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Spectral data quality assessment based on variability 

analysis: application to noninvasive hemoglobin 

measurement by Dynamic Spectrum 

Wenqin He,a,b Xiaoxia Li,c Mengjun Wangc ,Gang Lia,b and Ling Lin* a,b 

The quality of spectral data is crucial to the accuracy of quantitative spectral analysis, especially the 

noninvasive measurement of blood components. As an important part of re search, establishing an 

effective and reliable quality assessment metric to select data before modelling is indispensable. 

According to the principle of Dynamic Spectrum (DS) and the characteristics of Photoplethysmogram 

(PPG), this study proposed a novel method to assess spectral quality ---- stability coefficient (SC) and we 

proposed an analytical formula. To verify the feasibility, in simulation analysis, we calculated the stability 

coefficient of simulated spectra and evaluated the performance of extrac tion by Root Mean Square Error 

(RMSE). The result shows a negative correlation between stability coefficient and  RMSE. After simulation 

analysis we conducted control experiment based on data from 427 subjects by developing calibration 

models between DS data and hemoglobin concentration. The average correlation coefficient is 0.875 in 

the test set of experimental group, while that of  the control group is only 0.715. The actual experimental 

result is consistent with the simulation analysis to demonstrate that  the assessment method can evaluate 

the quality of spectral data efficiently and accurately. This new quantitative method provides a reliable 

way to assess and screen spectral data. It could not only be applied to noninvasive measurement of blood 

components but also to other related fields such as spectral analysis, signal measurement and processing. 

Introduction 

Noninvasive measurement of blood components is one of the 

frontiers of biomedical engineering [1-3], especially the 

measurement of hemoglobin concentration [4-8], and each study 

has its own uniqueness and advantages. Hemoglobin 

concentration is an important indicator of health condition. 

Continuous noninvasive monitoring of hemoglobin can assist in 

prevention and diagnosis of diseases. High hemoglobin level 

usually means poor heart or lung function which result in 

chronically low blood oxygen level, or Polycythaemia Vera. 

More commonly, low concentration of hemoglobin which is 

referred to as anemia, is now affecting approximately a quarter 

of the world population [9]. Also, in order to prevent excessive 

bleeding, monitoring of hemoglobin concentration during and 

after the surgical operation is necessary. Conventional methods 

for hemoglobin measurement always bring fear and suffering, 

therefore, accurate and convenient method for noninvasive 

hemoglobin measurement has long been everybody’s aspiration. 

Because of the optical properties of human tissues in visible 

and near-infrared (NIR) region, quantitative spectral analysis [10] 

is an effective, convenient and painless approach to monitor the 

blood components. In order to eliminate the effect of the “static 

tissues” and the skin pigment, dynamic spectrum (DS) [11-12] 

has developed rapidly, which measure the blood components 

based on PPG [13]. DS method can individually extract the 

absorption spectrum of arterial pulsatile blood. As a promising 

approach, it can dispel the influence of measurement conditions 

and individual variation in principle. Therefore it markedly 

shows great potential.  

Improving the accuracy of measurement is the common goal 

of all studies, many methods have been proposed to enhance the 

performance of DS, such as FDLIA [14], double-sampling 

method [15]. But previous studies mainly focused on the data 

sampling and extraction. Modelling between the DS data and the 

blood component concentration is an efficient approach for 

measurement. So the quality of training data is vital to the 

performance of DS method. Therefore, the spectral quality 

assessment and data selection is quite important. 

The term “spectral quality assessment” has different 

implications based on the application. e.g., a narrow peak 

without secondary peaks is preferred in traditional spectroscopy, 

while the quality of PPG wave is the primary factor in DS. 

Generally, there are two types of approaches to assess the quality 

of dynamic spectral data: subjective evaluation and objective 

evaluation. In subjective method, researchers observe the PPG 

wave and spectral curve and make subjective judgements of the 
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quality. As for objective evaluation, which is more commonly 

used, is based on objective indicators and characteristics of the 

spectral data, e.g., in time domain, the signal to noise ratio (SNR) 

in different wave band [16-17]: the background noise on the 

spectral curve is usually a serious interference factor. There is 

also assessment methods based on frequency domain analysis, 

e.g., “stable wavelength number” [18]: assessing the spectral 

quality in frequency domain by analysing the differences among 

the fundamental frequencies of the PPG signal at different 

wavelengths by FFT. But the rationality of its definition may 

need to be further proven because the fundamental frequencies 

of one’s PPG at different wavelengths are unlikely to be different 

at the same time unless the noise is extremely intense.  

