Journal of Materials Chemistry A

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this *Accepted Manuscript* with the edited and formatted *Advance Article* as soon as it is available.

You can find more information about *Accepted Manuscripts* in the [Information for Authors](http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp).

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard [Terms & Conditions](http://www.rsc.org/help/termsconditions.asp) and the Ethical quidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/materialsA

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

In-situ growth of $Co₃O₄$ **nanoparticles on** α **-MnO₂ nanotubes: A new hybrid for high-performance supercapacitor**

Dongbo Yu,a,b Jianfeng Yao,^a Ling Qiu,^c Yufei Wang,^c Xinyi Zhang,^d Yi Feng,*b and Huanting Wang*a

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX ⁵**DOI: 10.1039/b000000x**

A new MnO₂@Co₃O₄ hybrid with small-sized Co₃O₄ nanoparticles grown on α -MnO₂ nanotubes was prepared from a low concentration precursor solution by a facile two-step hydrothermal synthesis, and its charge storage properties were investigated by cyclic voltammetry and galvanostatic charge-discharge measurements. Due to its hybrid structure, the well-dispersed $Co₃O₄$ nanoparticles not only facilitated the

¹⁰charge and ion transfer, but also hindered the dissolution of Mn species, this type of hybrid maximized the electroactivity of both components. The hybrid exhibited a specific capacitance of 234 F/g, which was greater than that of pristine α-MnO₂ nanotubes and physical mixture of α-MnO₂ nanotubes and Co₃O₄ nanoparticles at a current density of 200 mA/g. The hybrid also showed good rate capacity and long-term cycling performance.

¹⁵**1. Introduction**

The increasing concerns about the limited fossil fuel supply and global environmental conservation have stimulated considerable research into renewable energy storage and conversion technologies.¹⁻³ Due to the high power capability, fast charge-

- ²⁰discharge rates and excellent cycle lifetime, supercapacitors have attracted extensive attention as it bridges the performance gap between high energy density of battery and high power density of electrolytic capacitor. $4-5$ As one of the most promising energy storage technologies, supercapacitors have been used in hybrid 25 electric vehicles, portable electronic devices and backup power.⁶⁻⁹
- In terms of different operating mechanisms, supercapacitors can be normally divided into two types: electrical double-layer capacitances (EDLCs) (i.e., using carbon-based materials including activated carbon, carbon nanotube and graphene etc.)^{5,}
- 10^{-10-12} and pseudocapacitances (i.e., using transition metal oxide/hydroxide and conductive polymer etc.).¹³⁻¹⁷ Unlike the EDLCs stemming from the electrostatic accumulation of charges in the electric double-layer at the interface of electrode and electrolyte, pseudocapacitances store the energy by surface
- 35 faradic redox reactions generating much higher theoretical capacitance than that of EDLCs. It has been reported that amorphous hydrated $RuO₂$ can achieve an ultrahigh value of 1340 F/g for specific capacitance (measured at the scan rate of 25 mV/s by cyclic voltammetry).¹⁸ However, despite the remarkable
- 40 performance of $RuO₂$, the high cost as well as its toxicity greatly hampers the practical applications. Therefore, some inexpensive transition metal oxides including $MnO₂$ and $Co₃O₄$ were employed because of the natural abundance, low cost, environmental friendliness and high theoretical specific 45 capacitance.¹⁹⁻³³

Owing to the high surface-area utilization, nanosized $MnO₂$

thus enhanced the capacitive performance.^{19, 28-32} Yu et al. reported the shape-controlled preparation of three-dimensional 50 (3D) hierarchical MnO₂ nanostructures from sea urchin shaped α-MnO₂, α -MnO₂ nanorods clusters and 3D clew-like ϵ -MnO₂ nanostructures with specific capacitance of 46, 100 and 120 F/g at a scan rate of 5 mV/s, respectively.¹⁹ Zhu et al. fabricated several different $MnO₂$ tubular nanostructures by using ⁵⁵carbonized polyacrylonitrile nanofiber as the sacrificial template in a hydrothermal synthesis.³⁰ The $MnO₂$ tubular structures consisting of ultrathin nanosheets showed an enhanced charge storage performance due to its structural features of large specific surface area and interconnected one-dimensional tubular ⁶⁰nanostructure, which allows the electrolyte to effectively interact with the active materials and shortens the diffusion paths of the charge carriers.³⁰ However, the electronic conductivity of $MnO₂$ is inherently so poor that impedes the charge transfer, then leads to extremely severe reduction of rate capacity.^{28, 31} To overcome 65 this drawback, a common strategy is to construct MnO_2 -based hybrid capacitors with conductive matrix, such as carbon-based materials, 3^{34-42} conductive polymers 4^{34-45} and ordered nanowire arrays.46-50 Particularly Fan and co-workers reported a promising route by building up an integrated smart architecture composed of 70 pseudocapacitive metal oxides, in which structural features and electroactivities of each component could fully contribute to the electrochemical energy storage and satisfy the fast ion and electron transfer in the meantime.⁴⁹ Their study strongly testified the possibility of designing high-performance pseudocapacitive ⁷⁵materials without the use of any carbon- or polymer-based conducting media. Recently, Yang and co-workers designed a new hybrid structure with porous α -Fe₂O₃ branched nanorods well aligned on β -MnO₂ nanorods backbone. The hybrid presented excellent lithium-storage performances that could be

with different morphology and structure were widely used and

assigned to the synergistic effect of different components and the unique structure, suggesting the importance of chemical component selection and the hierarchical structure in the hybrid $design.⁵¹$

