
1/3

 (Tab. 1). 

Slab confinement. Upon going from a slit or a channel to a slab the complexity raises 

since now, the cross-section is characterized by two dimensions, Dy and Dz, instead of a single 

variable D. A direct scaling analysis can describe the behavior of the conformation of a 

semiflexible chain in such a slab. This chain can be composed of small excluded volume 

blobs of the size Dz ≈ agz
3/5

(P/a)
1/5

Dz being the smaller slab size. These blobs behave as gz 

fragments of a free EV chain and form larger two-dimensional blobs each one of gy segments 

and of the size of a larger slab profile dimension, Dy ≈ (gy/gz)
3/4

Dz. The larger blobs in turn 

are arranged linearly as self-avoiding blobs along the longest x-direction of the slab and thus 

analogously to a channel Rslab ≈ (N/gy)Dy. Together, when substituting for gy and gz, this 

double blob analysis leads to the total chain extension  

Rslab ≈ L(aP/DyDz)
1/3

        (8) 

That is an analogy of the chain extension in a channel, R ≈ L(a/D)
2/3

(P/a)
1/3

, or generally of 

eqn (3) for variable dimensions and can be obtained also from the original Flory theory.
50

 

Such a split of the confinement into two directions was indicated already by Turban.
51

 If the 

aspect ratio of the channel profile is not unity the single D should be replaced by an average 

Dav = (DyDz)
1/2

. The split of a chain into 2d and 3d blobs as described above is affected by an 

aspect ratio of the two sizes. Recently, the mixed regime similar to the above double blob 

analysis was reported in a channel of variable aspect ratio of rectangular profile by Dorfman 

et al.
25
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The extension of a pseudoideal chain in the same slab is obtained as above but using 

two-dimensional blobs of the size Dy ≈ (gy/gz)
2/3

Dz containing pseudoideally organized blobs 

of the size Dz ≈ (agzP)
1/2

. The latter blobs are built up of three-dimensional pseudo ideal 

arrangement of gz monomers. This leads to the extension  

Rslab ≈ L(P
2
/DyDz)

1/2
        (9) 

which is an analogy to eqn (7) if the confinement is symmetric and one takes Dy = Dz = D. 

Interestingly, holding Dz constant and varying only Dy provides the same scaling of the chain 

extension induced by a slab as the extension induced by a stripe when varying its width D, i.e. 

n = 1/3 and 1/2 for the excluded and pseudoideal behavior, eqns (3) and (7), respectively. 

Results of our simulations of the chain extension in a stripe and in a slit-like channel (or slab) 

over a broad range of Dy/P covering the strong and moderate confinements for four 

thicknesses Dz/P are depicted in Fig. 2. One can recognize the stronger chain extension in a 

stripe relative to that in a slab and a more significant decrease of the extension on widening 

the slab. The shorter chain expansion in a slab than in a stripe is in agreement with Tab. 1 

where one can notice that the slab induced extension is in fact equal to the stripe induced 

extension multiplied by a factor of (a/Dz)
1/3

 < 1. The Odijk prediction fits the results in the 

strong confinement, Dy/P < 1, only for the two narrowest slabs, with Dz/P < 1, namely for 

Dz/P = 0.194 and 0.679. The narrowest slab at Dz/P = 0.194, with the slab thickness 

Dz/a = 1.93 does not allow to place two beads in the perpendicular direction to the slab plane 

and is very close to the stripe geometry. The predicted slope 1/3 according to eqn (3) shown 

for a stripe in Fig. 2 is close to this curve and the difference (we observe 0.379 instead of 1/3) 

indicates remaining contributions of ideality arising from weakened 3d character of the 

confined chain. 
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strong 

confinement

 

 

stripe

 D
z
/P = 0.194

slab

 D
z
/P = 0.679   

              1.53

              2.96

              5.81

 slope 1/3

 Odijk

R
II
/L

P/D
y

moderate 

confinement

 

Fig. 2 Transition curves of the reduced chain extension as a function of the reduced 

confinement strength over the moderate and strong confinement for a chain of the persistence 

length P in a stripe and slab of width Dy and of the four slab thicknesses Dz/P as indicated in 

legend. 
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 2
/D

y
D
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Fig. 3 Master curves of the reduced extension for a chain in a slab of the four slab thicknesses 

Dz/P and data presented in the previous figure. The slope indicates a pseudoideal behavior 

according to eqn (9). 