     According to the basic theory of DS, what carries the major 

information of the absorption properties of pulsatile blood is the 

peak-to-peak values of the PPG wave. In ideal conditions (there 

is no noise or other disturbance), we can extract them accurately. 

But in practical situations, it’s extremely difficult to get a stable 

PPG signal because of the influence of various disturbances such 

as motion artifacts, baseline drift. After analysing the 

characteristics of PPG and the principle of DS, in order to select 

good spectral data for modelling, we proposed a novel method 

based on variability analysis to evaluate the spectral quality: 

stability coefficient (SC). We focus our attention on the quality 

of measurement: stability and repeatability, which is the key 

issue of all kinds of dynamic measurements. Variability analysis 

is a practical common method for measurement reliability 

analysis [19-20] and signal analysis [21]. It is often used to assess 

the quality of measurements or assays [22]. In this study, we 

evaluated the extent of variability of acquired spectral data, i.e., 

the quality of data. SC is an intuitive indicator which indicates 

the degree of original information being polluted by the noise of 

equipment, ambient and other factors.  

We performed some simulations and the results demonstrate 

its feasibility. In the actual experiments, performances of BP 

artificial neural networks trained on different data set were 

compared, and the results illustrate that it can indeed be used to 

evaluate the spectral quality and can help to screen data for 

modelling. 

Theory and analysis 

Dynamic spectrum  

Dynamic Spectrum (DS) is a spectral method for noninvasive 

measurement of arterial blood components. DS method is based 

on the measurement and analysis of photoplethysmography 

(PPG). As shown in Fig. 1, due to abundant blood capillaries 

under the skin, absorbance of the tissue cyclically vary with the 

perfusion of blood to the dermis and subcutaneous tissue. 

Supposing there is a light beam transmitting through the fingertip 

tissue. With each cardiac cycle the heart pumps blood to the 

periphery. During diastole, with the decreasing of blood flow in 

the arteries and arterioles, the transmitted light will reaches its 

maximum intensity. Then when heart contracts, absorbance of 

the tissue will increases, and at the end of systole we can get the 

lowest transmitted light intensity. Theoretically, when measuring 

the PPG, the subcutaneous tissue can be simply considered to be 

composed of two parts: pulsatile part and static part (i.e., analyte 

and matrix). The absorbance of all the "static" tissues (mainly the 

venous blood and other tissues) remain constant during the 

measurement process. i.e., the pulsatile part of arterial blood is 

the only factor which lead to the circular change of absorbance 

of tissues. Therefore, we can acquire the absorption information 

of arterial blood by measuring the alternating component of PPG 

signal: subtracting the background absorption from the total 

absorption. DS method which can eliminate the individual 

discrepancies of static tissues is more like a kind of ex vivo 

measurement of blood components.  

IT

I0

t

Other Tissues

Artery

Imin
Imax

Vein Static

Pulsatile

PPG

 
Fig. 1   The generation of Photoplethysmography (PPG) and a Simplified 
model of tissue. PPG is a simple optical method to detect blood volume 
changes in microvascular bed of tissue [23].  PPG waveform is consist of 
two part: AC (pulsatile) and DC (baseline), so we can regard the tissue 
as a combination of pulsatile part and “static” part. 

     DS theory is based on the modified Lambert-Beer's law 

(MLBL) [24]. As Eq. (1) and (2), I0 and IT represent the incident 

light intensity and the transmitted light intensity respectively. 

The maximum and minimum transmitted light intensities are 

represented by Imax and Imin which correspond respectively to the 

minimum and maximum arterial blood flow. 𝜀𝑖
𝜆  is the molar 

extinction coefficient of component i at wavelength λ, 𝑐𝑖 is the 

concentration of the component, d represents the optical 

pathlength. L is differential pathlength factor (DPF), which 

represents the pathlength lengthening caused by scattering and G 

depicts the scattering loss. L and G are considered invariable 

throughout the measurement. 