- ⁵Therefore, in order to further improve the properties of supercapacitor, it is favourable to fabricate the active materials that take advantages both of the large specific area for high activity and the manipulated structure for fast electron transport and short ion diffusion path. Herein we have successfully
- 10 prepared a novel hybrid for high-performance supercapacitor by a simple two-step synthesis. In the first step, α -MnO₂ nanotubes were synthesized through a hydrothermal method. The high surface area of α -MnO₂ nanotubes enabled nucleation sites of nanoparticle. In the second step, $Co₃O₄$ nanoparticles were grown
- 15 on the surface of α -MnO₂ nanotubes without any pretreatment of α-MnO₂ nanotubes. Both of Co₃O₄ nanoparticles and α-MnO₂ nanotubes could participate into the pseudocapacitive reaction. Owing to the lower resistivity of $Co₃O₄$, the controlled loading of $Co₃O₄$ nanoparticles was considered to benefit the charge transfer
- ²⁰without affecting the high surface area and the ion penetration into α -MnO₂ nanotube backbone. Such a well-designed hierarchical structure offers effective utilization of active materials, and thus exhibits much better electrochemical performance than that of pure $MnO₂$ nanotubes and physical
- $_{25}$ mixture of α -MnO₂ nanotubes and Co₃O₄ nanoparticles. This work has demonstrated an alternative approach to constructing supercapacitor materials with high capacitive performance.

2. Experimental section

2.1 Chemicals

- 30 Potassium permanganate (KMnO₄, \geq 99.0%), hydrochloric acid (HCl, 37%), cobalt nitrate hexahydrate $(Co(NO₃)₂·6H₂O, \geq 98%),$ ammonium fluoride (NH₄F, \geq 98%), urea (CO(NH₂)₂, \geq 98%), potassium hydroxide (KOH, \geq 98%), polyvinylidene difluoride (PVDF, average Mw \approx 534,000), N-methyl-2-pyrrolidone (NMP,
- $35 \ge 99.5\%$, cobalt oxide nanopowder (Co₃O₄, < 50 nm in particle size) and graphitized carbon black (particle size \leq 200 nm) were purchased from Sigma Aldrich, Australia. All chemicals were used without further purification.

2.2 Synthesis of α-MnO² nanotubes

- $40 \text{ In a typical synthesis}, 0.912 \text{ g of } \text{KMnO}_4 \text{ and } 2 \text{ ml of } \text{HCl } (37\%)$ were dissolved in 70 ml of distilled water under magnetic stirring. The precursor solution was then transferred into a 125 ml of Teflon-lined stainless steel autoclave. The autoclave was sealed and kept in an oven at 140 $^{\circ}$ C for 12 h. After cooling to room
- 45 temperature naturally, a brown precipitate was washed with distilled water for several times, collected by centrifugation and dried at 80 $^{\circ}$ C in air overnight. The resulting products were α - $MnO₂$ nanotubes.

2.3 Synthesis of the hybrids: in situ growth of Co3O⁴ nanoparticles on α-MnO² ⁵⁰**nanotubes**

 $Co₃O₄$ nanoparticles were in situ grown on α -Mn $O₂$ nanotubes (denoted as MnO_2 @Co₃O₄). 100 mg of as-prepared α-MnO₂ nanotubes were added in 50 ml of aqueous solution containing 0.291 g of $Co(NO₃)₂·6H₂O$, 0.3 g of urea and 0.074 g of NH₄F. ⁵⁵After ultrasonic treatment for 2 h, the solution was added into a

Teflon-lined stainless steel autoclave. The autoclave was heated to 95 °C for 8 h. The resulting material $(MnO₂@CO₃O₄-L)$ was collected by centrifugation, rinsed with water and ethanol and dried at 80 °C in air overnight. For comparison, the hybrid was 60 also prepared at high concentration $(MnO₂@₂O₃O₄-H)$ with the precursor solution including 100 mg of α -MnO₂ nanotubes, 0.582 g of $Co(NO₃)₂·6H₂O$, 0.6 g of urea and 0.148 g of NH₄F. In addition, the syntheses without adding NH_4F (and α -MnO₂ nanotubes) were also carried out with the same procedures ⁶⁵mentioned above. In addition, a physical mixture of 40 mg of $Co₃O₄$ nanoparticles and 100 mg of α -MnO₂ nanotubes $(MnO₂+Co₃O₄)$ was prepared for electrochemical measurements.

2.4 Characterization

Raman spectra were recorded from an Ar laser (Renishaw Invia) 70 with an excitation line at 514 nm at room temperature. The X-ray diffraction (XRD) was conducted on a Bruker D8 Advance X-ray diffractometer with Cu Kα radiation. The morphology of the composite was examined by field-emission scanning electron microscopy (SEM, JEOL JSM-7100F) and a transmission ⁷⁵electron microscope (TEM, JEM-2100) operated at 200 KV.

