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Abstract 

We develop and apply an interatomic potential for YMnO3, based on the shell model together 

with the angular overlap model, which can model ligand field effects. The potential 

parameters accurately reproduce the complex structure of both hexagonal and orthorhombic 

phases of YMnO3. The rotation of the MnO6 octahedra in o-YMnO3 suggests the E-type 

AFM order. The potential is further employed to investigate the energies of intrinsic defects 

in the material. Lower defect energies were found in o-YMnO3. Oxygen Frenkel and Y2O3 

partial Schottky are the most favourable defects in h-YMnO3 and o-YMnO3, respectively. 

The defect models proposed have implications for the properties of the related non-

stoichiometric phases. 
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Introduction 

The rare-earth manganite, YMnO3, is a well-known example of a multiferroic which possess 

magnetism and ferroelectricity simultaneously and thus has attracted considerable attention in 

recent years due to its multiferroic and magnetoelectric properties and potential interest.1-3 

YMnO3 prepared under ordinary synthetic conditions crystallizes in a hexagonal structure, 

which belongs to the space group P63cm, and can be considered as alternating ab-layers of 

Y3+ ions and corner-sharing MnO5 trigonal bipyramids, as shown in Figure 1(a). Each MnO5 

bipyramid is formed of a central Mn3+ ion surrounded by three planar oxygen (O3 and O4) 

atoms and two apical oxygen (O1 and O2) atoms. Whilst there is one unique site for manganese 

atoms and four for oxygen atoms, there are two inequivalent sites for yttrium atoms.4 By means 

of soft-chemistry synthesis, applying pressure, or epitaxial strain in thin films, the hexagonal 

structure can be converted into the more dense, albeit metastable orthorhombic structure 

(Pnma space group)5-13, which contains two distinct oxygen sites (four planar O1 sites and 

two apical O2 sites), while there is only one inequivalent site for Y atoms and likewise for 

Mn atoms7. The orthorhombic structure is composed of corner-sharing MnO6 octahedra with 

one yttrium cation occupying each hole; see Figure 1(b). Compared to the cubic phase, which 

is composed of regular octahedron, the MnO6 octahedra are both rotated (Mn-O bonds 

originally align parallel with the crystallographic axes) and distorted (the six equivalent Mn-

O bond distances become three degenerate pairs) as a result of steric and Jahn-Teller 

effects.25 

Both the hexagonal and orthorhombic phases of YMnO3 have been subjected to theoretical 

studies based on Density Functional Theory.2, 6, 14-17 Many questions, however, remain 

unsolved that lie beyond the computational limits of applying purely quantum mechanical 

Page 2 of 27Journal of Materials Chemistry C

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
C

A
cc

ep
te

d
M

an
us

cr
ip

t



approaches, especially problems related to complex defect structures, and other 

configurations that require the inclusion and relaxation of a large number of ions. Atomistic 

modelling techniques – employing interatomic potentials based on the ionic model which has 

already been successfully employed to a range of oxide-based materials18, 19 – have been 

applied to the study of YMnO3
20, 21 but, due to the purely radial feature of the potentials, the 

calculations showed major limitations in accurately modelling its structure which has a 

substantial distortion of the MnO5 polyhedron in the hexagonal phase and the MnO6 

polyhedron in the orthorhombic phase. 

In the present paper we employed a semi-empirical force field approach, which includes 

the angular overlap model (AOM)22. The AOM model has been successfully applied to model 

the Jahn-Teller distortions within and the rotations of the MnO6 octahedra in the 

orthorhombic perovskite LaMnO3,
23

 oxygen anion migration in LaMnO3-δ,
24 and the changes 

in the structure that occur across the series of lanthanide manganates25. Here, we develop a 

set of potential parameters that accurately reproduce the structure of YMnO3 in both the 

hexagonal phase and metastable orthorhombic phase and, moreover, successfully model the 

thermodynamic parameters relating to the phase transition. For h-YMnO3, the lattice 

distortions are associated with its ferroelectric properties3, 4 and the strong interactions 

between Mn trimers, which dominate the magnetic and magnetodielectric coupling26. For 

orthorhombic YMnO3, the magnetic ordering and, consequently, the multiferroic and 