𝑂𝐷𝜆 = 𝑙𝑛 (
𝐼0

𝜆

𝐼𝑇
𝜆) = 𝑙𝑛(𝐼0

𝜆) − 𝑙𝑛(𝐼𝑇
𝜆) = ∑ 𝜀𝑖

𝜆𝑐𝑖𝑑𝐿𝑛
𝑖=1 + 𝐺     (1) 

𝛥𝑂𝐷𝜆 is the change of absorbance during one cardiac cycle at 

wavelength λ . As Eq. (2), by extracting the alternating 

component of the logarithmic PPG (PPG signal after logarithmic 

transformation), we can get the light absorption information of 

arterial pulsatile blood. 
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𝛥𝑂𝐷𝜆 = 𝑙𝑛(𝐼𝑚𝑎𝑥
𝜆 ) − 𝑙𝑛(𝐼𝑚𝑖𝑛

𝜆 ) = 𝐴𝜆                   (2) 

  𝐴𝜆 represents the absorbance of arterial pulsatile blood. If we 

measure A at different wavelengths, we can get the Dynamic 

Spectrum (DS) which in essence is the optical density of the 

pulsatile blood. One of the advantages of DS method is 

eliminating the influence of the variation of light source or other 

measurement conditions, and the disturbance of static tissues. 

    After obtaining the logarithmic PPG, DS data can be extracted 

by existing methods such as frequency domain analysis [25], 

single trial estimation [26] which is more commonly used. 

Frequency domain analysis extracts the amplitude of 

fundamental of the logarithmic PPG by FFT, but its accuracy is 

low because PPG is not a single-frequency signal. As we all 

know, if a signal has a certain level of total energy, the wider the 

frequency spectrum width, the weaker the amplitude of 

fundamental. Single trial estimation has a strong anti-noise 

ability due to the elimination of abnormal data and the error 

correction by line-fitting. 

    In practice, the concentration of blood component such as 

hemoglobin is analysed by establishing calibration model. The 

precondition of high accuracy is that the spectral data we used 

for training are representative and high-quality, so the quality 

assessment of spectral data is a very key issue. 

Spectral data quality assessment 

STABILITY COEFFICIENT 

As mentioned, the core idea of DS method is to acquire high 

quality spectral data at an early stage to obtain abundant accurate 

information, so as to set up model with good predictive ability 

and robustness. Because the nature of DS is dynamic 

measurement, the spectral data is easily to be disturbed by noises, 

such as environmental factor (ambient light), instrumental error 

and man-made disturbance (hand or finger tremor, coughing, and 

changes of the breathing pattern). These factors damage the 

signal and decrease the final quality of spectrum, and in awful 

circumstances the useful signal may be even submerged in noises.  

     The peak-to-peak value of the logarithmic PPG, which 

contains the absorption characteristics of arterial pulsatile blood 

[26], is the primary information source in DS method. In 

practical situations, more often than not, the acquired signal is 

noisy and the peak-to-peak values are uneven because of the 

noise interference. As for common measurement or signal 

acquisition systems, compared with the multiplicative noise 

caused by inaccurate calibration or unsatisfactory transmission 

characteristics of the system, it is the additive noise that do the 

most harm to the data quality. Although we can improve the SNR 

by averaging the results of repeated measurements on condition 

that there is only white noise. In reality, the influence of the most 

pernicious noises such as random impulsive noise and burst 

noise can hardly be mitigated. Due to the complicated model, it’s 

hard to attenuate the noises in measurement and transmission. 

Once the spectral data acquiring is finished, the only thing we 

can do to improve the accuracy is to pick out high quality data 

from the existing results to build model. Spectral data of a subject 

is regarded valuable if the PPG wave is steady and noiseless, 

namely, the distribution of the measurement results is highly 

concentrated. But if the data is seriously polluted by noises and 

the amplitudes of PPG fluctuate drastically, we just discard the 

spectrum of that subject because its absorption information can 

hardly be extracted correctly, and such spectral data is useless or 

even detrimental to the modelling. In other words, assessment 

and screening spectral data is of great significance to noninvasive 

hemoglobin measurement. 

   To assess the spectral quality accurately and effectively, we 

analysed the stability of PPG signal at different wavelengths and 

assess its quality, as follows: 

(1) Smooth and denoise the original spectrum, and remove the 

saturated spectral data. 

(2) Generate the PPG model by adding up all the logarithmic 

PPG waves over a certain wavelength range and remove the 

signal segments with gross error (In this study, we use 

Grubbs' test method with significance level of 0.05 for gross 

error elimination). 