2.5 Electrochemical measurements

Electrochemistry measurements were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge in 1 M KOH solution ⁸⁰by using an Autolab 2 instrument. The KCl saturated Ag/AgCl was used as reference electrode, and graphite rod was used as counter electrode. The working electrode for electrochemical measurement was prepared by mixing 80 wt% active material, 10 wt% carbon black and 10 wt% PVDF in NMP solvent. The ⁸⁵resulting mixture was placed in an ultrasonic bath for about 1 h to make a homogeneous solution and subsequently dispersed and yielded 0.8 mg/cm² of active materials onto 1 cm² of carbon paper (TGPH-030, Toray), which was used as current collector rather than Ni foam in our study (The comparison between ⁹⁰carbon paper and nickel foam is shown in Fig. S1). Finally, the working electrode was dried in air at 80 $^{\circ}$ C for 24 h. EIS measurements were tested in the frequency range from 0.1 Hz to 100 kHz at open-circuit potential with an ac perturbation of 0.1 V.

95 The specific capacitance of the electrode was calculated by Equation 1 (CV curves) and Equation 2 (galvanostatic charge/discharge curves):

$$
C_1 = \frac{\int_{V_a}^{V_c} I(V) dV}{mV(V_a - V_c)}
$$
(1)

100

$$
C_2 = \frac{I\Delta t}{m\Delta V} \tag{2}
$$

where C_1 and C_2 is the specific capacitance (F/g), m is the mass of the active materials (g), v is the scan rate of CV curves (V/s) , (V_a-V_c) represents the potential window (V), I is the discharge 105 current (A), ΔV is the potential drop excluding the IR drop (V), and Δt is the total discharge time (s).

3. Results and discussion

The component and morphology of α -MnO₂ nanotubes and $MnO₂(QCO₃O₄)$ hybrids were examined by XRD, SEM and TEM. As shown in Fig. 1a, the as-synthesized α -MnO₂ nanotubes have tetragonal open ends and the length of individual nanotube is

- ⁵about 1- 3 µm. Fig. 1b clearly shows the nanotubes with outer diameter of about 80 nm and wall thickness of several nanometers. In addition, the diffraction spots shown in the electron diffraction pattern (the left lower corner) indicate the single crystal structure of $MnO₂$ nanotube, and the lattice spacing
- ¹⁰of 0.49 nm (the left upper corner inset) corresponds to the (200) planes of the tetragonal α -MnO₂, revealing the growth orientation is along the $[100]$ direction.⁵² The XRD pattern of as-synthesized $MnO₂$ nanotubes (Fig. 2a) can be indexed to the pure tetragonal phase of α-MnO₂ (JCPDS 44-0141), and both of MnO₂@Co₃O₄-
- 15 H hybrid (Fig. 2b) and $MnO_2@Co_3O_4$ -L hybrid (Fig. 2c) are composed of tetragonal $α$ -MnO₂ phase and face-centered cubic $Co₃O₄ phase (JCPDS 42-1467).$

Fig. 1. SEM (a) and TEM (b) images of single-crystal α -MnO₂ nanotubes. ²⁰The inset in (a) shows the high-magnification image and the insets in (b) show the high-magnification TEM image and corresponding electron diffraction.

Fig. 2. XRD patterns of α -MnO₂ nanotubes (a), MnO₂ ω Co₃O₄-H hybrid 25 (b) and $MnO_2@Co_3O_4$ -L hybrid (c).

Fig. 3 shows SEM and TEM images of $MnO_2@Co_3O_4$ hybrids prepared under low and high concentrations. At the high concentration, $MnO_2@Co_3O_4$ -H hybrid displays a bead-on-string structure with bigger nanoparticles $(\sim 120 \text{ nm})$ aligning with the

- MnO² ³⁰nanotubes (Fig. 3a). However, some bare nanowire clusters or nanoflakes appear when NH4F is not added, which are marked by arrows in Fig. S2a-c. At the low concentration, the nanotubes are fully covered by small nanoparticles (Fig. 3b). In comparison, in the absence of NH4F, only a few nanoparticles
- 35 with sizes of 10-20 nm are dispersed on the side facets of α- MnO_2 nanotubes (Fig. S2d). The TEM image of $MnO_2@Co_3O_4$ -H in Fig. 3c shows the bead-on-string structure and almost no other structural by-products (such as nanowire clusters and nanoflakes) exist. In contrast, very small nanoparticles are 40 uniformly located on the surface of $MnO₂$ nanotubes for

 $MnO_2@Co_3O_4$ -L (Fig. 3d and e), although some big nanoparticles with the diameter of $~100$ nm are occasionally located on the $MnO₂$ nanotubes. Jiang et al. pointed out that after introducing F anion, Co^{2+} could be gradually released into the ⁴⁵reaction system and facilitate the formation of nuclei on substrates, resulting in tight adhesion between $Co₃O₄$ and substrates.⁵³ Therefore, it is believed that NH4F has a great influence on the hybrid synthesis that promotes the nucleation of $Co₃O₄$ uniformly grown on α -MnO₂ nanotubes. In addition, based ⁵⁰on the experimental results, the low concentration of precursor solution facilitates the smaller $Co₃O₄$ nanoparticles grown on MnO² nanotubes, which will benefit the charge storage performance discussed later. The d-spacing values of 0.235, 0.247 and 0.276 nm $[Fig. 3f]$ correspond to the planes of 55 $MnO_2(211)$, $Co_3O_4(113)$ and $Co_3O_4(220)$, respectively, and the crystal orientation perpendicular to the $Co₃O₄$ particle surfaces is determined as $[110]$. To further investigate the influence of NH4F on the morphology of resulting materials, in another experiment, without adding α -MnO₂ nanotubes and 60 NH₄F, the products exhibit a nanowire cluster morphology (Fig. S3a and b) and the related XRD result (Fig. S3c) indicates the nanowire clusters should be $Co(CO₃)_{0.5}(OH) \cdot 0.11H₂O$. $Co₃O₄$ nanoflakes could be produced in the presence of $Co(NO₃)₂$ and $CO(NH₂)₂$ in the hydrothermal reaction according to the previous 65 study,²⁶ thus the by-products in the synthesis are considered to result from the fast reaction of $Co(NO₃)₂$ and $CO(NH₂)₂$ if $NH₄F$ is not added. It should be noted that no pre-treatment or posttreatment is required as compared to the preparation of carbonbased materials or the modification of carbon nanotube in the σ other one-dimensional composites with complex steps.^{30, 39, 54-58} Our method possesses significant advantages including