magnetoelectric properties of this phase depend on the bond angle9, 27-31. Thus, the capability 

of the present method to predict accurately the bond length, bond angle, atomic displacement 

and distortion features of YMnO3 under hydrostatic pressure and chemical doping is of great 

interest in the multifunctional properties of RMnO3 based materials. Additionally, 

considering that the large leakage currents with a small quantity of defects induced by the 

low band gap of YMnO3 hamper their application32-35, it is of great importance to know the 
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origin of the defects in the material, especially for h-YMnO3, which is ferroelectric at room 

temperature. Consequently, we also perform a detailed investigation of the intrinsic defect 

properties which also relate to the properties of the related non-stoichiometric phases. 

 

Simulation method  

Our calculations are based on Born model, using interatomic potentials that have been 

modified by the addition of a ligand field term. The contribution from “spherical” forces 

between ions to the lattice energy is described by the standard Coulomb/Buckingham 

expression: 

6

, 0

exp( / )
4

i j
ij ij ij ij ij

i j ij

q q
E A r C r

r



      (1) 

where the summation over i and j includes unique pairs of atoms and parameters q, A, ρ and 

C are species dependent parameters. Three-dimensional periodic boundary conditions were 

applied to the unit cell, i restricted to atoms within this unit cell and contributions to the 

energy reduced by a half when atom j is a periodic image so that Eq. (1) gives energy per unit 

cell. The Ewald summation36, 37 was employed to compute the Coulomb term, using formal 

charges, q, on the ions. The remaining terms constitute the short-range Buckingham potential 

representing the cation-anion and anion-anion short-range interactions; a cut off of 12 Å was 

applied. The shell model38, 39 is employed to describe the polarizability of individual ions. In 

this model, each ion is divided into two coupled parts: a massive core with charge X and a 

massless shell with charge Y (we constrained X+Y to be the formal charge of ion). The 

interaction between the core and corresponding shell is described by an harmonic function 

with a spring constant k. In our calculations, A, ρ, C, k and Y were fitted empirically so that 

the structural parameters of the appropriate phases for YMnO3 were reproduced. 
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To model the irregular coordination geometry associated with Mn3+ ions, we add a 

contribution to the lattice energy that corresponds to the Jahn Teller driving force for the 

distortions and removal of degeneracy in electronic energy:40 

(1 O )t ts
d d

tsd

E    .  (2) 

Here, εt 
d and Ots 

d 
 are the energy changes and occupations of the d-orbitals for each transition 

metal, t, respectively, and s is the spin of an electron. An adaptation of the angular overlap 

model (AOM) is used to obtain εt 
d. In this model we compute the eigenvalues, εd , of a 5×5 

overlap matrix, Hdd, for each transition metal ion. Hdd is formed by taking the products of the 

angular contributions to the overlap integrals, Γd,
41 between the d-orbital of transition metal 

ion and the orbitals of any surrounding ligand (l), 

' d ddd
l

H R    ,  (3) 

where the Born-Mayer interaction is used to model the radial dependence of the interaction 

between transition metal ion and its ligand:  

exp( / )LF tl LFR A r   .  (4) 

The two new parameters, ALF and ρLF, depend on ligand type and can be empirically fitted. 

Upon optimization of the lattice energy with respect to the cell parameters and ionic 

coordinates, the energy levels may become degenerate and the order of the energy levels may 

also change. To prevent the energy landscape becoming discontinuous, we employ partial 

occupancies (or a nonzero probability that an electron can occupy a higher energy state) via 

the implementation of a Fermi function. The theory of the AOM and its successful 

application in modelling compounds containing “non-spherical” transition metal ions, i.e. 

manganites with distortions, are reviewed in detail elsewhere.40  
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The lattice-energy is minimized by relaxing both cell dimensions and atomic coordinates 

at constant pressure using a quasi Newton–Raphson procedure together with the BFGS 

method42 for updating the Hessian. All our calculations employed the General Utility Lattice 

Program (GULP).43, 44 The potential parameters derived in our fitting procedure are reported 

in Table 1. 