 

Common master curve for a slab presented in Fig. 3 over the range of moderate 

confinement supports the blob analysis by eqns (8) and (9). At the same time this smooth 

common curve for different confinement strength indicates sufficient sampling in the 

simulations. It should be mentioned here that the chain topology (including entanglement, 

formation of knots or backfolding) and its metric relationship is relevant issue in confined 

polymers which becomes frequently addressed in recent studies.
29,30,52

 Although, we are 

aware that confinement enhances the knotting probability of a confined chain in comparison 

to a free chain, we focus here on the overall extension of a chain in a channel assuming 

excluded volume effects without chain crossings. Thus entanglement and knotting are 
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possible but not promoted or studied specifically as for instance in a topology-unrestricted 

ensemble. Confinement affects also chain dynamic properties. The chain relaxation slows 

down with the confinement.
28,31

 Aware of this effect, we have performed extensive 

simulations to attain the equilibrium properties. One of indications of reaching equilibrium is 

the master plot in, Fig. 3, where the data for different confinement obey the same scaling law. 

We investigated also the distribution of end-to-end distance and distribution of radius of 

gyration of confined chains (not show) that exhibit smooth curves. This again indicates 

sufficient sampling and averaging of different possible topological events during long 

simulation. 

The observed slope close to 1/2 instead of 1/3 reflects the pseudoideal chain behavior, 

notice eqn (9) for a pseudoideal chain in a slab above, and represents the slope 1 for single D 

of a channel in eqn (7). This is an indication that with the chain lengths here we are still not in 

the excluded volume regime. This will be seen further in the structural analysis. The 

difference in the slopes between the excluded volume behavior and the ideal chain behavior 

can also be seen considering flexible chains, where EV operates, instead of semiflexible 

chains, where EV is negligible for not very long chains. Though we tested here such a change 

in the slab, this behavior was shown already under the cylindrical channel confinement
18

 and 

thus it is not presented here. It indicates, however, that the source of deviation in the slope 

comes from the presence or absence of EV. Universal curve is designed for the blob regime 

and the curves start to deviate on entering the Odijk regime. Data for the two widest slabs, 

Dz/P = 2.961 and 5.813 for wide Dy also, are already relatively close to the chain in a free 

solution, where the extension becomes independent on the confinement, and thus start also to 

deviate from the blob scaling. The curve for a stripe does not follow the master curve for a 

slab, it is close to the slope 1/3, and is shown only in the previous graph in Fig. 2.  
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Another indication of the pseudoideal chain behavior can be achieved following the 

chain extension in a slab as a function of the persistence length P instead of following the 

dependence on the confinement D since different exponents are predicted in eqn (8) and eqn 

(9) for this function for an excluded volume chain and for a pseudoideal chain. We focused on 

this extension in a square channel of moderate confinement strength, Dz /P = Dy/P = 1.535, 

and found that the extension is linearly proportional to P according to eqn (9), as shown in 

Fig. 4. This further supports the previously discussed pseudoideality in chains that was based 

on the variations of the extension with the confinement D. 

2 4 6 8 10 12 14 16

0.2

0.3

0.4

0.5

0.6

0.7

 

 

R
II
/L

P/a

 

Fig. 4 Relative chain extension of a chain along a channel as a function of the chain 

persistence length P/a. 