simplicity, cost-efficiency and good reproducibility.

Fig. 3 SEM images of $MnO_2@Co_3O_4-H$ (a) and $MnO_2@Co_3O_4-L$ (b). 75 TEM images of $MnO_2(\partial_{0}CO_3O_4-H (c)$, $MnO_2(\partial_{0}CO_3O_4-L (d, e))$, and high magnification TEM image of $MnO_2@Co_3O_4$ -L (f). The insets of (a)(b) show the corresponding high-magnification SEM images.

Fig. 4 presents the Raman spectra of α -MnO₂ nanotube, $MnO_2@Co_3O_4$ -H and $MnO_2@Co_3O_4$ -L. For the α -MnO₂ so nanotubes, the strong peak of 657 cm⁻¹ is attributed to Mn_3O_4 induced in the Ar laser irradiation. The weak peak of 575 cm^{-1} is assigned to the Mn-O lattice vibration in $MnO₂$, and the weak peaks at 317 and 370 cm⁻¹ arise from the formation of Mn_2O_3 or $Mn₃O₄$ and correspond to the bending mode of Mn-O-Mn.⁵⁹ Four ss new peaks located at 188, 462, 514 and 675 cm⁻¹ emerge in the

spectrum of MnO₂@Co₃O₄-L, which are considered as F_{2g} , E_{g} , F_{2g} and A_{1g} Raman active modes of $Co₃O₄$ nanocrystals, respectively.⁴⁹ For the MnO₂@Co₃O₄-L hybrid, the peak at 575 cm^{-1} becomes stronger and a new peak of 675 cm⁻¹ appears as s compared to $MnO_2@Co_3O_4$ -H. Furthermore, the peak of 657 cm⁻¹ related to the laser heating of exposed α -MnO₂ disappears, implying the surface of $MnO_2@Co_3O_4$ -L hybrid is fully covered by small-sized $Co₃O₄$ nanoparticles, which is in good agreement with the SEM and TEM observations. In addition, the $Co₃O₄$

10 nanoparticles could form a dense layer to avoid the possible structure deformation and enhance the stability of these supercapacitor materials.⁵¹

Fig. 4 Raman spectra of α-MnO₂ nanotube, MnO₂@Co₃O₄-H and 15 $MnO₂(Q)CO₃O₄-L$.

The electrochemical measurements of α -MnO₂ nanotubes, $MnO_2@Co_3O_4$ -H, $MnO_2@Co_3O_4$ -L and MnO_2 +Co₃O₄ were conducted by using a three-electrode configuration on the Autolab 2 instrument in 1 M KOH aqueous solution. Fig. 5a 20 presents the CV plots ranging from 0.1 to 0.5 V at the scan rate of 2 mV/s. The CV of α -MnO₂ nanotubes shows the typical quasirectangular shape ascribed to the intercalation/extraction of protons (H_3O^+) or alkali cations (K^+) into the oxide.⁴⁶ It could be observed that a pair of redox peaks A/A' appeared in both of CV

25 plots for $MnO_2@Co_3O_4-H$ and $MnO_2@Co_3O_4-L$, which was attributed to the surface Faradic effect described as follows:²¹

 $Co₃O₄ + OH⁻ + H₂O \leftrightarrow 3CoOOH + e⁻$ (3) $CoOOH + OH^- \leftrightarrow CoO_2 + H_2O + e^-$ (4)

30

The specific capacitance (C_1) of α -MnO₂ nanotubes, $MnO_2@Co_3O_4$ -H, $MnO_2@Co_3O_4$ -L and MnO_2 +Co₃O₄ calculated from CV plots is 130, 166, 227 and 148 F/g at the scan rate of 2 mV/s, respectively. Both $MnO_2@Co_3O_4$ -H and $MnO_2@Co_3O_4$ -L ³⁵hybrids show better charge storage performance than the pristine α -MnO₂ nanotubes and MnO₂+Co₃O₄ physical mixture, which should be originated from their specific configurations. On the one hand, the $Co₃O₄$ nanoparticles of the hybrids directly

contribute to the higher capacitance and favour the fast charge 40 transfer resulting from the lower resistivity of $Co₃O₄$, especially at the high-valance state in charge-discharge process, 60 which can be confirmed by the bigger diameters of semicircles for α -MnO₂

nanotubes and $MnO_2+Co_3O_4$ in Nyquist plots (Fig. 5b). The EIS results also demonstrate no significant function on charge