(3) Over the available wavelengths i, fit the rising and falling to 

the corresponding edges of the model, and the slopes 

are 𝐴1
𝑖
, 𝐴2

𝑖 ,…, 𝐴𝑛
𝑖 .   

(4) Calculate the Stability Coefficient (SC) over the available m 

wavelengths in which we are interested, as Eq. (3): 

 

𝑆𝐶 = ∑ 𝜂𝑖 ·
1

𝐶𝑉𝑖

𝑚
𝑖=1 = ∑ 𝜂𝑖 ·

𝐴𝑖̅̅ ̅

𝑆(𝐴𝑖)

𝑚
𝑖=1                    (3) 

   𝐶𝑉𝑖  is the coefficient of variation of  𝐴1
𝑖 ,  𝐴2

𝑖 ,…,  𝐴𝑛
𝑖 , which 

expresses the dispersion of signal at wavelength i. Coefficient of 

variation is a precise description that can help to compare the 

extent of variation from one data series to another, even if the 

averages of each series vary drastically. The most common 

approach for variability analysis is calculating CV, which is also 

common used in queuing Theory and reliability theory. 𝜂𝑖 is the 

weighting factor given to the corresponding wavelength, which 

can be adjusted according to specific condition (e.g., we can 

weighting the wavelengths depending on the importance of each 

independent variable in modelling). In this study, all independent 

variables are equally weighted (𝜂 = 1/𝑚). SC is a standardized 

indicator of the measurement quality, and its value is 

independent of the scale of sampling values over different 

wavelengths. 

SIMULATION ANALYSIS 

To analyse the feasibility and effectiveness of the SC evaluation 

method, a series of computer simulations were implemented in 

MATLAB. A computer-generated sinusoidal signal S0 with unit 

amplitude was substituted for the PPG wave. The frequency 𝑓 

was randomly selected from the range between 0.8 Hz and 1.5 

Hz. 

𝑆0 = 𝑠𝑖𝑛(2𝜋 · 𝑓 · 𝑡)                                  (4) 

In order to simulate the transmission spectrum of human tissue, 

the original virtual PPG (𝑆0) was modulated to different levels, 

as Eq. (5). 

𝑆𝑖 = 𝐴𝑖 · 𝑆0 = 𝐴𝑖 · 𝑠𝑖 𝑛(2𝜋 · 𝑓 · 𝑡) , 𝑖 =  1 , 2 …  𝑚    (5) 
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Supposing the transmission spectrum is a sine curve between 0 

and 𝜋, as described in Eq. (6), 

𝐴𝑖 = 𝑠𝑖𝑛 (
𝑖

𝑚
∙ 𝜋) , 𝑖 =  1 , 2 …  𝑚                  (6) 

where 𝑚  expresses the number of wavelengths, and we set 

m= 200 . All the modulated signals together constituted the 

“mock spectrum”. Moreover, the sampling rate of PPG was 

50 𝐻𝑧, and the number of sampling points was 1000. 

Then we added three types of noises to the mock spectrum, 

viz., (i) Low-frequency sine wave 𝑁𝐿  with frequency 𝑓𝐿 

randomly drawn from standard uniform distribution on 0.2 Hz - 

0.4 Hz and amplitude 𝐴𝐿  randomly drawn from standard uniform 

distribution on (0.5, 3.5), for simulation of drifted baseline 

caused by breathing, etc. (ii) Step signals 𝑁𝑆 with random height 

and location, for simulation of motion artifacts. As Eq. (8), 𝐴𝐻  

was randomly drawn from standard uniform distribution on (-2, 

2) and 𝜏 ∈ (0, 20) represented the location of step signal. (iii) 

White Gaussian noise 𝑁𝑤𝑔  whose power relative to the original 

signal was randomly drawn from the range between -5 dB and -

20 dB. Furthermore, all the simulated signals were superposed 

onto a certain DC offset 𝐷. 

𝑁𝐿 = 𝐴𝐿 ∙ 𝑠𝑖𝑛 (2𝜋 · 𝑓𝐿 · 𝑡)                         (7) 

𝑁𝑠 = 𝐴𝐻 ∙ 𝐻(𝑡 − 𝜏)                                (8) 

So far we got a noisy simulated spectrum as Eq. (9), which was 

similar to the real sampled spectral data, as shown in Fig. 2. The 

waveforms of this simulated PPG are depicted in Fig. 3 (m=120). 