 

An overview of the chain extension in a stripe, slab, channel and a free chain in the 

regimes involving the excluded volume behavior as well as the pseudoideal behavior from the 

previous discussion is presented in Tab. 1. Here, only one EV regime is included because the 
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de Gennes blob regime and the extended de Gennes regime are not differentiated in the chain 

extension.
10

  

 

Tab. 1 The extension of a semiflexible chain confined in a slit, slab and stripe in the 

excluded volume and pseudoideal transition regimes. The size of an unconfined chain is also 

included for comparison.  

 

 Excluded volume regime Pseudoideal regime 

free chain j �
�k�Y lXYm

�
�k�

 j �
�k�Y lXYm

�
�k�

 

slit j�
nY lX

dm
�
n
 j�

�Y lXYm
�
� 	Y

d�
�
�
 

channel 

d = 3 

slab 

d = 3 

jY lXYm
�
� 	Y

d�
���

�
 

jY lXYm
�
� o Y


dpdqr
�
�
 

jX 	Y
d�

���
�

 

jX o Y

dpdqr

�
�
 

stripe 

d = 2 
jY lX

dm
�
�
 jX 	Y

d�
�
�
 

 

One should notice the limits of application of the tabulated expressions. For this 

purpose we use the original Flory approach for a confined chain
50

 which produces the same 

relations for the chain extension as the renormalized Flory approach.
16

 The Flory expression 

for the free energy of a semiflexible chain in the slab geometry reads 

s
"#$ ≈ t�

tu� + � v
vw!
 ���

t
x
y       (10) 
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where �z
 = 2jYX in the first, elasticity term is the squared size of an ideal semiflexible chain 

and j{ = X/Y and YX
, respectively, are the number of monomers in one persistence length 

and the excluded volume in the second, interaction term. The minimization with respect to R 

leads to eqn (8) for the chain extension R in a slab. This is, however, a very general approach 

and replacing the volume term RDyDz in the denominator of the second interaction term with 

R
3
 equation applies as well for a free chain in three-dimensional space. Similarly, replacement 

with RD
2
, R

2
D and aRD and subsequent minimization provides the chain extension relation 

for a cylindrical channel, slit and stripe, respectively, as presented in Tab. 1. The border 

between the ideal and excluded volume regime can be discerned from the interaction term of 

these equations. If this term becomes larger than unity the excluded volume regime sets in. 

When we start from a free chain and consider the interaction term for the unperturbed state 

(R = Ro) to be larger than unity we obtain the onset of the EV regime for a free chain which 

also corresponds to the onset D
*
 of the classical de Gennes regime for a geometrically 

confined chain. Therefore a free chain of N
*
 > (P/a)

d/(4–d)
 monomers is long enough for the EV 

effects to operate. Notice here that more significant EV effects set in for shorter chains when 

d = 2 (N
*
 > P/a) than for d = 3 (N

*
 > (P/a)

3
). At the same time, this limit of N

*
 monomers 

defines the size of a thermal blob,
53

 ξT ≈ (N
*
aP)

1/2
 ≈ aN

*3/5
(P/a)

1/5
, which is in fact equivalent 

to the onset of the classical de Gennes regime with D
*
 ≈ ξT ≈ a(P/a)

2/(4–d)
 for a geometrically 

confined chain. This is obtained if the above limit for a free chain of N
*
 is used in the size 

expression for an ideal blob of the channel diameter D
*
 = (N

*
aP)

1/2
. For the channel geometry 

we recover D
*
 > (P

2
/a).  