 45 transport as α-MnO₂ nanotubes are physically mixed with Co₃O₄ nanoparticles, leading to the lower specific capacitance of

 $MnO_2+Co_3O_4$ compared with the $MnO_2@Co_3O_4$ hybrids. On the other hand, compared to the typical CV characterization of pristine $Co₃O₄$ (overlap in the forward/reverse scan of CV plot at 50 the potential range of 0.1-0.3 V),⁴⁹ the CV plots of the two hybrids show rectangular feature as of $MnO₂$ ranging from 0.1 to 0.3 V (Fig. 5a), which reveals that α -MnO₂ nanotubes are involved in the capacitive reaction. Moreover, $MnO₂(QCO₃O₄-L)$ exhibits the best charge storage performance. In comparison to 55 bead-on-string shaped $MnO_2@Co_3O_4-H$ with a bigger Co_3O_4 particle size, $MnO_2@Co_3O_4$ -L has the lower charge transfer resistance (Fig. 5b) that benefits the charge transfer and would lead to the superior rate capability of the hybrid. Additionally, since the straight line is ascribed to the diffusive resistance ⁶⁰(Warburg impedance) that is related to the electrolyte diffusion within the pores of the electrode, according to the EIS results (Fig. 5b), $MnO_2@Co_3O_4$ -L almost has the same diffusion resistance as that of α -MnO₂ nanotubes (parallel to each other at the linear part corresponding to the low frequency range) but 65 better diffusion property than $MnO_2@CO_3O_4$ -H. Combining the above SEM and TEM observations (Fig. 3), it is noted that the small $Co₃O₄$ nanoparticle layer of $MnO₂(QCO₃O₄-L$ facilitates the ion penetration into α -MnO₂ nanotubes to achieve maximized utilization of pseudocapacitive materials due to the slightly bigger π circled area of rectangle part for MnO₂@Co₃O₄-L (at the potential range of 0.1-0.3 V in Fig. 5a). Upon increasing the scan rate to 50 mV/s, the oxidation peaks of the hybrids positively shift and the reduction peaks shift negatively (Fig. S4a-c). The current density of active materials increases while the specific ⁷⁵capacitance reduces with the increase of scan rate as shown in Table 1. The capacitance remains at 75.3% for $MnO₂(QCO₃O₄-L)$ when the scan rate was varied from 2 to 50 mV/s, indicating

 $MnO_2@Co_3O_4$ -L had a better rate capability than that of MnO₂@Co₃O₄-H (65.8%), α -MnO₂ nanotubes (65.4%) and so $MnO_2+Co_3O_4$ (65.5%). $\mathbf b$ 100 a density (A/g) $MnO₂+Co₃O$ (Ohm) 60 MnO2@C03O4-H InO2 nanotube $\overline{4}$ MnOz@CoxO4J Current InO,@Co,O,-H MnO.@Co.O.-L $-$ MnO_.+Co.O.

Fig. 5 Electrochemical properties of α-MnO₂ nanotube, MnO₂@Co₃O₄-H, $MnO₂(Q₀CO₃O₄-L$ and $MnO₂+CO₃O₄$ in 1 M KOH aqueous solution: (a) CVs at the scan rate of 2 mV/s; (b) Nyquist plots at the range of 0.1 Hz-85 100 KHz; (c) galvanostatic charge-discharge curves at a current density of 200 mA/g; (d) galvanostatic discharge curves of $MnO₂(QCO₃O₄-L$ at different current densities.

 The pseudocapacitive property was further estimated by ⁵galvanostatic charge–discharge measurements. As shown in Fig. 5c, $MnO_2@Co_3O_4$ -L displays the highest specific capacitance at the current density of 200 mA/g, it exhibits pseudocapacitance (C_2) of 234 F/g at 0.2 A/g, 229 F/g at 0.5 A/g, 220 F/g at 1 A/g, 209 F/g at 2 A/g, 176 F/g at 5 A/g (Fig. 5d) and shows good ¹⁰capacitance retention of 89.3% with increasing the current density from 0.2 A/g to 2 A/g. These obtained specific capacitance and rate capability values are higher than those reported MnO₂-based composites incorporated with carbon- or conductive polymer-based materials, such as graphene-

