Journal of Materials Chemistry C

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/materialsC

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Enhanced red upconversion luminescence by codoping Ce^{3+} in β -NaY(Gd_{0.4})F₄: Yb³⁺/Ho³⁺ nanocrystals

Wei Gao, Hairong Zheng*, Qingyan Han, Enjie He, Fangqi Gao, Ruibo Wang

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

In this work, hexagonal phase NaY(Gd_{0.4})F₄: Yb³⁺/Ho³⁺ nanocrystals were obtained by solvothermal method. The upconversion emission tuning from green to red in NaY(Gd_{0.4})F₄: Yb³⁺/Ho³⁺ nanocrystals was successfully achieved by replacing Y³⁺ ions in the nanocrystal structure with Ce³⁺ ions under 980 nm excitation. The red upconversion emission intensity was enhanced with Ce³⁺ concentration increasing. ¹⁰ The output colors for the samples can be clearly observed in a confocal microscopy setup. It was found

that two efficient cross-relaxation processes between Ho^{3+} and Ce^{3+} ions had been employed to enhance red emission and suppress green emission. The possible upconversion mechanisms and conversion efficiency between Ho^{3+} and Ce^{3+} ions were investigated in detail. In addition, the influence of the matrix and surface properties on the upconversion emission of the samples were also discussed. The red upconversion emission of Yb^{3+} , Ho^{3+} and Gd^{3+} codoped nanocrystals in this work will have great potential applications in the biological images, magnetic resonance imaging agents, display and anti-

1. Introduction

counterfeiting applications.

- Rare-earth (RE) ion-doped upconversion (UC) materials have presented great potential applications in lighting, solar cell, threedimensional display, solid-state laser, biological marker and imaging due to their unique emission properties of infrared to visible light.¹⁻⁷ Especially, the hexagonal phase NaYF₄ crystals ²⁵ have been considered as a most efficient UC emission host
- materials because of their low phonon energy.⁸⁻¹⁰ It was reported that they are bright enough so that single UC nanocrystal with a size of 27 nm on the diameter can be observed in confocal microscopy.¹¹ Many different synthesis methods have been 30 employed to obtain NaYF₄ nonaparticles, including hydrothermal
- method, solvothermal routes, high-temperature thermal decomposition of trifluoroacetate precursors, and liquid-solid two-phase approaches.¹³⁻¹⁶ The structure, morphology and size of nanoparticles are successfully tuned by adjusting the reaction
- ³⁵ time, temperature, pH value, adding capping agents and codoping different ions.¹⁷⁻²⁰ For example, Liu and his coworker showed that by introducing additional RE ion, such as Gd³⁺ ion, at a high doping level in NaYF₄: Yb³⁺/Er³⁺ crystallites can decrease the crystallization reaction time and temperature, resulting in ultracover and the statement of the statemen
- ⁴⁰ small hexagonal phase UC nanocrystals.²¹ In addition, Gd^{3+} doped NaYF₄ nanocrystals exhibit paramagnetism at room temperature originating from the intrinsic magnetic moment of Gd^{3+} ions in the host.^{22, 23} Hence, Gd^{3+} doped UC nanocrystals

have been widely studied as bio-imaging and magnetic resonance 45 imaging agents.

Obtaining a pure single UC emission has been an increasing focus and challenge. The abundance of 4f^N electronic states in lanthanide ions typically elicits multicolor fluorescence emission that is tunable from ultraviolet to near-infrared (NIR). Many 50 approaches can produce multicolor UC emissions, which include doping different ions, changing crystal structure, surface modification and tuning particle size and morphology.24-27 Recently, several attempts have been made to obtain a high-purity, single-band UC red emission that is attractive for anti-55 counterfeiting and color display applications.²⁸ High red-to-green emission ratio was achieved by increasing Yb³⁺ concentration in Yb³⁺/Er³⁺ co-doped NaYF₄ nanocrystals.²⁹ In addition, Mn²⁺ codoped NaYF₄: Yb³⁺/Er³⁺ nanocrystals exhibited pure single-band red UC emission because of the energy transfer between the Er^{3+} 60 and Mn²⁺ ions.³⁰ Like Er³⁺, Ho³⁺ is an intriguing active ion for UC emission because it has a broad fluorescence spectrum that ranges from vacuum ultraviolet to near infrared.³¹ Typically, the UC emission from Yb³⁺ and Ho³⁺ codoped systems results in an intense green emission accompanied by a weak red emission.³²⁻³⁴ 65 However, few reports have been found on the red emission enhancement in Yb³⁺ and Ho³⁺ codoped system. The enhanced red UC emission is observed in LaF₃:Yb³⁺/Ho³⁺ nanoparticles due to the presence of organic ligands that stabilize the nanoparticles and quench green emission, and high phonon energy host of ⁷⁰ YVO₄ nanocrystals with high Yb³⁺ concentration.^{35, 36} Zhang et

al. had reported that the UC emission from Yb³⁺/Ho³⁺ co-doped cubic phase NaYF₄ nanocrystals was tuned from green to red by introducing Ce³⁺ ions.³⁷ Trivalent cerium ions have a simple energy structure, and have been considered as an ideal candidate ⁵ for enhancing the population of intermediate excited state ⁵I₇ of Ho³⁺ that can result in a strong red UC emission.³⁸ It is well-

- known that the UC emission intensity of the hexagonal NaYF₄ (β-NaYF₄) nanocrystals is much stronger than that of the cubicphase NaYF₄ (α -NaYF₄) ones.^{39,40} Tuning UC fluorescence
- ¹⁰ emission of β -NaYF₄:Yb³⁺/Ho³⁺ nanocrystals from green to red through codoping Ce³⁺ ions will extend their application to color display applications and biological images. However, studies on tuning UC emission in the β -NaYF₄ :Yb³⁺/Ho³⁺ nanocrystals through codoping Ce³⁺ ions have been barely reported.⁴¹ In this ¹⁵ study, we attempted to tune the UC emission in β -NaY(Gd_{0.4})F₄:
- Is study, we attempted to tune the UC emission in β -NaY(Gd_{0.4})F₄: Yb³⁺/Ho³⁺ nanorods through codoping with Ce³⁺ ions, and systematically studied their spectral properties with a confocal microscopy setup. The UC emission mechanism and crossrelaxation (CR) processes were investigated carefully.