𝑆𝑁𝑜𝑖𝑠𝑦
𝑖 = 𝐴𝑖 · 𝑆0 + 𝑁𝐿 + ∑ 𝑁𝑆(𝑛)

4

𝑛=1
+ 𝑁𝑊𝐺 + 𝐷, 

     𝑖 =  1 , 2 …  𝑚                                         (9) 

Subsequently, the SC of the simulated spectrum was calculated 

according to Eq. (3), and we extracted the “spectrum” by single 

trial estimation. The extraction accuracy was evaluated by the 

root-mean-square error (RMSE) between the normalized 

extracted signal and unit-amplitude sinusoidal signal. 

 
Fig. 2   Simulated spectrum (the simulated absorbance curve is sine 
wave). The left part shows the original signal and the right part shows 
the signal with noises. At any moment, the absorbance curve can be 
seen from the wavelength-axis.   

 
Fig. 3   Simulated signal at a certain wavelength (m=120) versus time.  

The above steps were repeated 10 times, then we analysed their 

data quality (SC) and extraction errors (RMSE). As illustrated in 

Table 1, the results are sorted by SC value. It shows a negative 

correlation between RMSE and SC. In other words, the higher the 

SC value of a spectrum, the more accurately we can restore the 

spectrum. That means we can evaluate the quality of spectral data 

by its SC value. In addition, the data type we used in simulation 

was double-precision floating point (64 bits).

 

Table 1   Simulation results. The original simulated absorbance curve was a sine wave with unit amplitude and we could extract it perfectly. 
After adding noises to the signal, the original information was distorted, so the extracted signal can’t be identical with the original sine 
wave and the extraction error will certainly increase as the noise intensity raise.  

Simulation No. 5 10 6 1 2 8 3 9 4 7 

SC 5.29 6.75 6.82 7.37 8.26 8.75 9.20 10.28 10.51 12.86 

Extraction RMSE 0.0379 0.0216 0.0236 0.0171 0.0155 0.0117 0.0092 0.0084 0.0065 0.0063 

 

Materials and methods 

Experimental section 

The spectral data acquiring system consisted of four major 

components --- a test bench with light source and optical 

collimators and optical fiber bundle, a power supply, a 

spectrometer, and a PC for controlling and data saving. As 

illustrated in Fig. 4, broadband light source was a tungsten-

halogen lamp (PHILIPS, 50 W) and a stabilized DC power 

source supplied power for it. Collimated light beam made by 

lenses and diaphragms fell on the fingertip and the transmitted 

light was piped to the spectrometer through optical fiber bundle 

which contains several fibers with numerical aperture (NA) of 

0.22. The spectrometer (AvaSpec-HS1024x58TEC-USB2, 

manufactured by Avantes, Holland), which has an adjustable 
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spectral resolution (1.5 nm – 20 nm), continuously scanned the 

transmission spectrum of fingertip tissue over visible and NIR 

waveband (200 nm-1160 nm) for a certain amount of times and 

the scans are stored in internal memory in real time. The 

spectrometer was controlled by PC, and after the last 

measurement had been made the spectrometer sent the data 

through USB to the PC. 

We conducted a series of experiments in the Physical 

Examination Center of Tianjin People Hospital, from June 13, 

2014 to July 1, 2014. Subjects of the experiments were recruited 

from the people who were going to accept a medical 

examination in the hospital. Before participating our study, the 

potential subjects were provided the general information about 

our research and were notified of the right to withdraw the 

consent to participate at any time, to ensure they could make an 

informed choice.  

 

Halogen
Lamp

Finger

Spectrograph

PC

Lens

USB

DC
Power
Supply

Fiber

 
Fig. 4    Schematic diagram of the spectral data acquiring system 

In every early morning, after on-site recruitment, volunteers 

had their blood drawn for a routine blood test which examined 

the main blood cells such as hemoglobin concentration, total 

WBC count, platelet count. The blood samples were tested by 

a fully automated hematology analyser (ABX Pentra 60, 

Manufactured by HORIBA ABX SAS, Japan) in the hospital. 