 

Results and discussion  

Lattice calculations 

The first challenge, for our newly derived potential model, is to reproduce the crystal 

structures of both the hexagonal and orthorhombic structures with the same set of potential 

parameters. The energy minimised structural parameters and experimental data are listed in 

Table 2. Results calculated from previously published force field parameters are also 

presented for comparison. We note that the differences between experimental5, 45 and our 

calculated lattice parameters and bond lengths are all within 2%, and in most cases less than 

1%. Hence, our potential parameters reproduced the complex crystal structure of YMnO3 for 

both the hexagonal and orthorhombic phases, which is in stark contrast to previous results.20, 

21 For example, the largest bond length error was reduced from 4.6% to 1.72% for the 

hexagonal phase, and from 9% to 2.38% for the orthorhombic phase. It is noteworthy that the 

bond angle in the orthorhombic phase is accurately estimated. According to the magnetic 

phase diagram for orthorhombic RMnO3 as a function of Mn-O-Mn bond angle27-31, our 

results show the E-type AFM order of o-YMnO3, while other results20 determine the 

magnetic phase to be A-type. Moreover, comparing the predicted structural data obtained 

from potentials with and without the AOM ligand field term, we note that the ligand term 

Page 6 of 27Journal of Materials Chemistry C

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
C

A
cc

ep
te

d
M

an
us

cr
ip

t



effectively reproduces the asymmetry of the Mn3+ ions, i.e. the distortion and rotation of both 

MnO5 bipyramid in h-YMnO3 and MnO6 Jahn-Teller octahedron in o-YMnO3.  

The robustness of the proposed potential set is further checked through investigation of the 

pressure dependence of both the orthorhombic and hexagonal structures (Figure 2). Our 

calculations showed that the orthorhombic phase became more stable at the pressure of 25.8 

GPa, which accords well with the experimental observation that, at room temperature, a 

pressure-induced hexagonal-orthorhombic phase transition requires a pressure above ~22 

GPa for YMnO3
46. This result is gratifying in view of the considerable sensitivity to details of 

the potential model of the thermodynamic parameters associated with this kind of phase 

transition. 

 

Frenkel and Schottky disorder 

We next present results of our defect calculations for YMnO3. We use the supercell method 

rather than the Mott–Littleton approach in our study of defects within both the hexagonal and 

orthorhombic structure as the use of potential functions needed to describe Mn3+–O2- 

interactions in the non-cubic phase cannot yet be implemented in the latter. 

Supercells were generated from the relaxed cell parameters and ionic coordinates of bulk 

YMnO3. After removing or adding one ion from or into the supercell, we added a neutralizing 

uniform charge background. These structures were then optimized with the cell parameters 

being fixed, since one isolated defect should not change the bulk lattice constants. To obtain 

the energy required to form an isolated defect, Ef , we first calculate  the energy difference, 

ΔE,  between the lowest local energy minimum obtained from the optimization of the defect 

containing cell and the lattice energy of the perfect crystal. We require this energy to be 
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converged with respect to the size of the supercell, or shortest distance between the defect 

and the unwanted images of this defect. In order to speed up this convergence, we reduce the 

unwanted long-range interactions between the defect (vacancy and local distortions) and its 

images, by adding a correction term Ec to ΔE. 47 

2

2c
r

Q
E

L




 ,  (5) 

where α is the Madelung constant and εr the dielectric constant of the perfect crystal. This 

term refers to the Coulomb energy of a point charge Q (charged defect) immersed in a 

structureless dielectric, within a cubic unit cell of length L with a neutralizing uniform charge 

background.47 With increasing size of the supercell, the contribution given by Ec will 

dominate the energy difference between the lattice with a periodic array of defects and that 

with an isolated defect, i.e. the energy difference caused by the unwanted interaction 

mentioned above. 