2. Experimental details

2.1. Materials.

20

All chemicals used in the current study were analytical graded ²⁵ used without further purification. Y(NO₃)₃·6H₂O, Yb(NO₃)₃·6H₂O Ho(NO₃)₃·6H₂O and Gd(NO₃)₃·6H₂O are obtained by dissolving Y₂O₃, Yb₂O₃ Ho₂O₃ and Gd₂O₃, (99.99%. Sigma-Aldrich Chemicals Co.) in dilute nitric acid solution at elevated temperature followed by evaporating the superfluous ³⁰ nitric acid, respectively. Ce(NO₃)₃·6H₂O(99.99%) was purchased from Sigma-Aldrich Chemicals Co.. HNO₃ (65.0%-68.0%), NaF (98.0%), NaOH (98.0%), oleic acid (90.0%) and ethanol (99.7%) were supplied by Sinopharm Chemical Reagent Co, Ltd.

³⁵ 2.2. Synthesis of β-NaY(Gd_{0.4})F₄: Yb³⁺/Ho³⁺/Ce³⁺ nanocrystals.

 $Yb^{3+}/Ho^{3+}/Ce^{3+}$ β -NaY(Gd_{0.4})F₄: nanocrystals were synthesized via a solvothermal method by using oleic acid as a 40 stabilizing agent, for which the detailed process is given in reference.²¹ 10.0 ml ethanol, 12.0 ml oleic acid and 2.0 ml solution of 0.6 g NaOH were mixed under stirring. Then 1.0 ml of RE (NO₃)₃ (0.5 M, RE=Y, Gd, Yb, Ho and Ce) solution and 3.0 ml of NaF (1.0 M) solution were added under vigorous 45 stirring for about 15 minutes. Subsequently, the colloidal solution was transferred into a 40 ml of Telfon-line autoclave and hated at 180°C for 24 hours. The final products were collected by centrifugation, and washing with deionized water and ethanol for several times. The collected samples were finally dried at 60°C 50 for several hours.

2.3. Sample characterization and spectral measurement

The powder x-ray diffraction (XRD) were measured with a D/Max2550VB+/PC x-ray diffraction meter with Cu K α (40 kV,

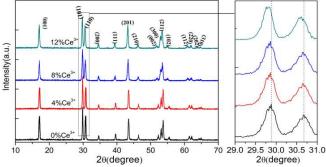


Fig. 1 XRD patterns of NaY(Gd_{0.4})F₄: 20%Yb³⁺/2%Ho³⁺/xCe³⁺ nanorods (*x*=0%, 4%, 8% and 12%).

⁶⁰ 40 mA) irradiation ($\lambda = 0.15406$ nm). The XRD spectra were recorded at a scanning rate of 8° min⁻¹. The morphology of the particles was characterized by the transmission electron microscope (TEM, JEM 2100) and scanning electron microscope

- 65 (SEM, Quanta 200), respectively. Fourier transform infrared spectroscopy (FTIR) was measured with a Brucher EQUINX55 spectrometer. For spectroscopic measurements, YAG: Nd³⁺ (Quanta Ray Lab-170) pulse laser and Ti sapphire femtosecond laser (Mira-900) were employed as excitation sources. The
- ⁷⁰ spectrometer (SP2750i, 0.008 nm) with a PIXIS 100 charge coupled device (CCD, ACTON) and a PD471 photomultiplier tube (PMT, ACTON) was used for luminescence collection and detection. The luminescence photographs were obtained through a confocal microscopy (OLYMPUS-BX51) and camera (Canon
- ⁷⁵ 600D). The Proper notch filters were placed in front of the entrance of the monochromator to block the scattering light. All of the spectroscopic measurements are carried out at room temperature.

80 3. Results and discussions

3.1. XRD and TEM

The typical XRD patterns of NaY(Gd_{0.4})F₄: 20%Yb³⁺/2%Ho³⁺ ⁸⁵ nanocrystals with different Ce³⁺ concentrations are given in Fig. 1. All the strong and sharp diffraction peaks from the samples with or without Ce³⁺ are well indexed to pure hexagonal-phase NaYF₄ (JCDPS No. 16-0334). No obvious extra diffraction peaks were detected even with the increase in Ce³⁺ ion concentration to 12%, ⁹⁰ indicating the formation of a Y-Gd-Ce solid solution. In addition, it is noticed that the diffraction peaks shifted slightly to the low angle side as a result of the increase in unit-cell volume because of the substitution of Y³⁺ (*r*=0.115 nm) ions by bigger Ce³⁺ (*r*=0.128 nm) ions in the host lattice (Fig. 1).^{42, 43}

Fig. 2 shows typical TME images and EDS spectra of β-NaY(Gd_{0,4})F₄: Yb³⁺/Ho³⁺ nanoparticles with codoping different Ce³⁺ concentrations. A series of Ce³⁺-doped β-NaY(Gd_{0,4})F₄:Yb³⁺/Ho³⁺ nanorod crystals have an average diameter of 28 nm and a length of 320 nm, as illustrated in Fig.
2(a-c). These results suggested that codoping Ce³⁺ ions had no obvious effect on the size and morphology of the β-NaY(Gd_{0,4})F₄: Yb³⁺/Ho³⁺ nanorods. Further high resolution TEM (HRTEM) image of the nanorod showed an interplanar spacing of 0.52 nm

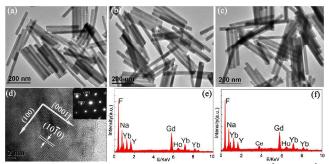
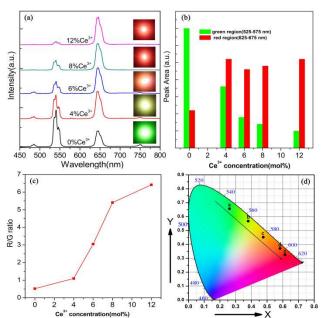
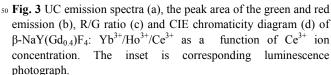


Fig. 2 (a-c) TEM images of β -NaY(Gd_{0.4})F₄: 20%Yb³⁺/2%Ho³⁺ nanorods with Ce³⁺ ions of 0%, 6% and 12%. (d) HRTEM image of β -NaY(Gd_{0.4})F₄: 20%Yb³⁺/2%Ho³⁺ nanorods, and the inset is s corresponding the FFT diffraction patterns. (e) and (f) EDS spectrum of β -NaY(Gd_{0.4})F₄: 20%Yb³⁺/2%Ho³⁺/x%Ce³⁺.