 On decrease of the channel dimension D below the limit for the classical de Gennes 

regime, P < D < a(P/a)
2/(4–d)

, the statistics within a blob transforms from the EV statistics into 

an ideal statistics and we have a coexistence of these two statistics. This regime is termed as 
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the extended de Gennes regime in the literature.
20,27

 Now, the total chain extension is obtained 

as a linear array of self-avoiding anisometric blobs (ellipsoids in the case of a 3d channel and 

ellipses in the case of a 2d channel) of transverse lengths D or Dy and Dz for the more general 

case of the slab geometry and longitudinal length H.
49

 The coexistence of both types of 

behavior requires that the number of monomers g in an anisometric blob is obtained assuming 

the interaction term in the particular Flory expressions for the free energy being set to unity, 

i.e. g
2
a

d
/(HD

d−1
) ≈ 1 for a cylindrical channel or for a stripe and g

2
a

3
/(HDyDz) ≈ 1 for a slab 

together with H ≈ (gaP)
1/2

. This yields g ≈ (D/a)
2(d−1)/3

(P/a)
1/3

, which is D
4/3

P
1/3

/a
5/3

 for a 

cylindrical channel
10

 and (DyDz)
2/3

P
1/3

/a
5/3

 for a slab. For a channel these assumptions yield 

H ≈ a(P/a)
2/3

(D/a)
(d−1)/3

. The linear arrangement of such blobs R ≈ (N/g)H provides the chain 

extension dependence identical with eqn (3). As mentioned already both regimes provide 

indistinguishable chain extension relations. Moreover, it has been pointed out that the 

transition between the classic and extended de Gennes regime is continuous, i.e. both 

extension relations contain the same numerical prefactor.
20

 Further decrease of D close to 

D ~ P leads to a transition regime where chains behave as ideal or pseudoideal and extension 

was described by relation R ~ NP/D.
18,20,23

 Appearance of these three particular blob regimes 

depends on the set of parameters (D, N, P, a) and not all regimes will appear necessarily in 

the system, which is also the case here. Ultimately, under a strong confinement, D < P, the 

deflection regime of Odijk sets in.  

Once we have the limits of applications of the above relations in Tab. 1 we can make 

contact with our data. According to the Flory theory,
50

 the classical de Gennes regime is 

expected for a free chain of N
*
 > (P/a)

3
 ≈ 1000 segments here (only 2 spherical blobs), in a 

channel (3d) with the diameter of side length D
*
/a ≈ (P/a)

2
 > 99.3 (D

*
/P ≈ P/a > 10) but for a 

chain in a stripe (2d) it appears already for N
*
 > (P/a) ≈ 10 (200 blobs here) with the width 

D
*
/a ≈ P/a > 10 (D

*
/P > 1). Thus, while for a chain of N = 2000 segments confined to a 
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channel used here the classical de Gennes regime can hardly occur it is not true for this chain 

in a stripe. Concerning the potential extended de Gennes regime to be observed, several 

anisometric blobs of a chain confined in a slab or cylindrical channel should be formed. For 

instance, in a cylindrical channel of D/P = 1.53 a chain is supposed to form about 

N/(D
4/3

P
1/3

/a
5/3

) ≈ 24 blobs while in a slab-like channel of Dy/P = 11.54 and Dz/P = 1.53 this 

number drops to about N/(Dy
2/3

Dz
2/3

P
1/3

/a
5/3

) ≈ 6 blobs. From the presented simulations it 

turns out that neither the classical nor extended de Gennes regime has been achieved in the 

slab-like confinement. Instead, the pseudoideal behavior has been observed in a slab. On the 

contrary, the simulation results here for the stripe-like confinement support the conclusions 

due to Huang and Bhattacharya
27

 on prevailing EV behavior in a stripe. The pseudoideal 

regime has not been observed for this geometry even for semiflexible chains which have 

tendency to exhibit the ideal behavior. 

From the relations for the slab and stripe presented in Tab. 1 it is clear that from the R 

vs Dy behavior at constant Dz one cannot differentiate between the stripe and the slab. In both 

regimes the scaling of the chain extension is the same: either Dy
–1/3

 (D
–1/3

) for the excluded 

volume regime or Dy
–1/2

 (D
–1/2

) for the pseudoideal regime. However, since the regimes are 

changed here when going from the stripe to the slab one can establish an estimate of the 

border where the stripe character turns into that of the slab confinement. The first transition 

curve, when making this change in Fig. 2, for Dz/P = 0.194, which is considered to be a stripe 

bears already the sign of the behavior in a slab.  