After blood sampling, the spectral data acquiring started 

immediately: we had the volunteer sit down quietly, and then 

the volunteer placed his or her right hand on the test bench with 

the middle finger pressing on the interface of optical fiber 

bundle, lightly and steadily. When the volunteer felt 

comfortable we activated the measurement of the spectrometer, 

as shown in Fig. 4, the narrow light beam was cast on the 

fingertip and the light transmitted by tissues was measured by 

the spectrometer. The Integration time of spectrometer was set 

to 20ms, which means that the sampling rate was 50 Hz. The 

number of scans for each subject was 1400, so the whole 

process lasted 28 seconds. As shown in Fig. 5, that is the PPG 

signal (20 s) of No. 32 volunteer. It’s a time-varying signal 

which contains the transmission spectrum over a fixed 

wavelength range but at different moments. At the waveband of 

high signal intensity, we can identify the pulse wave clearly. 

After the collection of spectral data, we could extract DS from 

the raw data by existing method. Fig. 6 shows the DS of NO. 32 

volunteer, which was extracted by single trial estimation. 

Obviously, the DS curve is consistent with the absorption 

spectrum of oxy-hemoglobin (HBO2) at the same band [27], as 

painted in Fig.7 (spectrum curve in the dotted box). 

 
Fig. 5    One volunteer's 20s PPG signal (NO. 32) 

 
Fig. 6   Dynamic spectrum (DS) extracted by single trial estimation (No. 
32 volunteer) over the wavelength range of 591.8nm-1120nm 
(altogether 586 wavelengths) 

Altogether we had collected data from 609 subjects during 

the experiments. The general information of these volunteers 

are listed in Table 2. All the subjects were adults aged between 

19 and 96, and all of them volunteered for this study. 

All these experiments were conducted in compliance with 

the relevant laws as well as the guidelines issued by the Ethical 

Committee of Tianjin University and Tianjin people hospital. 

Table 2   General information of the subjects   

Gender 

Maximum 

age 

Minimum 

age 

Average 

age 

Sample 

size 

Male 96 21 48 574 

Female 91 19 36 35 

Overall 96 19 45 609 
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Fig. 7    Molar extinction coefficients of hemoglobin versus wavelength (250 nm – 1100 nm).  It’s easy to see that the DS curve (Fig. 
6) is almost identical with the absorption coefficient curves of HBO2. Adapted from [27]. 

Data processing and analysis 

After a preliminary screening, we discarded those invalid 

(saturated) spectra and picked out valid data of 427 subjects for 

further analysis.  

    First and foremost, we analysed the stability coefficient (SC) 

of these spectra and watched the waveforms, to explore the 

relation between SC value and the spectral quality. The initial 

observation is that higher SC value equate to better stability of 

PPG waveform and less noise. Generally, if the SC value equals 

5 or more the signal is steady and the pulse wave is strong, 

while the quality of spectrum become very inferior if SC value 

is 2 or less, because such low SC value indicates that the 

fluctuation extent of PPG amplitudes outstripped half of its 

average level. Fig. 8 (a) shows a volunteer’s PPG at 620 nm, 

which should have had a higher SNR than other wavelengths 

due to high absorbance of HGB, was affected by noise seriously 

and we can hardly recognize the pulse wave. Because there 

were much impulsive noise and strong high-frequency noise, 

almost the signal of every cardiac cycle became disparate and 

the calculation shows its SC value only equals 1.02. We 

extracted its DS, as depicted in Fig. 8 (b), due to the 

unsteadiness of original signal, the spectrum curve changes so 

rapidly even at adjacent wavelengths and the real information 

was distorted badly. The noisy spectrum didn’t match the 

absorption properties of oxy-hemoglobin over the NIR range in 

Fig. 7 (especially at wavelengths of greater than 1000 nm, it 

distorted seriously). In contrast, Fig. 9 exhibits the 

corresponding data of a subject whose SC equals 10.7. We can 

see the pulse wave clearly, and the smoother DS curve of the 

later subject was attributed to less noise during the 

measurement process. Surely it contains information of more 

authentic and the net analyte signal [28] of hemoglobin in the 

spectrum is more accurate than the former.

                   
Fig. 8   One subject's PPG and DS at 620 nm (SC=1.02)                              Fig. 9   One subject’s PPG and DS at 620 nm (SC=10.7) 
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We analysed all the 427 spectra by calculating the stability 

coefficients of them and we found the SC was distributed 

between 0.429 and 16.535. A rough estimation of the 

probability density can be made by constructing a histogram of 

that 427 values, as shown in Fig. 10, the entire range of SC 

values was divided into 16 small intervals whose length is 1. 