corresponding to the {1010} planes of β -NaY(Gd_{0.4})F₄ nanorods in Fig. 2(d). This result confirmed that the nanorods grow along the c-axis, namely, the [0001] direction.⁴⁴ The fast Fourier transform diffraction patterns obtained from the HRTEM image confirmed that the single crystalline nature of the nanorods, as shown in inset of Fig. 2(d). The incorporation of Ce³⁺ ions was further that the single crystalline nature of the nanorods, as shown is in inset of Fig. 2(d). The incorporation of Ce³⁺ ions was further

- is in inset of Fig. 2(d). The incorporation of Ce³⁺ ions was further proved by doing the EDS under SEM measurement for β -NaY(Gd_{0.4})F₄: 20%Yb³⁺/2%Ho³⁺ and β -NaY(Gd_{0.4})F₄: 20%Yb³⁺/2%Ho³⁺/12%Ce³⁺ nanorods, as shown in Fig. 2(e–f). The EDS results confirmed that the main elemental components
- $_{20}$ of the samples are Na, Y, Yb, Ho, Ce, Gd and F in Fig. 2(e–f), the intensity of the Y elemental peak was reduced after introduction of Ce $^{3+}$, which further indicated that Y^{3+} ions were substituted for Ce $^{3+}$ in β -NaY(Gd_{0.4})F_4 host lattice.


25 3.2. Effective color tuning to the UC emission


3. 2. 1. UC emission and corresponding transitions

The UC luminescence emission of β -NaY(Gd_{0.4})F₄:Yb³⁺/Ho³⁺ nanorods with codoping Ce³⁺ were measured with a confocal microscopy setup. Fig. 3 displays the UC emission spectra, the ³⁰ luminescence photographs, the peak area of the green and red emission, intensity ratio of red to green (R/G) emission, the CIE chromaticity coordinate diagram of β -NaY(Gd_{0.4})F₄: Yb³⁺/Ho³⁺ nanorods with codoping Ce³⁺ concentration from 0% to 12% under NIR 980 nm excitation. The dominant emission peaks at ³⁵ 541 nm and 644 nm are assigned to the transitions of ⁵S₂/⁵F₄ \rightarrow ⁵I₈ and ⁵F₅ \rightarrow ⁵I₈ of Ho³⁺ ions in Fig. 3(a).^{33, 34} Some weak blue

emission (484 nm) and NIR emission (750 nm) can also observed, which are associated with the transition of ${}^{5}F_{4} \rightarrow {}^{5}I_{8}$ and ${}^{5}S_{2}/{}^{5}F_{4} \rightarrow {}^{5}I_{7}$, respectively. Interestingly, with the increase of the

- $_{40}$ Ce³⁺ concentration from 4% to 12%, the increase of green emission is inhibited, and the red emission rise gradually, which can be affirmed by the comparison of peak area of the green and red emission in Fig. 2(b). The output color of β -NaY(Gd_{0,4})F₄: Yb³⁺/Ho³⁺ nanorods is tuned from green to red (in inset of Fig.
- ⁴⁵ 3(a)), and the R/G ratio increase from 0.64 to 7.31 in Fig. 3(c). Accordingly the CIE chromaticity coordinate (x, y) is also changed from (0.2811, 0.6624) to (0.6110, 0.3106) as the Ce³⁺ concentration increase from 0% to 12% in Table 1, which is an

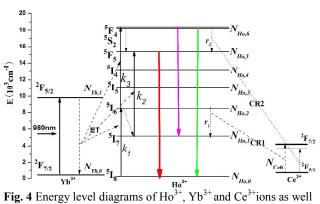


Table 1 The calculated CIE chromaticity coordinate (*x*, *y*) of β -NaY(Gd_{0,4})F₄: 20%Yb³⁺/2%Ho³⁺ nanorods with different Ce³⁺ concentration.

		0	CIE chromaticity coordinate		
60	Poi	nt Samples	X		Y
	а	β -NaY(Gd _{0.4})F ₄ : 20%Yb ³⁺ /2%Ho ³⁺	0.28	311	0.6624
	b	β -NaY(Gd _{0.4})F ₄ : 20%Yb ³⁺ /2%Ho ³⁺ /4	$%Ce^{3+}$ 0.3	805	0.5741
	c	β -NaY(Gd _{0.4})F ₄ : 20%Yb ³⁺ /2%Ho ³⁺ /6	0%Ce ³⁺ 0.4	728	0.4504
	d	β -NaY(Gd _{0.4})F ₄ : 20%Yb ³⁺ /2%Ho ³⁺ /8	5%Ce ³⁺ 0.5	832	0.3734
65	e	β -NaY(Gd _{0.4})F ₄ : 20%Yb ³⁺ /2%Ho ³⁺ /1	$2\% Ce^{3+}$ 0.6	5110	0.3106

obvious indication of the luminescence color change. The region of tunable luminescence color in β -NaY(Gd_{0.4})F₄:Yb³⁺/Ho³⁺ nanorods with different Ce³⁺ concentration is shown in Fig. 3(d).

To understand the observed phenomenon, the energy levels 70 and possible relaxations and transitions of Yb³⁺/Ho³⁺/Ce³⁺ system were illustrated in Fig. 4. It is know that Yb³⁺ ions have a larger absorption cross-section for infrared light and longer excited state lifetime than that of Ho³⁺. Thus, the main pathway is assumed to ⁷⁵ populate the upper emitting states of Ho³⁺ ions should be through the energy transfer from Yb³⁺ to Ho³⁺ ions. Under NIR 980 nm excitation, ${}^{5}I_{6}$, ${}^{5}F_{5}$, and ${}^{5}S_{2}/{}^{5}F_{4}$ states of Ho³⁺ were populated through three successive energy transfer (ET) processes from Yb^{3+} to Ho^{3+} . The strong green (541 nm) and very weak NIR 80 (750 nm) emissions can be generated through radiative relaxations from the ${}^{5}F_{4}/{}^{5}S_{2}$ states to the ${}^{5}I_{8}$ and ${}^{5}I_{7}$ states. The transition from ${}^5\!F_5$ state to ${}^{\bar{}5}\!I_8$ ground state produces strong red UC emission at 644 nm. There are two possible processes to populate the excited state ⁵F₅. One is the nonradiative transition s from higher excited states of ${}^{5}F_{4}/{}^{5}S_{2}$. The other is the population of the long-lived ${}^{5}I_{7}$ level initially by the nonradiative ${}^{5}I_{6} \rightarrow {}^{5}I_{7}$ or by radiative decay of ${}^{5}F_{4}/{}^{5}S_{2} \rightarrow {}^{5}I_{7}$, then, populating the ${}^{5}F_{5}$ level of ${}^{5}F_{4}/{}^{5}S_{2} \rightarrow {}^{5}I_{7}$, then, populating the ${}^{5}F_{5}$ level through the ET process from Yb³⁺ to Ho³⁺. However, the nonradiative transition