It should be mentioned that in order to compare to the published data for a stripe,
27

 we 

have used here similar chain lengths also for the slab. There is a need, however, to use also 

longer chains in simulation which would enable to follow also the non-gaussian regimes in a 
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slab.
24

 The situation described here should be typical for the experimental range with α-DNA 

or T4-DNA macromolecules.
23,54

 

Structure factor. Compared to the original paper of Huang and Bhattacharya
27

 we 

want to point out a new aspect and thus supplement their study. That is why we opted for the 

structure factor which reflects the properties of confined chain on different scales. The 

arrangement of chain segments on different length scales is well reflected on the single chain 

structure factor defined for an isotropic chain as 

|�}! = �
v� 〈∑ ∑ sin�}<F_�/}<F_v_��vF�� 〉     (11) 

where rij is the distance between segments i and j and the wavevector q = 2π/x covered the 

range of size values x varying from the monomer size to about the chain size. The structure 

factor provides complementary information to that gained from the chain extension vs. 

confinement strength dependence. In a logarithmic scale of the structure factor one can 

recognize different regions characterized by different slopes since S(q) ~ q
−1/ν

 where ν is the 

scaling exponent in the R ~ N
ν
 relation. Finally, in the Guinier regime,

55
 i.e. for q < 2π/R, the 

structure factor saturates. The values of the slopes are governed by the regime of the chain 

conformation as well as by the length scale and are presented for a free and geometrically 

confined chain in the excluded volume and pseudoideal regime in Tab. 2. As can be seen at 

sufficiently large wavevectors q > 2π/P the particular fragment of a chain is viewed as a rigid 

rod and for semiflexible chains this local conformation, characterized by slope −1, is always 

present in the S(q) plots (Fig. 5). Upon going from larger to smaller values of the wavevector, 

which corresponds to going from smaller local to larger global length scales, the rod-like 

behavior transforms into a two- or three-dimensional behavior. It also follows from Tab. 2 

that the most complex behavior might be expected in the S(q) plot of a chain confined in a 

slab where up to 4 regions of different slopes might be recognized. Notice, however, that for 
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complete observation of all regions and applicability of the above discussed hierarchical blob 

analysis such criteria as the sufficient length of a chain and P < Dz < Dy have to be met. 

As seen in Fig. 5, which is focused on the limiting cases, the structure factor plotted in 

logarithmic scale for a chain confined in the stripe-like geometry with the aspect ratio 

Dy/Dz = 45.9 (Dz/P = 0.251, Dy/P = 11.5) displays a region with slope −4/3. This indicates the 

two-dimensional conformation of the self-avoiding blobs. While the latter finding has already 

been drawn from Fig. 2, the planar arrangement follows exclusively from Fig. 5. As the 

aspect ratio Dy/Dz decreases the region of the slope −4/3 gradually ceases till it diminishes as 

can be seen in Fig. 5 for a chain in narrow slab (channel) with the aspect ratio Dy/Dz = 1.57 

(Dz/P = 0.251, Dy/P = 0.394) and with the slope –1 over all scales. The logarithmic plots of 

S(q) for a chain confined in slabs with (DyDz)
1/2

/P < 1 decreases with the slope –1 virtually 

over the all investigated q interval. 