In order to estimate Ec, we first compute  

2

2D

Q
E

L


 .  (6) 

For a single point charge Q, ED is very straight forward to obtain from GULP as it is the 

lattice energy of the cation or anion, which was removed in order to create the defect, in an 

empty unit cell that has the same dimensions as the supercell it was removed from. Note that 

a charged uniform neutralizing background is also required. This procedure can be 

generalised to include more point charges, and will be discussed elsewhere. The interactions 

of the charge associated with the defect and that of its images will be reduced by the 

screening effect of the remaining ions, and so the correction term, Ec, is estimated as: 
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D
c

r

E
E


 ,  (7) 

where εr is the average of the diagonal components of the diagonalized static dielectric 

constant tensor. The defect formation energy, Ef, is therefore 

D
f

r

E
E E


   .  (8) 

Figure 3 shows the results of isolated oxygen vacancy formation energy of hexagonal and 

orthorhombic YMnO3. We investigated all different oxygen sites. By adding Ec, the term in 

Eq. (7), the convergence of Ef was improved considerably in both phases. In our final results, 

we extrapolate the value for Ef at 1/R=0. This supercell method has also been compared with 

the Mott-Littleton approach before and proved to be reliable and effective.24 

The energies of isolated vacancy and interstitial defects were calculated first for both the 

hexagonal and orthorhombic structures. Regarding the vacancies, we calculated both the 

yttrium sites and the four oxygen sites in the hexagonal structure and the two oxygen sites in 

the orthorhombic structure. For h-YMnO3, the planar oxygen O3 and O4 sites have a lower 

energy - about 1eV lower than the apical sites, which is consistent with experimental 

observation.48 It is reported that the host h-YMnO3
 shows a preference for removing the 

equatorial oxide anions (at O3 and O4) to yield phases of composition YMnO3-δ, which may 

be rationalized by considering the coordination requirement of cations.49 The formation 

energy of the Y2 vacancy is slightly lower than Y1 by 0.25eV. For the orthorhombic phase, 

the difference in Ef between different sites is much smaller. The O2 vacancy is a little more 

energetically favourable by 0.65eV. Only the lowest energies were used in the following 

calculations. 

As to interstitial defects, for the hexagonal structure, we tested several possible positions to 

confirm the optimal position of the interstitial site; for the orthorhombic phase, we considered 
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two possible sites: the octahedral interstice at (0, 1/2, 0) and the tetrahedral interstice at (1/4, 

1/4, 1/4), and lower energies were found for interstitials placed at the octahedral site. Only 

the lowest formation energies were employed in the calculations below. 

Then, Frenkel disorder, full Schottky disorder and partial Schottky disorder energies were 

calculated by combining individual defect energies and lattice energies. These defect 

reactions are described by following equations, where Krӧger-Vink notation is used. 

 

Yttrium Frenkel disorder: 

    '''
Y Y iY V +Y                                                                                                                         (9) 

Manganese Frenkel disorder: 

    
'''

Mn Mn iMn V +Mn                                                                                                              (10) 

Oxygen Frenkel disorder: 

    
× '''
O OO V +Oi                                                                                                                      (11) 

YMnO3 full Schottky disorder: 

    
× × × ''' '''
Y Mn O Y Mn O 3Y +Mn +3O V V 3V YMnO                                                                       (12) 

Y2O3 partial Schottky disorder: 

    
× × '''
Y O Y O 2 32Y +3O 2V +3V +Y O                                                                                            (13) 

Mn2O3 partial Schottky disorder: 

    
× × '''
Mn O Mn O 2 32Mn +3O 2V 3V Mn O                                                                                  (14) 
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The corresponding energies for all these types of intrinsic defects are listed in Table 3. In 

order to enable comparisons between different types of disorder reactions, the energies are 

given as defect formation energies per defect, i.e. EF/2 for Frenkel disorder and ES/5 for 

Schottky disorder. 

For both systems, the cation Frenkel disorder energies are much higher than other disorder 

energies. However, in the hexagonal structure, the oxygen Frenkel energy is the lowest defect 

type; while in orthorhombic structure, it is slightly higher than but comparable to Schottky 

disorder energies, which indicates that vacancies, not interstitials, will be the dominant 

structural defects. For both structures, however, defect energies are so high that intrinsic 

disorder would not be expected to dominate the defect chemistry, although we find that very 

significantly lower energies were obtained for the orthorhombic structure.  

Essentially, from our results obtained using the supercell method, it is predicted that the 

oxygen Frenkel disorder and Schottky disorder involving Y are found to be the most 

energetically favourable intrinsic defect in h-MnO3 and o-YMnO3, respectively, although the 

defect energies are still high. The greatest significance of our calculations is perhaps not in 

the low levels expected for intrinsic disorder, but their predictions for related non-

stoichiometric phases. The variable valence of Mn should result in both oxygen deficient and 

oxygen excess phases depending on the oxygen partial pressure. Our calculations predict that 

for oxygen deficient phases the reduction of Mn should, as expected, lead to oxygen vacancy 

formation. The results for oxidation are more interesting as there are more possibilities. And 

we will discuss it in more details below. 