Fig. 4 Energy level diagrams of Ho^{3+} , Yb^{3+} and Ce^{3+} ions as well as proposed UC mechanisms.

s probability strongly depends on the phonon energy of the host lattice. The multiphonon nonradiative relaxation rate $W_{NR}(T)$ can be expressed by ⁴⁵

$$W_{NR}(T) = W(0) \left[1 - \exp\left(\frac{-hv}{kT}\right) \right]^{-\frac{\Delta E}{hv}}$$
(1)

- where $W_{NR}(T)$ is the rate at temperature T; ΔE is the energy gap ¹⁰ between two energy levels; and hv is the phonon energy of the host. According to the energy gap law, nonradiative transitions can barely occur when the gap between the two energy states in an activator is much larger than that of the vibration energy of the host lattice.⁴⁴ Thus, the mentioned two nonradiative relaxation
- ¹⁵ processes should not efficient because both energy gaps are about 3000 cm⁻¹ large which is approximately eight times that of the maximum phonon energy of NaYF₄ host (370 cm⁻¹).^{8, 47} This explains the experimental observation of relatively weaker red emission and small R/G ratio in the UC luminescence spectra for ²⁰ the samples before Ce³⁺ ions are codoped (see Fig. 3).

3. 2. 2. Effective color tuning by Ce³⁺ ions

- As it is presented in the Fig. 3, the red emission is increased ²⁵ when Ce³⁺ is introduced into the system, and the overall color of the UC emission is gradually tuned to red. In order to investigate the mechanism of tunable color induced by different amount Ce³⁺, the pumping power dependence of the green and red emission of β -NaY(Gd_{0.4})F₄: 20%Yb³⁺/2%Ho³⁺ nanorods with codoping Ce³⁺ 30 was firstly measured, as shown in Fig. 5. The slopes of 1.91 and 1.86 of the green and red emission of β -NaY(Gd_{0.4})F₄: 20%Yb³⁺/2%Ho³⁺ nanorods were yielded by fitting the experimental data in Fig. 5(a), and the slopes of 1.81 and 1.71 of the green and red emission of β -NaY(Gd_{0.4})F₄: 35 20%Yb³⁺/2%Ho³⁺/12%Ce³⁺ were yielded by fitting the experimental data in Fig. 5(b). It is should note that the slopes of red emission in β -NaY(Gd_{0.4})F₄: 20%Yb³⁺/2%Ho³⁺/12%Ce³⁺ nanorods were slightly smaller than that without codoping Ce³⁺ in β -NaY(Gd_{0.4})F₄: 20%Yb³⁺/2%Ho³⁺ nanorods. This was mainly ⁴⁰ attributed to the two-photon ${}^{5}S_{2}/{}^{5}F_{4} \rightarrow {}^{5}I_{7}$ process, populating the
- intermediate level of the UC red in β -NaY(Gd_{0.4})F₄: 20%Yb³⁺/2%Ho³⁺ nanorods is canceled in β -NaY(Gd_{0.4})F₄: 20%Yb³⁺/2%Ho³⁺/12%Ce³⁺ nanorods due to the quenching of the green UC emission. To explore the mechanism of Ce³⁺ to change
- ⁴⁵ the emission of Ho^{3+} , we plot the energy diagram of Ce^{3+} to the right side of Ho^{3+} in the Fig. 4. Considering that the energy gap

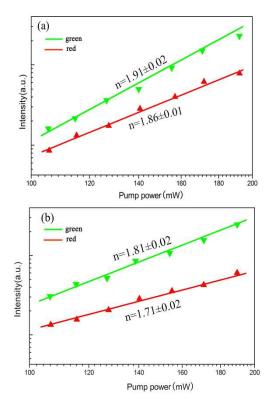


Fig. 5 Pump power dependences of β-NaY(Gd_{0.4})F₄: 20%Yb³⁺/2%Ho³⁺/xCe³⁺ nanorods (x=0% (a) and 12% (b)).

of Ce^{3^+} is also about 3000 cm⁻¹, which is similar to the nonradiation relaxation gaps of Ho³⁺ that are involved in the red emissions, the possible cross relaxation process between Ce^{3^+} and Ho³⁺ could effectively increase the population of the ⁵F₅ and ⁵I₇ 55 of Ho³⁺, leading to the enhancement of red emission. Specifically, the CR processes of ⁵S₂/⁵F₄ (Ho³⁺) + ²F_{5/2} (Ce³⁺) \rightarrow ⁵F₅ (Ho³⁺) + ²F_{7/2} (Ce³⁺) and ⁵I₆ (Ho³⁺) + ²F_{5/2} (Ce³⁺) \rightarrow ⁵I₇ (Ho³⁺) + ²F_{7/2} (Ce³⁺) occurred after Ce³⁺ is codoped to the β-NaY(Gd_{0.4})F₄: Yb³⁺/Ho³⁺ system. These two resonant energy transfer processes can 60 effectively increase the populations of ⁵F₅ and ⁵I₇ states from the ⁵S₂/⁵F₄ and ⁵I₆ states, thereby increasing the red emission and reducing the green emission.