The greater the abscissa of histogram, the better the data quality. 

The mass of the distribution is concentrated slightly on the left 

of the figure, and a somewhat positive-skewed distribution can 

be found. According to the above analysis and the distribution 

of SC, we divided all the 427 spectra into three groups: good 

data (𝑆𝐶 > 5), average data (2 < 𝑆𝐶 ≤ 5), and inferior data 

(𝑆𝐶 ≤ 2). The number of subjects in each group are 163, 230 

and 34, respectively, and the percentages of them are 38%, 54%, 

and 8%. Statistics shows that the average data is in the majority, 

which is consistent with practical experiences. 

 
Fig. 10    Quality distribution of all the valid spectra 

In order to further demonstrate the application performance 

of the SC assessment method, we conducted a control 

experiment. We established two calibration models with same 

structure, but the data for modelling were sampled by different 

ways. Because prediction performance is the most persuasive 

indicator to evaluate the data quality of not just the training set, 

but also the data in test set, the performance of the two 

predictive models was analysed to quantitatively compare the 

content of useful information in the data set, i.e., the spectral 

quality. We extracted DS of all the 427 spectra over the 

wavelength range of 591.8 nm-1120 nm (altogether 586 

wavelengths) by single trial estimation. Then we established the 

calibration models between DS data and the hemoglobin 

concentration measured by the hematology analyser.  

Artificial Neural Network (ANN) is an excellent statistical 

learning algorithm which is good at regression or classification. 

It can be deemed as a system of connected "neurons" that have 

independent transfer-functions and can compute values from 

the input vector. The network has a strong capability of 

approximating or estimating the non-linear relation between 

inputs and outputs.  

      We established neural networks with four layers between 

DS and HGB (an input layer with 427 nodes, two hidden layers 

with 87 and 10 nodes respectively, and an output layer which 

has only one node corresponding to HGB concentration). The 

networks were trained by backpropagation algorithm in which 

the errors propagate backwards from the output layer to the 

input layer. The transfer function of our network is Tan-sigmoid 

function (the two hidden layers), linear transfer function (the 

output layer). We use MATLAB for network's establishing and 

training, and the training function of network was traingdx, 

which updates weight and bias values according to gradient 

descent momentum and an adaptive learning rate. In our 

networks the momentum constant was 0.9. The Learning rate 

was set to 0.01, and the ratio to increase and decrease learning 

rate was 1.05 and 0.7, respectively. The maximum number of 

epochs to train was 1000. The experiment was made up of two 

parts: experimental group and control group. As for 

experimental group in which we screened the data by SC value, 

100 spectra with the corresponding HGB concentration were 

randomly sampled only from the “good data” group (SC>5), 

then 85 samples of them were used as calibration set while the 

other 15 samples were used for test (prediction). In control 

group, we randomly picked out 100 samples from all the valid 

data, regardless of the SC value. Similarly, the data were 

partitioned into 2 parts (training set and test set) in proportion 

to the experimental group.  

 In order to demonstrate the effectiveness, and more 

important, the reliability of the metric, we randomly sampled 

data and performed this control experiment for 10 times in total. 

Then we evaluated the networks by the key indicators: RMSE 

and the correlation coefficient.  

Results and Discussion 

The Results of these networks are listed in Table 3, in which 𝑅𝑇 

and 𝑅𝑃  represent respectively the correlation coefficient of 

training set and test set. 𝑅𝑀𝑆𝐸 is the root-mean-square error of 

test set. The average values of their RMSE and correlation 

coefficients are listed in Table 4.  