- 15 wrapped/MnO₂ composites (210 F/g at 0.5 A/g, 70% retention at 5 A/g ,⁵⁴ nitrogen-doped graphene/ultrathin $MnO₂$ sheet composites (257.1 F/g at 0.2 A/g, 74.8% retention at 2 A/g),⁶¹ graphene oxide/needle-like $MnO₂$ composites (197.2 F/g at 0.2 A/g, 56.4% retention at 1 A/g)³⁸ and mesoporous carbon/MnO₂
- 20 composites (205 F/g at 0.2 A/g, 70% retention at $1A/g$),⁶² suggesting this well-designed hybrid offers an excellent charge storage performance even though all of the components are pseudocapacitive metal oxides. Fig. 6a shows the summary plots of specific capacitance values from Fig. 5d, Fig. S4d and e. The
- 25 loss of capacitance follows the order: α-MnO₂ nanotube > $MnO_2+Co_3O_4$ > $MnO_2@Co_3O_4-H$ > $MnO_2@Co_3O_4-L$ in agreement with the CV results by changing the scan rate, which indicates the better rate capability of $MnO_2@Co_3O_4$ -L. Besides the improved specific capacitance and good rate capability, the
- ³⁰unique hybrid structure performs outstanding cycling stability. Fig. 6b shows the charge-discharge cycles at a constant current density of 2 A/g in 1 M KOH electrolyte solution. $MnO₂(QCO₃O₄-L can still retain 87.5% of capacitance value after$ 2000 cycles compared with 80.8% for α -MnO₂ nanotubes, 77.6%
- 35 for $MnO_2@CO_3O_4-H$ and 77.8% for $MnO_2+Co_3O_4$. In the charge/discharge process, the intercalation/extraction of ions into the active materials causes the electrode stress due to their different expansion coefficient, which may greatly weaken the connection between $Co₃O₄$ nanoparticles and α -MnO₂ nanotubes,
- 40 and then result in the big electronic resistance of electrode.^{35, 63} In addition, directly mixing α -MnO₂ nanotubes with Co₃O₄ nanoparticle results in less improvement in conductivity (Fig. 5b). $MnO₂(QCO₃O₄-H)$ shows the close loss of capacitance of $MnO₂+Co₃O₄$, thus the superior cycling performance of
- 45 MnO₂ $@Co_3O_4$ -L demonstrates that the thinner Co_3O_4 nanoparticles loaded on α -MnO₂ nanotubes could give rise to better structural integrity of hybrids than bigger nanoparticles for $MnO₂(QCO₃O₄-H. Furthermore, the very thin Co₃O₄ nanoparticles$ can generate a protective layer on the surface of α -MnO₂
- ⁵⁰nanotubes to prevent the Mn species from dissolving in the electrolyte solution, thus $MnO_2@Co_3O_4$ -L shows better cycling stability than α -MnO₂ nanotubes .⁵¹

Fig. 6 Summary plots of specific capacitance value at different current densities (a) and the cycling performance at a current density of 2 A/g (b) of α-MnO2 nanotube, MnO2@Co3O4-H, MnO2@Co3O4-L and $MnO₂+Co₃O₄$ in 1 M KOH aqueous solution.

4. Conclusions

We have synthesized a novel hybrid composed of α -MnO₂ 60 nanotubes and $Co₃O₄$ nanoparticles by a simple hydrothermal method without involving any surfactants or surface modifications. The addition of NH4F and the concentration of precursor solution play important roles in the synthesis. $MnO₂(QCO₃O₄ - H)$ prepared with a high concentration precursor 65 solution shows a bead-on-string morphology with big $Co₃O₄$ nanoparticles distributed on α -MnO₂ nanotubes. For the $MnO_2@Co_3O_4$ -L prepared at a low concentration precursor solution, the surface of α -MnO₂ nanotube is fully covered by the small-sized $Co₃O₄$ nanoparticles that could improve the charge 70 transfer property, hinder the dissolution of Mn species and allow the ion transport into the backbone. Therefore, both α -MnO₂ nanotubes and smaller $Co₃O₄$ nanoparticles of $MnO₂(QCo₃O₄-L)$ display enhanced electroactivity for charge storage. Owing to the unique structure, the specific capacitance and rate capacity of ⁷⁵ MnO₂@Co₃O₄-L are better than those of α-MnO₂ nanotubes, $MnO_2@Co_3O_4$ -H and MnO_2 +Co₃O₄. In addition, $MnO_2@Co_3O_4$ -L can retain 87.5% of capacitance after 2000 charge-discharge cycles. In conclusion, this well-designed hybrid exhibits an excellent energy storage property, which suggests an alternative ⁸⁰way of constructing high-performance supercapacitors without using carbon- or polymer-based conductive materials.

Acknowledgements

This work was financially supported by the Australian Research Council. D.Y. would like to thank China Scholarship Council and 85 Department of Chemical Engineering at Monash University for hosting his visiting study. H.W. is a recipient of an Australian Research Council Future Fellowship (project no. FT100100192). J.Y. thanks Monash University for the Monash Fellowship.

Notes and references

a ⁹⁰*Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia; E-mail: huanting.wang@ monash.edu (H. Wang)*

^bSchool of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China; E-mail: ⁹⁵*fyhfut@126.com (Y. Feng)*

- *c Department of Materials Engineering, Monash University, Clayton, Victoria 3800, Australia*
- *d School of Chemistry, Monash University, Clayton, Victoria 3800, Australia*
- ¹⁰⁰† Electronic Supplementary Information (ESI) available: [Comparison between carbon paper and nickel foam; SEM and TEM images of MnO2@Co3O4 composites without NH4F; SEM images and XRD pattern

of the products without the addition of α -MnO₂ nanotubes and NH₄F; Cyclic voltammetric curves at different scan rates and galvanostatic discharge curves at different current densities.]. See DOI: 10.1039/b0000000x/