The steady-state rate equations were established based on the UC processes in Yb³⁺ and Ho³⁺ ion systems in order to further 65 verify the proposed UC mechanism and explain an enhancement of the red emission due to the presence of Ce^{3+} codoping. We firstly introduce $N_{Ho(Yb),i}$, W_i , and W_{ij} (i>j, i, j=0, 1, 2, 3, 4, 5 and 6) to denote the population densities, radiative, and nonradiative transition rates of ${}^{5}I_{8}$, ${}^{5}I_{7}$, ${}^{5}I_{6}$, ${}^{5}I_{5}$, ${}^{5}I_{4}$, ${}^{5}F_{5}$ and ${}^{5}S_{2}/{}^{5}F_{4}$ states of Ho³⁺, ⁷⁰ and ${}^{2}F_{7/2}$ and ${}^{2}F_{5/2}$ of Yb³⁺ ions, respectively. k_1 , k_2 and k_3 are defined as energy transfer rates from the excited Yb³⁺ to ${}^{5}I_{6}$, ${}^{5}F_{5}$, and ${}^{5}S_{2}/{}^{5}F_{4}$ states of Ho³⁺ ions, respectively. r_{1} and r_{2} are the cross-relaxations coefficients between Ho^{3+} and Ce^{3+} at ${}^{5}\mathrm{I}_{6}$ and ${}^{5}S_{2}$ states, the N_{Ce0} denotes the population density of the 75 ground state ${}^{2}F_{5/2}$ of Ce³⁺ ions. Considering that the radiative relaxation probability of the ${}^{5}I_{5}$ and ${}^{5}I_{4}$ states is very low due to the small neighbored energy gap, we thus ignore the terms of radiation rates in the rate equations. Thus, the rate equations for the discussed system are formulated as follows:³⁷

Page 4 of 8

80

(4)

$$\frac{dN_{Ho,1}}{dt} = W_{21}N_{Ho,2} + r_1N_{Ho,2}N_{Ce0} - W_1N_{Ho,1} - k_2N_{Yb,1}N_{Ho,1}$$
(2a)

$$\frac{dN_{Ho,2}}{dt} = k_1 N_{Ho,1} N_{Ho,0} - W_{21} N_{Ho,2} - r_1 N_{Ho,2} N_{Ce0} - W_2 N_{Ho,2} - k_3 N_{Ho,1} N_{Ho,2}$$
(2b)

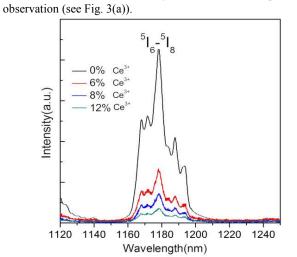
$$\frac{dN_{Ho,5}}{dt} = k_2 N_{Yb,1} N_{Ho,1} + r_2 N_{Ho,6} N_{Ce0} - W_5 N_{Ho,5}$$
(2c)

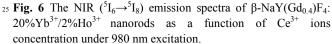
$$\frac{dN_{Ho,6}}{dt} = k_3 N_{Yb,1} N_{Ho,2} - W_6 N_{Ho,6} - r_2 N_{Ho,6} N_{Ce0}$$
(2d)

s Taking $dN_i/dt=0$, and solving the equations 2(a) to 2(d), one can get the following formula for $N_{Ho,2}$, $N_{Ho,5}$ and $N_{Ho,6}$.

$$N_{Ho,2} = \frac{N_{Ho,0}k_1}{(W_{21} + W_2 + r_1 N_{Ce0} + k_3 N_{Yb,1})} N_{Yb,1}$$
(3)

$$N_{Hb,5} = \frac{\left[(W_{21} + r_1 N_{Ce0}) k_2 W_6 + N_{Ce0} r_2 (W_1 k_3 + r_1 N_{Ce0} k_1 + k_2 W_{21} + k_2 k_3 N_{15,1}) \right]}{W_5 (W_6 + N_{Ce0} r_2) (W_1 + k_2 N_{15,1}) (W_{21} + W_2 + r_1 N_{Ce0} + k_3 N_{15,1})} k_1 N_{Hb,0} N_{15,1}^2$$


10


$$N_{Ho,6} = \frac{k_3 k_1 N_{Ho,0} N_{Yb,1}^2}{(W_6 + r_2 N_{Ce0})(W_{21} + W_2 + r_1 N_{Ce0} + k_3 N_{Yb,1})}$$
(5)

Based on equations (4) and (5), we can get the mathematical expression of R/G ratio:

¹⁵
$$\frac{I_{red}}{I_{green}} = \frac{W_5 N_{thb,5} V_{red}}{W_6 N_{thb,6} V_{green}} = \frac{(W_{21} + r_1 N_{Ce0}) k_2 W_6 + N_{Ce0} r_2 (W_1 k_3 + r_1 N_{Ce0} k_1 + k_2 W_{21} + k_2 k_3 N_{th1}) k_1 N_{thb,0} V_{red}}{W_6 (W_1 + k_2 N_{th1}) k_5 V_{green}}$$
(6)

Thus, the R/G ratio increases with the increase of r_1 and r_2 . However, the r_1 and r_2 are decided by the distance of doping ions. The distance between the ions affect the energy transfer between ²⁰ them, therefore, with increase of Ce³⁺ concentration, the value of r_1 and r_2 should increase, leading to the enhancement of red emission from Ho³⁺. This agrees well with experimental

The effect of Ce^{3+} concentration on the enhancement of transitions between Ho^{3+} and Ce^{3+} can be further proved by ³⁰ observing NIR emission of Ho^{3+} at 1180 nm. Fig. 6 shows the NIR emission of ${}^{5}I_{6}\rightarrow{}^{5}I_{8}$ transition of Ho^{3+} ions in β -NaY(Gd_{0.4})F₄: 20%Yb^{3+}/2%Ho^{3+} nanorods with codoping Ce^{3+} concentration from 0% to 12% under 980 nm. The NIR emission intensity decreases with Ce^{3+} concentration increasing, which ³⁵ demonstrates the occurrence of CR1 of ${}^{5}I_{6}$ (Ho^{3+}) + ${}^{2}F_{5/2}$ (Ce^{3+}) $\rightarrow{}^{5}I_{7}$ (Ho^{3+}) + ${}^{2}F_{7/2}$ (Ce^{3+}). The radiative transition rates of the ${}^{5}I_{6}$ and ${}^{5}I_{7}$ states of Ho^{3+} ions are supposed to be much larger than their UC emission rates.³⁷ Thus, the UC emission rates can be ignored in the equations (3). According to equation (3), we can ⁴⁰ get

$$I_{NIR} = N_{Ho,2}hv_{NIR}W_2 = \frac{W_2}{W_2 + r_1 N_{Ce0}}hv_{NIR}k_1 N_{Ho,0} N_{Yb,1}$$
(7)

Base on the equation (7) and the measured relative fluorescent intensity in Fig. 6, we get

$${}^{45} \frac{I_{NIR}(0\%Ce)}{I_{NIR}(12\%Ce)} = \frac{W_2 + r_1 N_{Ce0}}{W_2} = 1 + \frac{r_1 N_{Ce0}}{W_2} = 0.52$$
(8)

The conversion efficiency of the CR1 process is

$$\eta_{1} = \frac{W_{21} + r_{1}N_{Ce0}}{W_{2} + r_{1}N_{Ce0}} \approx \frac{r_{1}N_{Ce0}}{W_{2} + r_{1}N_{Ce0}} = \frac{1}{1 + \frac{W_{2}}{r_{1}N_{Ce0}}} = 80.6\%$$
⁽⁹⁾

This result indicates that the CR1 process of ${}^{5}I_{6}$ (Ho³⁺) + ${}^{2}F_{5/2}$ (Ce³⁺) $\rightarrow {}^{5}I_{7}$ (Ho³⁺) + ${}^{2}F_{7/2}$ (Ce³⁺) is very efficient.