In the next figure we want to address all possible regions characterizing different 

length scales. As Fig. 6 shows, the linear arrangement of blobs which is reflected on the slope 

–1 at small wavevectors is seen in all channels and is best recognizable for the narrow 

channel. The intermediate interval of wavevectors reflects the organization of segments at 

length scales comparable to the channel dimensions. The slopes expected in these regions are 

also indicated. In Fig. 6, the slope −4/3 fits the S(q) plot for a chain in the slab of 

Dy/P = 0.394 (aspect ratio 14.8, notice that in this particular case Dy < Dz) until q ≈ 0.08 when 

a chain is viewed more as a linear array of blobs. In this slab the chain conformation is thus 

still governed more by the excluded volume (slope −4/3) than by the pseudoideal statistics 

(slope −3/2). 

Page 22 of 36Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



23 

 

However, in agreement with the findings based on the analysis of the chain extension 

behavior in the confinement, the investigation of all structure factors reveals that there is no 

region characterized by the slope −5/3 which would indicate an existence of the length scale 

within a chain where the EV statistics of a three-dimensional coil dominates. Instead, the 

region with the slope closer to −2 commences in logarithmic plots of S(q) for a chain in 

channels (slabs) of D/P (Dy/P, Dz/P) ≥ 1.535 (Fig. 6) as the wavevector drops below 2π/P. 

This can indicate the chain conformation induced by a channel or slab within an anisometric 

blob in the extended de Gennes regime or within a spherical blob in the pseudoideal regime 

(Tab. 2). Here, we can benefit from the complementarity with the chain extension 

dependence. As the variation of the chain extension with the confinement strength shows 

(Figs. 2, 3) this rather indicates the statistics of a pseudoideal fragment in a spherical blob. 

Nevertheless, the expected slope −3/2 characteristic for two-dimensional organization of 

segments in the pseudoideal regime does not fit any plot in the intermediate region. This is 

most likely attributable to the small aspect ratio of the channel cross-sections.  
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Fig. 5 Logarithmic plot of the structure factor S(q) for a chain confined in a stripe, in a narrow 

slab (channel) and for a free chain. Lines parallel to the plots depict the slopes for a rod-like 

chain (–1), for a free three-dimensional excluded-volume coil (–5/3) and for a chain in a stripe 

reflecting the two-dimensional excluded volume behavior (–4/3). Arrows show the positions 

of two-dimensional and three-dimensional persistence lengths P2d, P3d, respectively. 
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Fig. 6 Logarithmic plot of the structure factor for a chain confined in the slab geometry 

specified in the legend. The slopes indicating the chain extension scaling with the chain 

length are guides for the eye.  
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Tab. 2 Predicted values of the slopes 1/ν (in bold) for the structure factor S(q) ~ q
−1/ν

 

dependence in a logarithmic scale for a free semiflexible chain and for a chain in different 

geometrical confinements and regimes. The predicted intervals of the wavevector q 

characterized by the slopes are also delineated, R holds for the chain size in the direction(s) in 

which the chain conformation is completely free to relax. The substitution q' = q/2π is used 

for brevity. 

 Excluded volume regime Pseudoideal regime 

free 

chain 

d = 3 

q' > 1/P                   1 

1/P > q' > 1/R       5/3 

q' > 1/P                1 

1/P > q' > 1/R      2 

d = 2 

q' > 1/P                   1 

1/P > q' > 1/R       4/3 

q' > 1/P                 1 

1/P > q' > 1/R         3/2 

slit 

q' > 1/P                   1 

1/P > q' > 1/D       5/3 

1/D > q' > 1/R       4/3 

q' > 1/P                1 

1/P > q' > 1/D      2 

1/D > q' > 1/R        3/2 

channel 

d = 3 

slab
c
 

d = 3 q' > 1/P            1 

1/P > q' > 1/D      

5/3
a
; 2

b
 

1/D > q' > 1/R   1 

q' > 1/P               1 

1/P > q' > 1/Dz  5/3
a
; 2

b
 

1/Dz > q' > 1/Dy  4/3 

1/Dy > q' > 1/R    1 
q' > 1/P               1 

1/P > q' > 1/D    2 

1/D > q' > 1/R    1 

q' > 1/P                  1 

1/P > q' > 1/Dz      2 

1/Dz > q' > 1/Dy   3/2 

1/Dy > q' > 1/R    1 

stripe 

d = 2 

q' > 1/P                  1 

1/P > q' > 1/Dy   4/3 

1/Dy > q' > 1/R    1 

 

q' > 1/P                  1 

1/P > q' > 1/Dy    3/2 

1/Dy > q' > 1/R    1 

 

a
 classical de Gennes regime, 

b
 extended de Gennes regime, 

c
 Dz < Dy  

 