- ⁵1 B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang and C. M. Lieber, *Nature*, 2007, **449**, 885-889.
- 2 C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins and Y. Cui, *Nat. Nanotechnol.*, 2007, **3**, 31-35.
- 3 M. Winter, *Chem. Rev.*, 2004, **104**, 4245–4270.
- ¹⁰4 P. Simon and Y. Gogotsi, *Nat. Mater.*, 2008, **7**, 845 854
- 5 Y. Zhai, Y. Dou, D. Zhao, P. F. Fulvio, R. T. Mayes and S. Dai, *Adv. Mater.*, 2011, **23**, 4828-4850.
- 6 D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura and S. Iijima, *Nat.* ¹⁵*Mater.*, 2006, **5**, 987-994.
- 7 R. Liu, J. Duay and S. B. Lee, *Chem. Commun.*, 2011, **47**, 1384– 1404.
- 8 P. J. Hall, M. Mirzaeian, S. I. Fletcher, F. B. Sillars, A. J. R. Rennie, G. O. Shitta-Bey, G. Wilson, A. Cruden and R. Carter, *Energy* ²⁰*Environ. Sci.*, 2010, **3**, 1238–1251.
- 9 A. Du Pasquier, I. Plitz, S. Menocal and G. Amatucci, *J. Power Sources*, 2003, **115**, 171-178.
- 10 J. Wang and S. Kaskel, *J. Mater. Chem.*, 2012, **22**, 23710–23725.
- 11 G. Xu, C. Zheng, Q. Zhang, J. Huang, M. Zhao, J. Nie, X. Wang and ²⁵F. Wei, *Nano Res.*, 2011, **4**, 870-881.
- 12 E. Raymundo-Piñero, F. Leroux and F. Béguin, *Adv. Mater.*, 2006, **18**, 1877-1882.
- 13 J. Duay, S. A. Sherrill, Z. Gui, E. Gillette and S. B. Lee, *ACS Nano*, 2013, **7**, 1200–1214.
- ³⁰14 M. Zhi, C. Xiang, J. Li, M. Li and N. Wu, *Nanoscale*, 2013, **5**, 72–88.
- 15 C. Zhou, Y. Zhang, Y. Li and J. Liu, *Nano Lett.*, 2013, **13**, 2078-2085. 16 W. Deng, X. Ji, Q. Chen and C. E. Banks, *RSC Adv.*, 2011, **1**, 1171–
- 1178. 17 H. Zhou, L. Liu, X. Wang, F. Liang, S. Bao, D. Lv, Y. Tang and D.
- ³⁵Jia, *J. Mater. Chem. A*, 2013, **1**, 8525–8528. 18 C.-C. Hu, W.-C. Chen and K.-H. Chang, *J. Electrochem. Soc.*, 2004,
- **151**, A281-A290. 19 P. Yu, X. Zhang, D. Wang, L. Wang and Y. Ma, *Cryst. Growth Des.*,
- 2009, **9**, 528–533. ⁴⁰20 Y. Wang, Z. Zhong, Y. Chen, C. T. Ng and J. Lin, *Nano Res.*, 2011, **4**, 695-704.
	- 21 D. Wang, Q. Wang and T. Wang, *Inorg. Chem.*, 2011, **50**, 6482-6492.
	- 22 Z. Yu, B. Duong, D. Abbitt and J. Thomas, *Adv. Mater.*, 2013, **25**, 3302-3306.
- ⁴⁵23 G. X. Pan, X. H. Xia, F. Cao, P. S. Tang and H. F. Chen, *Electrochem. Commun.*, 2013, **34**, 146-149.
- 24 B. Wang, T. Zhu, H. B. Wu, R. Xu, J. S. Chen and X. W. Lou, *Nanoscale*, 2012, **4**, 2145–2149.
- 25 Y. Xiao, A. Zhang, S. Liu, J. Zhao, S. Fang, D. Jia and F. Li, *J.* ⁵⁰*Power Sources*, 2012, **219**, 140-146.
- 26 S. K. Meher and G. R. Rao, *J. Phys. Chem. C*, 2011, **115**, 15646- 15654.
- 27 T. Zhu, J. S. Chen and X. W. Lou, *J. Mater. Chem.*, 2010, **20**, 7015– 7020.
- ⁵⁵28 V. Subramanian, H. Zhu and B. Wei, *J. Power Sources*, 2006, **159**, 361-364.
- 29 H. Xia, J. Feng, H. Wang, M. O. Lai and L. Lu, *J. Power Sources*, 2010, **195**, 4410-4413.
- 30 J. Zhu, W. Shi, N. Xiao, X. Rui, H. Tan, X. Lu, H. H. Hng, J. Ma and ⁶⁰Q. Yan, *ACS Appl. Mater. Interfaces*, 2012, **4**, 2769-2774.
- 31 W. Xiao, H. Xia, J. Y. H. Fuh and L. Lu, *J. Power Sources*, 2009, **193**, 935-938.
- 32 M. Xu, L. Kong, W. Zhou and H. Li, *J. Phys. Chem. C*, 2007, **111**, 19141 - 19147.
- ⁶⁵33 V. Subramanian, H. Zhu and B. Wei, *Electrochem. Commun.*, 2006, **8**, 827-832.
	- 34 J.-G. Wang, Y. Yang, Z.-H. Huang and F. Kang, *J. Power Sources*, 2013, **224**, 86-92.
- 35 Y. Jin, H. Chen, M. Chen, N. Liu and Q. Li, *ACS Appl. Mater.* ⁷⁰*Interfaces*, 2013, **5**, 3408-3416.