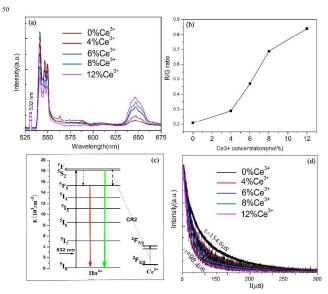


Fig. 7 The down-conversion emission spectra (a), R/G ratio (b) and intensity decay of the green emission $({}^{5}S_{2}/{}^{5}F_{4} \rightarrow {}^{5}I_{8})$ at 541 nm (d) of β -NaY(Gd_{0.4})F₄: 20%Yb³⁺/2%Ho³⁺ nanorods with ⁵⁵ different Ce³⁺ ions concentration under pulse laser 532 nm excitation. (c) The energy level diagrams of Ho³⁺ and Ce³⁺ ions as well as proposed emission mechanisms.

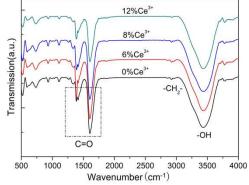
To test the occurrence of CR2 process of ${}^{5}S_{2}{}^{/5}F_{4}$ (Ho³⁺) + ${}^{2}F_{5/2}$ ⁶⁰ (Ce³⁺) $\rightarrow {}^{5}F_{5}$ (Ho³⁺) + ${}^{2}F_{7/2}$ (Ce³⁺) between Ho³⁺ and Ce³⁺ ions. We took the 532 nm photons directly excited Ho³⁺ into the ${}^{5}S_{2}{}^{(5}F_{4})$ excited states. The down-conversion emission spectra of β -NaY(Gd_{0.4})F₄: 20%Yb³⁺/2%Ho³⁺ nanorods with different Ce³⁺ concentration is shown in Fig. 7(a). It was found that the green UC emission intensity was reduced, while the red UC emission was increased with increasing Ce^{3+} concentration, and the corresponding R/G ratio was changed from 0.22 to 0.85 in Fig.7(b). According to the energy level diagram of $^{5}F_{5}$ state mostly originated from $^{5}S_{2}/^{5}F_{4}$ excited states through the nonradiative relaxation in Fig. 7(c). Thus, the

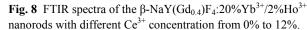
states through the hohradiative relaxation in Fig. /(c). Thus, the enhancement of red emission can effectively indicate the occurrence of CR2 process of ${}^{5}S_{2}/{}^{5}F_{4}$ (Ho³⁺) + ${}^{2}F_{5/2}$ (Ce³⁺) $\rightarrow {}^{5}F_{5}$ (Ho³⁺) + ${}^{2}F_{7/2}$ (Ce³⁺) between Ho³⁺ and Ce³⁺. The conversion ¹⁰ efficiency of the CR2 process can be calculated based on the following equation:⁴⁸

$$\eta_2 = 1 - \frac{\tau(12\%Ce)}{\tau'(0\%Ce)} \tag{10}$$

where τ and τ' are the decay time of Ho³⁺ with and without the ¹⁵ presence of Ce³⁺ in the sample, respectively. The measured fluorescence decay times of ⁵S₂/⁵F₄ state are 154.6 µs and 98.4 µs for 0% and 12% Ce³⁺ (Fig. 7(b)), respectively. Thus, the efficiency η_2 is 36.3% for 12% Ce³⁺ ions doped sample. This result indicates that the CR2 process plays the assistant role for ²⁰ the CR1 process to covert the green UC emission into red UC

emission.


4. 2. 3. The possible influence of the surface and matrix properties


25

It is well know that the UC efficiency of nanocrystals depends on the surface impurity and the matrix properties, which mean that the presence of organic ligands on the surface of the samples could also result in the enhancement of red emission. Hence, it is 30 necessary to measure FTIR spectrum for identifying the chemical

bonds at the sample surface. Fig. 8 presents the FTIR spectrum with different Ce^{3+} concentration. Several vibration bands were observed from β -NaY(Gd_{0.4})F₄: Yb³⁺/Ho³⁺ nanorods with different Ce³⁺ concentration. The bands in the regions 1350 cm⁻¹

- $_{35}$ to 1700 cm $^{-1}$ and 2800 cm $^{-1}$ to 3050 cm $^{-1}$ corresponded to the vibrations of the C=O and CH_2 groups in the oleic acid, respectively; whereas the broad band at around 3450 cm $^{-1}$ is ascribed to the O–H stretching vibration that originated from the oleic acid and water. 49 These results show the existence of
- ⁴⁰ capping ligands on the surface of samples, but no evident change is detected after Ce³⁺ is introduced to the samples, even when its concentration is increased to 12%. This indicates that the possible nonradiative relaxations from the surface capping ligands of the nanorods are not rampant even when Ce³⁺ ion is codoped in the
- $_{45}$ host, which suggests that the output color tuning of the UC emission is caused by the CR processes between Ho^{3+} and Ce^{3+}. More samples including the β -NaYF₄: Yb^{3+}/Ho^{3+} microplates and microprisms codoping with Ce^{3+} ions were also prepared for studying the morphology and matrix dependence of the discussed
- ⁵⁰ color tuning with Ce³⁺ ions. The XRD, SEM, EDS and CIE chromaticity (x, y) of the β-NaYF₄: Yb³⁺/Ho³⁺ microplates and microprisms with codoping Ce³⁺ concentration of 0%, 4%, 6%, 8% and 12% are shown in Fig. S1[†], S2[†] and Table S1[†]. The stronger diffraction peaks of XRD patterns (Fig. S1[†]) of β-NaYF₄:
- ss Yb^{3+}/Ho^{3+} microplates and microprisms with codoping Ce^{3+} ions indicates that they have high crystallinity. Fig. S2⁺ shows that β-

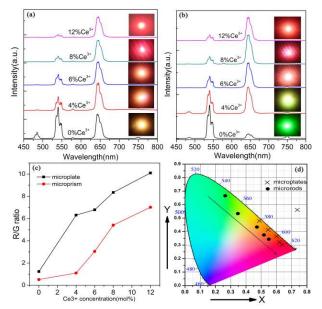


Fig. 9 UC emission spectra and luminescence photographs of β-NaYF₄:20%Yb³⁺/2%Ho³⁺/xCe³⁺ microplates (a) and
⁶⁵ microprisms (b) with x=0%, 4%, 6%, 8%, 12%. (c) and (d) are the R/G ratio and CIE chromaticity diagrams as a function of Ce³⁺ concentration.