Orientation correlations. The organization of a chain in a channel can also be inferred 

from the tangent-tangent orientation correlation function which is defined along a chain of the 
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arc length s as <cos θ(s)> = <u(k)u(k+s)> where u(k) is the unit vector at point k along the 

chain contour and the average is running through the all generated conformations and 

different positions k. While this function is exponentially decaying for a free WLC chain, the 

strong confinement (D << P) induces typical, more complex pattern of the orientation 

correlations. If the interactions of monomers with the confining channel walls are represented 

by the harmonic potential the analytic relation for an asymmetric channel reads
56

 

[ ] 














 −−+−>=+<
4

sin/exp21
2

1)()(
π

λ
λ

λ s
s

P
skk uu   (12) 

According to eqn (12), before the plateau is reached the initial decay of the orientation 

correlations is followed by a minimum positioned at smin = λπ/2. The characteristic deflection 

length λ is a function of the chain stiffness and the channel dimensions λ = c(D
2
P)

1/3
 where c 

is a constant of the order of unity.
11

 It is thus of interest to examine the applicability of the 

analytic relation for the channels with asymmetric cross-sections when substituting DyDz for 

D
2
, i.e. λ ≈ (DyDzP)

1/3
.  

Two fitting procedures to eqn (12) have been adopted for the orientation correlation 

functions. In one procedure, only c is considered as a fitting parameter while in the second 

procedure, P is not fixed to its free chain value but is assumed as an additional fitting 

parameter instead. The orientation correlation functions along with their best one-parameter 

and two-parameter fitting curves for a strongly confined chain are presented in Fig. 7.  

It is obvious that the one-parameter fitting is of worse quality than the two-parameter 

fitting in agreement with our previous findings.
37

 The best fit is obtained for the square 

channel and the quality of fitting gradually deteriorates with the increasing asymmetry of the 

channel. The increase of the channel asymmetry is also responsible for the enhanced 

difference between the one- and two parameter fits. The fits around minimum are not 
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satisfactory in any case. In comparison with the analytical predictions, the minima are 

shallower and shifted toward larger contour fragments s. When P parameter is fixed to its 

material value the one-parameter fitting yields c = 0.74 for the square channel, c = 0.83 and 

c = 0.65, 0.73 and 0.80 for the stripes of Dy/P = 0.394, 0.679 and 0.964, respectively. The 

two-parameter fitting leads to the following combinations (c, P): (0.73, 10.2), (0.78, 9.2), 

(0.69, 8.94), (0.88, 13.2) and (1.00, 14.0) for a chain in the square channel, slab and stripes of 

increasing asymmetry, respectively. It seems that the parameter c in the expression for the 

deflection length does not behave as a universal constant. Thus it is not surprising that the 

position of a minimum in the orientation correlations smin does not display the expected 

scaling ~ Dy
1/3

 as it can be seen in Fig. 8. One can also see that the orientation correlation 

function does not discern between the stripe and slab geometry.  
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Fig. 7 The orientation correlations for a chain in a stripe, slab and channel with corresponding 

one- and two- parameter fits based on eqn (12) shown by dashed and dotted lines, 

respectively. The curves are vanishing for s = 1999. 

 

 

 

 

 

 

 

 

Fig. 8 The position of a minimum smin in the orientation correlations as a function of the 

stripe/slab width Dy in a logarithmic scale for a strongly confined chain in a stripe/slab. The 

fitting line and corresponding equation are also included for the stripe confinement.  