- 36 J. Liu, J. Essner and J. Li, *Chem. Mater.*, 2010, **22**, 5022-5030.
- 37 Z.-S. Wu, W. Ren, D.-W. Wang, F. Li, B. Liu and H.-M. Cheng, *ACS Nano*, 2010, **4**, 5835–5842.
- 38 S. Chen, J. Zhu, X. Wu, Q. Han and X. Wang, *ACS Nano*, 2010, **4**, ⁷⁵2822–2830.
	- 39 H. Zheng, J. Wang, Y. Jia and C. a. Ma, *J. Power Sources*, 2012, **216**, 508-514.
	- 40 Y. Peng, Z. Chen, J. Wen, Q. Xiao, D. Weng, S. He, H. Geng and Y. Lu, *Nano Res.*, 2010, **4**, 216-225.
- ⁸⁰41 G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui and Z. Bao, *Nano Lett.*, 2011, **11**, 4438-4442.
	- 42 X. M. Feng, Z. Z. Yan, N. N. Chen, Y. Zhang, Y. W. Ma, X. F. Liu, Q. L. Fan, L. H. Wang and W. Huang, *J. Mater. Chem. A*, 2013, **1**, 12818-12825.
- ⁸⁵43 Y. Hou, Y. Cheng, T. Hobson and J. Liu, *Nano Lett.*, 2010, **10**, 2727- 2733.
	- 44 R. Liu and S. B. Lee, *J. Am. Chem. Soc.*, 2008, **130**, 2942 2943.
	- 45 F. J. Liu, *J. Power Sources*, 2008, **182**, 383-388.
	- 46 J. Cao, M. Safdar, Z. Wang and J. He, *J. Mater. Chem. A*, 2013, DOI: ⁹⁰10.1039/c1033ta12012k.
	- 47 J. Duay, S. A. Sherrill, Z. Gui, E. Gillette and S. B. Lee, *ACS Nano*, 2013, **7**, 1200–1214.
	- 48 P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C. P. Wong and Z. L. Wang, *ACS* ⁹⁵*Nano*, 2013, **7**, 2617–2626.
	- 49 J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, H. Gong and H. J. Fan, *Adv. Mater.*, 2011, **23**, 2076-2081.
- 50 S. Dong, X. Chen, L. Gu, X. Zhou, L. Li, Z. Liu, P. Han, H. Xu, J. Yao, H. Wang, X. Zhang, C. Shang, G. Cui and L. Chen, *Energy* ¹⁰⁰*Environ. Sci.*, 2011, **4**, 3502–3508.
	- 51 X. Gu, L. Chen, Z. Ju, H. Xu, J. Yang and Y. Qian, *Adv. Funct. Mater.*, 2013, **23**, 4049–4056.
- 52 J. Luo, H. T. Zhu, H. M. Fan, J. K. Liang, H. L. Shi, G. H. Rao, J. B. Li, Z. M. Du and Z. X. Shen, *J. Phys. Chem. C*, 2008, **112**, 12594- 105 12598.
	- 53 J. Jiang, J. P. Liu, X. T. Huang, Y. Y. Li, R. M. Ding, X. X. Ji, Y. Y. Hu, Q. B. Chi and Z. H. Zhu, *Cryst. Growth Des.*, 2010, **10**, 70-75.
	- 54 J. Zhu and J. He, *ACS Appl. Mater. Interfaces*, 2012, **4**, 1770-1776.
- 55 C. Xiang, M. Li, M. Zhi, A. Manivannan and N. Wu, *J. Power* ¹¹⁰*Sources*, 2013, **226**, 65-70.
	- 56 M. Xu, F. Wang, Y. Zhang, S. Yang, M. Zhao and X. Song, *Nanoscale*, 2013, **5**, 8067-8072.
	- 57 Z. Chen, Y. Qin, D. Weng, Q. Xiao, Y. Peng, X. Wang, H. Li, F. Wei and Y. Lu, *Adv. Funct. Mater.*, 2009, **19**, 3420-3426.
- ¹¹⁵58 L. S. Aravinda, K. K. Nagaraja, H. S. Nagaraja, K. U. Bhat and B. R. Bhat, *Electrochim. Acta*, 2013, **95**, 119-124.
	- 59 F. Buciuman, F. Patcas, R. Craciun and D. R. T. Zahn, *Phys. Chem. Chem. Phys.*, 1999, **1**, 185-190.
	- 60 D. Yu, X. Zhang, K. Wang, L. He, J. Yao, Y. Feng and H. Wang, *Int.* ¹²⁰*J. Hydrogen Energy*, 2013, **38**, 11863–11869.
	- 61 S. Yang, X. Song, P. Zhang and L. Gao, *ACS Appl. Mater. Interfaces*, 2013, **5**, 3317-3322.
	- 62 Y. Peng, Z. Chen, J. Wen, Q. Xiao, D. Weng, S. He, H. Geng and Y. Lu, *Nano Res.*, 2011, **4**, 216-225.
- ¹²⁵63 S. B. Bubenhofer, C. M. Schumacher, F. M. Koehler, N. A. Luechinger, G. A. Sotiriou, R. N. Grass and W. J. Stark, *ACS Appl. Mater. Interfaces*, 2012, **4**, 2664-2671.

130 TOC

A new $MnO_2@Co_3O_4$ hybrid with small-sized Co_3O_4 nanoparticles grown on α -MnO₂ nanotubes exhibited much improved specific capacitance than pristine α -MnO₂ nanotubes s and the physical mixture of α -MnO₂ nanotubes and Co₃O₄ nanoparticles, and also showed good rate capacity and long-term

cycling performance.