NaYF₄ particles are regular microplates and microprisms, and ⁷⁰ codoping of Ce³⁺ have no effect on the morphology of β - NaYF₄ crystals. The spectral measurement on the UC emissions from Ho³⁺ in two groups of β -NaYF₄: Yb³⁺/Ho³⁺ crystals with different shapes present similar color change by a third codopant Ce³⁺, which is presented in Fig. 9(a-b). The R/G ratio of the 75 microplates and microprisms are increased from 1.24 to 10.06 and from 0.52 to 7.02, respectively, as shown in Fig. 9(c). The corresponding luminescence photographs are shown by the inset of Fig. 9(a) and (b). The CIE chromaticity coordinates for microplates and microprisms are approaching to red region from 80 yellow and green region, respectively, as shown in Fig. 9(d). Thus, the UC emission of β -NaYF₄: Yb³⁺/Ho³⁺ crystals can be also tuned to red by codoping Ce^{3+} ions, but the tunable regions of UC emission are different for different host morphologies. Therefore, the region, respectively, as shown in Fig. 9(d). Thus, ⁸⁵ the UC emission of β-NaYF₄: Yb³⁺/Ho³⁺ crystals can be also tuned to red by codoping Ce³⁺ ions, but the tunable regions of UC emission are different for different host morphologies. Therefore, the tunable fluorescence emission not only depends on the sensitized ion, but also relies on the morphology and the host 5 matrix.

4. Conclusions

The UC luminescence emission were successfully tuned in β -¹⁰ NaY(Gd_{0.4})F₄: Yb³⁺/Ho³⁺ nanorods by introducing Ce³⁺ ions. The effects of Ce³⁺ ions on the UC luminescence of the nanorods were studied with 980 nm excitation, and the corresponding mechanism was investigated. It was found that the R/G ratio was increased by increasing Ce³⁺ concentration, which were primarily ¹⁵ attributed to the two efficient CR processes of ${}^{5}S_{2}/{}^{5}F_{4}$ (Ho³⁺) + ${}^{2}F_{5/2}$ (Ce³⁺) $\rightarrow {}^{5}F_{5}$ (Ho³⁺) + ${}^{2}F_{7/2}$ (Ce³⁺) and ${}^{5}I_{6}$ (Ho³⁺) + ${}^{2}F_{5/2}$ (Ce³⁺) $\rightarrow {}^{5}I_{7}$ (Ho³⁺) + ${}^{2}F_{7/2}$ (Ce³⁺) between the Ho³⁺ and Ce³⁺ ions. The conversion efficiency of CR1 and CR2 was calculated base on steady-state equations, which indicated that the CR2 process ²⁰ plays the assistant role for the CR1 process to covert the green

- UC emission into red UC emission. Further observation on the color change of UC emission from β -NaYF₄: Yb³⁺/Ho³⁺ microplates and microprisms through codoping Ce³⁺ suggested that Ce³⁺ is an effective sensitizer to tune UC emission for ²⁵ extending their application in display and biological images, and
- the color tuning range and emission intensity also were affected by host material and morphology of particle samples.

The work is supported by the National Science Foundation of ³⁰ China (Grant 11174190), the Fundamental Research Funds for the Central Universities (Grants GK201101006 and GK201304002).

Notes and references

³⁵ School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, P.R. China . Fax: 86 029 8530 3575 E-mail: hrzheng@snnu.edu.cn

†Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 40 10.1039/b000000x/

- ‡Footnotes should appear here. These might include comments relevant to but not central to the matter under discussion, limited experimental and spectral data, and crystallographic data.
- ⁴⁵ 1 R. Bhargava, D. Gallaghar, X. Hong and A. Nurmikko, *Phys. Rev. Lett.*, 1994, **72**, 416.
 - 2 D. Q. Chen, L. Lei, Yang A P, Z. X. Wang and Y. S. Wang, *Chem. Commun.*, 2012,48, 5898.
 - 3 B. Vander. Ende, L. Aartsa and A. Meijerink, Physical. Chemistry.
- 50 *Chemical. Physics.*, 2009, **11**, 1108.
- 4 F. Auzel, Chemical.. Reviews., 2004, 104, 139.
- 5 G. S. Maciel, A. Biswas, R. Kapoor and P. N. Prasad, *Appl. Phys. Lett.*, 2000, **76**, 1978.
- 6 F. Wang and X. G. Liu , Chemical. Society. Reviews., 2009, 38,
- 55 **976**.
 - 7 T. S. Yang, Y. Sun, Q. Liu, W. Feng, P. Y. Yang and F. Y. Li, *Biomaterials.*, 2012, **33**, 3733.
 - 8 J. F. Suyver, J. Grimm, M. K. Veen, D. Biner, K. W. Kramer and H. U. Gudel, *J.Lumin.*, 2006, **117**, 1.