 

The qualitative behavior of the orientation correlations remains similar for the wider stripes or 

slabs beyond the Odijk regime (not shown). The minimum, however, becomes less apparent 

and the orientation correlations are diminishing. The presence of hairpin substructures
17

 in the 

confined chains demonstrates itself in the negative orientation correlations around the shallow 

minimum in the case of the slabs with Dy/P > 1 and Dz/P > 1. 
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III. Conclusions 

Significant chain extension in a stripe which is due to the strong excluded volume 

interactions between monomers in two dimensions weakens considerably on transition to 

experimentally feasible slit-like channels. Based on the chain extension-confinement strength 

dependence and the structure factor behavior for a chain in a stripe we infer the excluded 

volume regime (classical de Gennes regime) typical for two-dimensional systems. On 

widening of the stripe in direction perpendicular to the stripe plane, i.e. on transition to the 

slab geometry, the advantageous chain extension decreases and the Gaussian regime is 

observed for not very long semiflexible chains. 

The slab behavior is observed when the two-dimensional stripe (originally of one-

monomer thickness) reaches the reduced thickness in the third dimension larger than 

D/P ≈ 0.2. This maximum height of the slab to retain the advantage of a stripe is very low and 

have implications for DNA linearization experiments as in wider slabs the favorable strong 

extension disappears and the intermediate regimes may appear which complicate the analysis 

in linearization experiments. 

Universality in the evolution of the chain extension with the moderate confinement 

strength was found. The observed scaling shows the pseudoideal behavior. It should be noted 

that this situation, where the EV regime is not reached for DNA chains, is observed quite 

often in experiment. It was shown that α-DNA or T4-DNA macromolecules, used most often 

in experiments, are in a transition state between the Gaussian and swollen coil regime.
23,54

 

Earlier experimental and simulation reports often declared Gaussian behavior. Only recently 

the excluded volume regime has been reached in extensive simulations with longer chains.
24,26

 

For longer chains except the transition Gaussian regime we would observe also the de Gennes 

and extended de Gennes excluded volume regimes. 
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The structure factor of a chain reveals regimes and details of the chain conformation 

on different length scales and confirm the structural predictions of the blob analysis. The 

structure factor provides information complementary to and in accord with the behavior of the 

extension-confinement curves. All four possible regions predicted for the structure factor 

dependence on the wavevector of a chain confined to a slab (Tab. 2) have not been observed 

in the presented systems. In summary, in all curves one can notice the rod-like behavior, slope 

–1, locally at high q as well as globally at small q. For the middle range, in a very thin slab 

close to a stripe situation, Dy/P = 0.394, we observe 2d blob organization with the slope –4/3. 

For broader slabs, the blobs are recognized, the 2d behavior does not appear anymore and the 

3d blobs are leaning more towards the ideal chain behavior with the slope –2 compared to the 

EV regime with the slope –5/3 in accord with the behavior in extension curves. In order to 

reach and detect all the anticipated regions of behavior in the structure factor one needs a 

much longer chain entrapped in a slab of significant asymmetry (Dy >> Dz) and enough space 

for a chain fragment within a blob to coil up. 

The evidence for pseudoideality in confined chains is based on four indicators: the 

extension curves, variation of the extension with the persistence length, estimated limits for 

the regimes in investigated systems and the structure factor behavior.  

The orientation correlation functions for a chain in the stripe and sufficiently narrow 

slabs display behavior predicted by the analytical theory though with the increasing 

asymmetry the quality of fitting curves is worsened. From the fitting curves also follows that 

the numerical constant in the deflection length relation does not seem to be a universal 

constant but rather a geometry depended parameter. 
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Chain extension along the channel vs confinement curves for the stripe-like channel (upper 

curve) and in four slab-like channels of increasing thickness in the transition curves below. 
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