The average SC of the spectra of experimental groups is 

7.124 and that of control group is 4.559. The experiment result 

shows that the 𝑅𝑃
̅̅ ̅̅  in control group was 0.715 while that in 

experimental group was 0.875, which was much greater than 

control group. The significant difference between the two 

groups shows that spectra with higher SC value did improve the 

performance of calibration model with same topology. It is 

because on the one hand, higher data quality of training set can 

make the generalization ability stronger and provide more 

authentic information for calibrating, which can be seen from 

the difference of the correlation coefficient of training set (The 

disparity of 𝑅𝑇
̅̅ ̅̅  is not as remarkable as 𝑅𝑃

̅̅ ̅̅ , because the artificial 

neural network algorithm have a strong ability of detecting the 

complex nonlinear relationship between the inputs and outputs,
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 i.e., even if the training set is not that ideal, it can get a high 

𝑅𝑇 , but in such situations the calibration model try to 

approximate to random errors or noises rather than the 

underlying relationship between the inputs and outputs). On the 

other hand, predictive samples with higher quality make the 

model to calculate dependent variable from the independent 

variables more accurately. 

 

Table 3   Result of control experiment  

Experiment 

No. 

Experimental Group Control Group 

___ 

SC 

 

RT 

 

Rp 

RMSE 

(g·L-1) 

___ 

SC 

 

RT 

 

Rp 

RMSE 

(g·L-1) 

#1 7.895  0.968  0.931  3.10  3.968  0.925  0.690  5.78  

#2 7.408  0.950  0.900  3.78  3.514  0.944  0.637  6.13  

#3 5.982  0.989  0.801  4.68  4.623  0.934  0.700  5.24  

#4 7.854  0.981  0.820  4.56  4.211  0.917  0.705  5.01  

#5 8.048  0.987  0.942  3.17  5.650  0.961  0.600  5.96  

#6 6.461  0.931  0.859  4.47  4.169  0.901  0.640  5.97  

#7 5.673  0.961  0.780  4.92  6.333  0.965  0.861  3.23  

#8 7.009  0.981  0.925  3.65  4.423  0.932  0.792  4.99  

#9 6.803  0.946  0.860  3.56  3.781  0.929  0.721  5.12  

#10 8.108  0.980  0.927  3.11  4.913  0.930  0.800  4.84  

 

  

Table 4   Comparison of experimental and control group 

Group 
___ 

SC 

___ 

RT 

___ 

RP 

RMSE 

(g·L-1) 

Experimental  7.124  0.967  0.875  3.90  

Control 4.559  0.934  0.715  5.23  

 

The above-mentioned simulation as well as the control 

experiment jointly demonstrate that the stability coefficient of 

spectral data can characterize the quality of them, because in 

essence, SC represent the concentration of distribution of PPG 

amplitudes. Stable PPG wave is a critical element in numerous 

studies of related areas, e.g., heart rate measurement, oximetry 

[29-30], blood pressure estimation based on pulse transit time 

(PTT) [31]. Actually, variability analysis is a practical and 

effective approach to evaluate the quality of periodic signal or 

repeated measurement, because a good repeatability of 

measurement is always good for us (unless the variation of 

signal or measurement results just happen to be the object that 

we study on, like the variation of pulse-to-pulse intervals or “R-

R intervals” in ECG is an important indicator of the patients’ 

health condition [32-33], which is also a hotspot in biomedical 

research). And the method we proposed in this paper is 

applicable not only to spectral data assessment, but also many 

related areas. For instance, if we intend to evaluate the stability 

of continuous scanning of a spectrometer, or time characteristic 

of a dynamic sampling instrument, this method may provide 

references.   

It should be noted that this study has only analysed the 

variation of amplitudes because the amplitude of PPG is the 

critical information in DS method, with no consideration of the 

variation in time dimension, such as the periodicity, which can 

be further analysed in other studies. Moreover, the number of 

wavelengths used for calculation should be adjusted according 

to the specific contents of research, for instance, if the data 

quality of pulse oximetry need to be evaluated, it’s sufficient 

for researchers to analyse at only two or three wavelengths 

(depending on the combination of wavelengths). 

Conclusion 

A novel method based on variability analysis to evaluate the 

spectral quality in noninvasive hemoglobin measurement has 

been proposed. Through simulation and actual experiment, its 

feasibility and effectiveness have been proved: a prominent 

positive correlation between stability coefficient and extraction 

accuracy and the contrast between the results of two predictive 

models demonstrate that from different angles. In related 

studies which needs dynamic measurement, this method can be 

applied to assess the spectral quality and screen data before 

establishing calibration model, and the screening criteria can be 

changed to adapt to specific application, because the indicator 

is quantitative. This study has given a new way to improve the 

accuracy of spectral analysis, and provided a new idea for the 

spectral measurements and analysis which demands a stable 

time characteristic. 
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