- 60 9 N. Menyuk, K. Dwight and J. W. Pierce, *Appl. Phys. Let.*, 1972, 21, 159.
- 10 J. X. Fu, X. H. Fu, C. M. Wang, X. F. Yang, J. L. Zhuang, G.G.Zhang, B.Y. Lai, M. M. Wu, and J. Wang, *Eur. J. Inorg. Chem.*, 2013, **8**, 1269.
- 65 11 S. W. Wu, G. Han, D. J. Milliron, S. Aloni, V. Altoe, D. V. Talapin, B. E. Cohen and P. J. Schuck , *Proc. Natl. Acad. Sci.* U. S. A. 2009, **106**, 10917.
 - 12 G. Y. Yi, D. P. Chen, H. C. Lu, L. H. Guo, S. Y. Zhao, Y. Ge and W. J. Yang, *Nano. Lett.*, 2004, **11**, 191.
- 70 13 D. L. Gao, H. R. Zheng, X. Y. Zhang, W. Gao, Y. Tian, J. Li and M. Cui, *Nanotechnology.*, 2011, **22**, 1.
- 14 X. C. Ye, J. E. Collins, Y. J. Kang, J. Chen, D. T. N. Chen and A. G. Yodh, *Christopher B. Murray.*, 2010, **107**, 22430.
- 15 Y. Wei, F. Q. Lu, X. R. Zhang and D. P. Chen, *Chem. Mater.*, 2006,
 18, 5733.
- 16 J. L. Zhuang, X. F. Yang, J.X. Fu, C.L. Liang, M. M. Wu, J.Wang and Q.Su, *Cryst. Growth Des.*, 2013, 13, 2292.
- 17 J. L. Zhang, J. Wang, X. F. Yang, I. D. Williams, W. Zhang, Q. Y. Zhang, Z. M. Feng, Z. M. Yang, C. L. Liang, M. M.Wu and Q. Su, *Chem. Mater.*, 2009, **21**, 160.
- 18 C. X. Li, J. Yang, Z. W. Quan, P. P. Yang, D. Y. Kong and J. Lin, *Chem. Mater.*, 2007, **19**, 4933.
- 19 Q. Wang, Y. X. Liu., B. C. Liu, Z. L. Chai, G. R. Xu, S. L. Yu, and J. Zhang, *Cryst. Eng. Comm.*, 2013, **15**, 8262.
- 85 20 D. L. Gao, X. Y. Zhang, W. Gao, Appl. Mater. Interfaces., 2013, 5, 9732.
 - 21 F. Wang, Y. Han, C. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, *Nature Lett.*, 2010, **463**, 1061.
- 22 D. Q. Chen, Y. L. Yu, F. Huang, A. P. Yang and Y. S. Wang, J Mater Chem., 2011, **21**, 6186.
- 23 L. Lei, D. Q. Chen, P. Huang, J. Xu, R. Zhang and Y. S.Wang, *Nanoscale.*, 2013, 5, 11298.
- 24 E. M. Chan, G. Han, J. D. Goldberg, D. J. Gargas and A. D. Ostrowski, *Nano Lett.*, 2012, **12**, 3839.
- 95 25 D. Q. Chen, Y. L. Yu, F. Huang and Y. S. Wang, *Chem. Commun.*, 2011, 47, 2601.
 - 26 D. L. Gao, X. Y. Zhang and W. Gao, J. Appl. Phys., 2012, 111, 033505.
- 27 H. Guo, Z. Q. Li, H. S. Qian, Y. Hu and N. M. Idris, *Nanotechnology.*, 2010, **21**, 125602.
 - W. Song, A. E. Vasdekis, Z. Li and D. Pstaltis, *Appl. Phys.Lett.*, 2009, 94, 051117.
 - 29 F. Wang and X. G. Liu, J. Am. Chem. Soc., 2008, 130, 5642.
- 30 G. Tian, Z. J. Gu, L. J.Zhou, W. Y. Yin, X. X. Liu, L. Yan, S.
 ¹⁰⁵ Jin, W. L. Ren, G. M. Xing, S. Y. Li, and Y. L. Zhao, *Adv. Mater.*, 2012, 24, 1226.
 - 31 L. L. Wang, M. Lan, Z. Y. Liu, G. S. Qin, C. F. Wu, X. Wang, W. P. Qin, W. Huang and L. Huang , *J. Mater. Chem. C.*, 2013, 1, 2485.
- 110 32 X. X. Zhang, P. Hong, M. Bass and B. H. T. Chai, *Appl. Phys. Let.*, 1993, **63**, 2606.
 - 33 T. Li, C. F. Guo, Y. M. Yang, L. Li and N. Zhang, *Acta. Materialia.*, 2013, **61**, 7481.
- 34 Y. S. Chen, X. L. Hao, J. P. Zhou, Y. C. Jiao, W. He, H. H. Wang, J. X. Lu, S. E. Yang, *Matter. Lette.*, 2012, **83**, 49.
 - 35 G. S. Yi and G. M. Chow, J. Mater. Chem. 2005, 15, 4460.

- 36 R. Lisiecki, G. Dominiak-Dzik, W. Ryba-Romanowski and T. Lukasiewicz, J. Appl. Phys., 2004, 96, 6323.
- 37 G. Y. Chen, H. C. Liu, G. Somesfalean, H. J. Liang and Z. G. Zhang, *Nanotechnology.*, 2009, **20**, 385704.
- 5 38 L. L. Tao, Y. H. Tsang, B. Zhou, B. Richards and A. Jha, Journal of Non-Crystalline Solids., 2012, 358, 1644.
- K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen and S. R. Lüthi, *Chem. Mater.*, 2004, 16, 1244.
- 40 S. Heer, K. Kömpe, H. U. Güdel and M. Haase, *Adv. Mater.*, 2004, **16**, 10 2102.
 - 41 X. C. Ye, J. E. Collions, Y. J. Kang, J. Chen, D. T. N. Chen, A. G. Yodh and C. B. Murray, *PNAS.*, 2010, **107**, 22430-5.
 - 42 R. D. Shannon, Acta Crys tallogr. A., 1976, 32, 751.
 - 43 Q. Q. Dou and Y. Zhang, *Langmuir.*, 2011, 27, 13236.
- 15 44 H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You and C. H. Yan , *J. Am. Chem. Soc.*, 2006, **128**, 6426.
 - 45 G. Blasse and B. C. Grabmaier, *Luminescent materials.*, Berlin, Springer-Verlag, 1994.
- 46 J. H. Chung, S. Y. Lee, K. B. Shim and J. H. Ryu, *Appl. Phys.*20 *Exp.*, 2012, **5**, 052602.
 - 47 R. P. Leavitt, J. B. Gruber, N. C. Chang and C. A. Morrison, J. Chem. Phys., 1982, 76, 4775.
- 48 De. La. E. Rosa, P. Salas, H. Desirena, C. Angeles and R. A. Rodríguez, *Appl. Phys. Lett.*, 2005, **87**, 241912.
- 25 49 L.Y.Wang and Y.D. Li, Nano Lett., 2006, 8, 1645.