 

Oxidative nonstoichiometry 
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As mentioned earlier, oxidation in hexagonal phase and orthorhombic phase might happen 

via different mechanisms, consequently we have examined the energetics of four different 

oxidation reactions (equation 15-18): 

''
23 / 2O 3O +6hi                                                          (15) 

'''
2 Y 2 33/2O 2V +6h +Y O                                                  (16) 

                                                    
'''

2 Mn 2 33/2O 2V +6h +Mn O                                               (17) 

''' '''
2 Y Mn 32/3O V V 6h YMnO                                        (18) 

The hole state in both phases was modelled as a Mn4+ ion (i.e. as a small polaron), as 

observed in oxygen excess systems5 and hole doped systems50. In addition to the individual 

defect energies and the lattice energies, we also included the dissociation energy of an 

oxygen molecule (5.16 eV), the first and second electron affinities of oxygen (−1.46 and 

+8.75 eV respectively) and the fourth ionisation energy of manganese (52 eV)51. This is 

clearly an approximate approach but should still provide useful comparisons between the 

different processes listed above. 

The calculated reaction energies are listed in Table 4. For the hexagonal phase, the results 

show that the energy for reaction (15) is the lowest, which suggests that oxidation will result 

in the formation of oxygen interstitials. This prediction is in agreement with experiment 

studies in which hexagonal YMnO3+δ was observed to accommodate interstitial oxygen.52, 53 

Moreover, h-Dy1-xYxMnO3+δ has been investigated as a possible material for storing/releasing 

oxygen; as high as 2000 μmol-O/g in air is observed when cycling between stoichiometric 

and interstitial oxygen rich structures by changing temperature between 250 and 350°C.54 

For the orthorhombic system, we predict yttrium vacancy formation during oxidative 

reactions. The difficulty of preparation of YMnO3 in its perovskite form results in the relative 

scarcity of reports devoted to the description of its basic properties. Insight perhaps can be 
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gained from studies of its larger A-site cation isomorphous LaMnO3 counterpart, which have 

reported that LaMnO3 has the ability to accommodate oxidative nonstoichiometry via cation 

vacancies.55, 56 There is some disagreement, however, in the literature concerning whether A-

site or B-site cation vacancies dominate in oxygen excess compositions. Mitchell et al.56 used 

NPD methods and found that there was a tendency towards more A-site lanthanum vacancies 

present in orthorhombic LaMnO3 structures, which accords with our calculations. 

Importantly, the lower reaction energies for the orthorhombic phase would lead us to 

expect greater non-stoichiometry than for the hexagonal phases. It would be interesting to see 

whether this prediction can be verified experimentally. 

To summarise, the oxidation reaction is found to occur via oxygen interstitial and yttrium 

vacancy formation for h-MnO3 and o-YMnO3, respectively, and their ability to accommodate 

oxidative nonstoichiometry is to be expected. 

 

Conclusions 

In conclusion, we have developed a new set of interatomic potential parameters based on the 

AOM model,23 which successfully reproduces the structure of both hexagonal and 

orthorhombic structure of YMnO3. Furthermore, we have used this potential to examine basic 

defect energies. In the hexagonal structure, the oxygen Frenkel defect is the most 

energetically favourable, while Schottky defects involving Y ion have the lowest energies in 

the orthorhombic phase. Significant intrinsic disorder of either Frenkel or Schottky type is, 

however, unlikely, but the results have considerable significance for the nature of related 

non-stoichiometric phases. The capability of the proposed method to estimate accurately the 

structural properties of both h-YMnO3 and o-YMnO3, and the detailed investigation of the 

defects in the present work have implications for modified RMnO3 based multifunctional 

materials. 
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Table 1. Buckingham parameters for the interaction between the  shells of the ions; the 

force field parameters for radial part of the AOM that acts between cores of the 

manganese cores and the surrounding oxygen cores; and the parameters for the shell 

model. Subscripts s and c indicate shell and core, respectively. The cut-off radius for all 

short range potentials is 12 Å. 

