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New bacterial detection and imaging methods are desirable for diagnostics and healthcare applications, as 5 

well as in basic scientific research. We present a simple analytical platform for bacterial detection and 
imaging based upon attachment of amphiphilic carbon dots (CDs) to bacterial cells. We show that CDs 
functionalized with hydrocarbon chains readily bind to bacterial cells following short incubation and 
enable detection of bacteria through both fluorescence spectroscopy and microscopy. Importantly, we 
demonstrate that the intensity and spectral position of the carbon dots' fluorescence depend upon bacterial 10 

species, providing a tool for distinguishing among bacteria even in cases of mixed bacterial populations. 
Moreover, bacterial labelling with the amphiphilic CDs enables visualization of physiological processes 
such as cell division. 

Introduction  

Detection and microscopic visualization of bacteria are essential 15 

for numerous applications. Current bacterial detection methods 
generally rely on indirect detection of bacterially-secreted 
metabolites or visualization of bacterial colonies (rather than 
individual bacterial cells).1, 2 Imaging of bacterial cells has been 
carried out through the use of varied staining techniques, using 20 

either fluorescent dyes,3 or in some cases by semiconductor 
quantum dots.4 While these strategies are widely used and many 
bacterial detection5 and imaging agents are commercially 
available, there is still a need for versatile platforms that could be 
employed for broad range of bacterial species, would be 25 

technically simple and inexpensive, and would provide 
morphological details on bacterial cells. Here, we present a novel 
scheme for detection and microscopic visualization of bacterial 
cells using amphiphilic carbon dots. 
 Carbon dots (CDs) are small (<10 nm), quasi-spherical 30 

crystalline graphitic nanoparticles, and have attracted 
considerable interest due to their unique structural and 
photophysical properties.6, 7 CDs exhibit a multitude of colors 
(e.g. excitation/emission wavelength pairs), fluorescence up-
conversion,8 and high quantum yield.8 CDs have been proposed 35 

as useful vehicles for biological studies since they are chemically 
stable, can be readily surface-functionalized, and their broad 
excitation/emission spectral range and low photo bleaching are 
beneficial for imaging applications. 
 CDs can be readily derivatized with varied molecular residues 40 

consequently endowing them with diverse functionalities.9, 10 We 
have recently demonstrated that CDs displaying long 
hydrocarbon chains – i.e. amphiphilic CDs - can be employed as 
useful fluorescent probes for membrane analysis.11 Moreover, 
amphiphilic CDs were shown to exhibit high affinity to actual 45 

cellular membranes, thereby enabling multicolor microscopic 

imaging of cells and intracellular organelles.11 Here, we show 
that amphiphilic CDs serve as effective fluorescent markers of 
bacterial cells. Importantly, we show that the fluorescence 
emission was modulated by the specific bacterial strain to which 50 

the CDs were attached – providing a powerful vehicle for 
distinguishing among different bacteria, even in mixtures of more 
than a single bacterial species. The new CD labelling method was 
further employed for visualizing "poles" within dividing bacterial 
cells, pointing to utilization of the technology for analysis of 55 

cellular events.  

Experimental section  

Materials.  

Phosphate buffered saline (PBS) was purchased from Sigma-
Aldrich. Luria-Bertani (LB) agar was purchased from Pronadisa 60 

(Spain).  

Bacterial growth 

The bacteria used in the studies were Escherichia coli MG1655 
wild type, Salmonella typhimurium (strain ATCC14028), 
Pseudomonas aeruginosa PAO1 wild type, Bacillus cereus, 65 

PET28a-FtsA-GFP strains. The plasmid was pet28a plasmid 
having T7 promoter.12 Transformation efficiency was calculated 
by fluorescent microscopy and it is 75-80% of the whole cell 
population. The bacteria were grown aerobically at 37 °C on a 
sterilized solid LB medium composed of 13.5% yeast extract, 70 

27% peptone, 27% NaCl, and 32.5% agar at pH 7.4. After 
overnight growth, a colony from each bacterial strain was taken 
and added to 10 mL sterilized LB medium and incubated at 37 
°C. Bacterial growth was monitored at the desired time points 
through measuring the concentration of the bacteria by visible 75 

spectroscopy (108 CFU/mL when optical density at 600 nm was 
1.0). 
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Synthesis of amphiphilic carbon dots 

Synthesis of amphiphilic carbon dots followed a recently 
published procedure [full experimental details presented in 
Figures 1-9,SI and in ref. 11]. Briefly, we synthesized 6-O-
acylated fatty acid ester of D-glucose (prepared by reacting D-5 

glucose with O-O'-di-lauroyl-tartaric acid anhydride) which then 
underwent carbonization to produce amphiphilic CDs. Purity of 
end products was confirmed by NMR spectroscopy. NMR 
conforms completele carbonisation drring the course of the 
reaction. FT-IR (Figure 7,SI) and XPS (Figure 8,SI) spectra 10 

reveal the chemical composition of the as-syhthesised CDs. Two 
dominant peaks at 281.7 and 530.4 eV in the XPS survey 
spectrum were attributed to C1s and O1s, suggesting the existence 
of only carbon and oxygen elements in as-synthesized CDs 
(atomic content of carbon and oxygen was 72% and 28% 15 

respectively). The measured C1s spectrum can be deconvoluted 
into five surface components, corresponding to sp2 (C=C) at 
binding energy of 284.7 eV, sp3 (C−C, C−H) at 285.3 eV, C−OH 
at 286.8 eV, C=O at 287.6 eV and O−C=O at 286.8 eV. In the 
deconvoluted O1s spectrum the appearance of peaks at binding 20 

energies of 529.9 eV, 530.8 eV and 531.6 eV corresponding to 
C−O, C=O, OH−C=O groups, respectively, is consistent with the 
FT-IR spectrum indicating presence of oxygen containing 
hydrophilic functional groups on the surface of the as-synthesized 
CDs.  The transmission electron microscopy (TEM) images in 25 