Interaction A(eV) ρ(Å) C(eV·Å6) 

Short-range Buckingham potentials 

Ys
3+- Os

2- 26384.018 0.2270 0.0 

Mns
3+- Os

2- 835.222 0.3654 0.0 

Os
2-- Os

2- 22764.300 0.1490 46.0 

Radial force field parameters 

Mnc
3+- Oc

2- 2.0109 0.7005  

Shell model 

Species Y (e) k (eV·Å-2) 

Y3+ 4.6575 88 

Mn3+ 3 98.4 

O2- -2.389 42.00 
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Table 2. Structural data of YMnO3  

Structural 

Parameter 
Experimental5, 45 Including AOM Excluding AOM Calculated20 

Hexagonal phase 

a /Å 6.1382 6.1604 6.115 6.1203 

c /Å 11.3958 11.2341 11.632 11.4316 

Y1-O1 /Å 2.2676 2.2491 2.2334 2.2682 

Y1-O2 /Å 2.3099 2.3105 2.2958 2.2923 

Y1-O3 /Å 2.3163 2.3525 2.3462 2.4229 

Y2-O1 /Å 2.2720 2.2747 2.2539 2.2670 

Y2-O2 /Å 2.2974 2.2750 2.2616 2.2800 

Y2-O4 /Å 2.4581 2.4708 2.4779 2.5647 

Mn-O1 /Å 1.8584 1.8421 1.9580 1.8637 

Mn-O2 /Å 1.8755 1.8506 1.9630 1.8714 

Mn-O3 /Å 2.0632 2.0743 2.0699 2.0488 

Mn-O4 /Å 2.0555 2.0639 2.0564 2.0558 

O1-Mn-O2 /° 179.994 179.984 179.972 179.950 

O3-Mn-O4 /° 120.382 120.410 120.713 120.338 

Orthorhombic phase 

a /Å 5.8029 5.741 5.543 5.5572 

b /Å 7.3643 7.2614 7.876 7.4050 

c /Å 5.2418 5.3664 5.336 5.3142 

Mn-O1 /Å 1.9036 1.9225 2.1260 1.9337 

Mn-O2(s) /Å 1.9382 1.9476 2.0295 1.9910 

Mn-O2(l) /Å 2.2007 2.1806 2.0363 2.0027 

Mn-O1-Mn/° 144.442 141.503 135.686 146.307 

Mn-O2-Mn/° 143.591 144.219 142.219 148.601 
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Table 3 Calculated energies for Frenkel disorder, partial Schottky disorder and full 

Schottky disorder in YMnO3 crystals 

Reaction Eqn. 
Energy /eV per defect 

Hexagonal Orthorhombic 

Y Frenkel (9) 11.46 6.40 

Mn Frenkel  (10) 10.83 7.69 

O Frenkel  (11) 5.01 3.65 

YMnO3 full Schottky (12) 6.61 3.40 

Y2O3 partial Schottky (13) 6.91 2.85 

Mn2O3 partial Schottky (14) 6.73 4.01 
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Table 4 Calculated energies for oxidation reactions in YMnO3 crystals 

Equation 
Energy /eV per hole 

Hexagonal Orthorhombic 

(15) 4.17 1.54 

(16) 5.25 0.36 

(17) 5.11 1.34 

(18) 5.01 0.83 
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Figure captions 

Figure 1 The crystal structure (right panels) of YMnO3 and the corresponding secondary building 

units, MnO5 trigonal bipyramid and MnO6 octahedron, (left panels) in (a) the hexagonal phase and (b) 

the orthorhombic phase, respectively. 

 

Figure 2 Lattice energies (eV/mol) of orthorhombic and hexagonal YMnO3 as a function of 

pressure calculated using our new potentials. Squares and circles show the values obtained by 

relaxing the o-YMnO3 structure and the h-YMnO3 structure, respectively. 

 

Figure 3 Calculated energy of formation for an isolated oxygen vacancy in (a) hexagonal and 

(b) orthorhombic YMnO3 as a function of the reciprocal of the distance between a defect and 

its nearest image without (solid symbol) and with (hollow symbol) the correction term. 
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