Fig. 9,SI further confirm the crystallinity of the CD product. 
Quantum yield of the amphiphilic CDs was 16.5%, 9.4%, and 
4.7% in chloroform, hexane, and NaH2PO4 buffer, respectively 
(full details in SI document). 

Bacterial labelling with amphiphilic carbon dots 30 

All bacteria were grown overnight at 37 °C in LB medium. After 
overnight growth, a colony from each bacterial strain was placed 
into 10 mL falcon tubes and the optical density was measured at 
600 nm and adjusted to 1.0 (108 cells/mL). The bacterial cells 
were centrifuged for 20 min at 2300 rcf, washed twice with the 35 

sterilized PBS (pH 7.4), and the cell pellet was re-suspended in 1 
mL solution of amphiphilic CDs dissolved in PBS buffer (pH 7.4) 
under gentle vortexing (CD concentration 1 mg/mL). The 
bacteria / CD suspensions were kept at 37 °C for 3h with gentle 
shaking. After incubation, the mixture was centrifuged to pellet 40 

the CD-labeled bacteria, the supernatant was discarded and the 
pellet was re-suspended in PBS buffer. The process was repeated 
twice to remove all unbound amphiphilic CDs. Finally, the pellet 
was suspended again in 1 mL PBS and 900 µL of such aliquot 
was taken in quartz cuvette and subjected to fluorescence 45 

spectroscopy studies.  

Fluorescence microscopy, binding curves and sensitivity test 

For the fluorescence microscopy experiments, 50 µL of above 
prepared amphiphilic CD labeled cell suspension was placed in 
microscope slides coated with 100 µL of 5% agarose gel. For 50 

measuring binding curves of the amphiphilic CDs to different 
bacteria, the same procedure was carried out with different 
concentrations of amphiphilic CDs (from 0.1 mg/mL to 1.5 
mg/mL) in PBS buffer. The best-fit curve was obtained by using 
SigmaPlot dynamic curve fitting software for fitting 55 

experimentally-obtained points in an equation that corresponds to 

the curve merging a maximum number of experimental points 
with reduces Chi-square value and R2 closest to 1. For binding 
curve experiments and sensitivity test each data point was 
repeated three times.  60 

Sensitivity assay 

The procedure was repeated with different concentration of 
bacteria (108 CFU/mL to 102 CFU/mL) prepared through dilution 
and incubated with the same concentration of amphiphilic CDs (1 
mg/mL). For visualization of membrane domains of E. coli, the 65 

bacterial cells were grown together with amphiphilic CDs 
solution in LB medium (concentration 1 mg/mL) at 37 °C for 3h. 
For microscopic visualization of membrane domain thin cover 
glass slide was coated with 100 µL of 5% agarose gel and the 
bacteria were placed on the treated surface.  70 

Fluorescence spectroscopy and microscopy 

Steady-state fluorescence spectra were recorded using a 
Fluorolog 3 (Jobin-Yvon) steady-state Spectrometer. 
Fluorescence microscopy experiments were carried out on an 
Olympus IX70 microscope (Japan), equipped with a Roper 75 

Scientific Inc. MicroMAX camera with an UPlanFL100x/1.4 
objective. Images were processed with ‘‘WINView’’ software. 

Results and discussion  

Fig. 1A illustrates the new bacterial detection approach using 
amphiphilic carbon dots (CDs). We recently demonstrated that 80 

these CDs, which display hydrocarbon chains upon the particle 
surface, exhibit high affinity to cell membranes.11 As depicted in 
Fig. 1A, the bacterial detection scheme relies upon incubation of 
bacteria with the amphiphilic CDs (for 3-4 h); after subsequent 
washing, CDs attached to the bacterial cells render them highly 85 

fluorescent, thereby easily detectable by fluorescence 
spectroscopy / microscopy.  

 
Fig. 1: Labelling of bacteria with amphiphilic carbon dots. A. Scheme 
of the detection methodology based upon labeling bacteria with the 90 

fluorescent amphiphilic CDs; B. multicolour fluorescence microscopy 
images of E. coli recorded at different excitation/emission pairs. Blue: 
excitation at 365 nm, emission filter 420 LP; green: excitation at 470 nm 
emission filter 510 LP; magenta: excitation at 510 nm, emission filter 545 
nm; red: excitation at 540 nm, emission filter 605 nm. Scale bar 95 

corresponds to 5 μm. Exposure time was 0.5 sec in all experiments. 
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