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Abstract: 9 

In this paper, Chinese bayberry (Myrica Rubra Sieb. Et Zucc.) quality determination method using 10 

electronic nose (e-nose) and non-linear stochastic resonance (SR) technique has been studied. E-nose 11 

responses to bayberry samples stored at 4℃ for 7 days are measured. In order to characterize samples’ 12 

quality, Physical-chemical indexes, such as human sensory evaluation (HSE), texture, color, pH, total 13 

soluble solids (TSS), and reducing sugar content (RSC), are examined. E-nose measurement data is 14 

processed by principal component analysis (PCA), SR and double-layered cascaded series stochastic 15 

resonance (DCSSR) methods. PCA can not totally discriminate all bayberry samples. Bayberry SNR 16 

maximum (SNR-Max) values calculated by SR and DCSSR increase with the increase of storage days. 17 

SNR-Max values successfully discriminate all bayberry samples. Multiple variable regression (MVR) 18 

between physical-chemical indexes (firmness, pH, color, TSS, and RSC) and SR/DCSSR SNR-Max 19 

values have been conducted. Results indicate that SR is more suitable for Chinese bayberry quality 20 

determination than DCSSR. Bayberry quality predicting model is developed based on linear fitting 21 

regression on SR eigen values. Validating experiments results demonstrate that the developed model 22 
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predicts bayberry quality with an accuracy of 95%. The proposed method takes advantages including 1 

easy operation, fast responses, high accuracy, good repeatability, and low cost. 2 

Keywords: Chinese bayberry; quality; electronic nose; stochastic resonance; signal-to-noise ratio 3 

1 Introduction 4 

Chinese bayberry (Myrica Rubra Sieb. Et Zucc.) is one kind of bayberry fruits native to China 5 

with high commercial value. People are attracted by bayberry’s red to purple color, sweet and sour 6 

taste, and nice flavor [1]. However, Chinese bayberry easily suffers from mechanical injury and 7 

microbiological decay due to its harvest season (from June to July). These factors reduce bayberry’s 8 

postharvest life to a great deal [2,3]. Storage conditions, such low temperature (4℃) storage, 9 

bayberry’s beneficial components still decline quickly, and have no more than 5 days’ shelf life [4]. 10 

The intake of stale bayberry usually causes gastrointestinal diseases and does great harm to consumers’ 11 

health [5]. Traditional fruit product quality analysis methods mainly include instrumental analysis, 12 

physical-chemical analysis methods, and human sensory analysis. Instrumental analysis methods, such 13 

as VIS/NIR spectroscopy, gas chromatography-mass spectrometry (GC-MS), and impedance 14 

spectroscopy, are usually utilized for fruit freshness detection under laboratory conditions. However, 15 

these methods are usually time-consuming, and high cost. Moreover, skilled operators are required to 16 

perform the instrumental analytical experiments. These disadvantages limit field applications of these 17 

traditional method. Physical-chemical analysis methods, such as conductivity/pH measurement, can 18 

determine fruit quality according to relative standards. However, these methods need complex 19 

experimental operations. The cost is also relatively high. Human sensory analysis evaluates some food 20 

characteristics, such as color, odor, and flavor. But the evaluating results are short of stability and 21 

Page 2 of 42Analytical Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
tic

al
M

et
ho

ds
A

cc
ep

te
d

M
an

us
cr

ip
t



 

 ３

reproducibility. So there is a strong demand for an effective, accurate, and low cost method for Chinese 1 

bayberry quality rapid determination. 2 

The human nose can distinguish over 10,000 different smells using 350 receptors. Smell 3 

molecules, known as an odorants, interact with the receptors to create an overall responses that is 4 

recognized by the brain [6,7]. E-nose technique develops quickly in recent years [8,9]. Its system 5 

usually consists of an array of several chemical sensors with partial specificity. Appropriate patterns or 6 

fingerprints from known odors are employed to construct a database and train a pattern recognition 7 

system so that unknown odors can subsequently be classified and identified. In the past decade, e-nose 8 

technique has been employed in recognition and quality analysis of various food and agro-products 9 

[9-15]. At the same time, various promising results have been also reported with e-nose for quality 10 

screening of fresh and processed fruit juices [16,17]. 11 

In this paper, a convenient and rapid way for Chinese bayberry quality discrimination by using 12 

e-nose and non-linear dynamic SR was proposed. Bayberry samples are stored at 4℃ for continuous 7 13 

days. E-nose sensor array responses to bayberry samples have been measured. The physical-chemical 14 

indexes including HSE, texture, color, pH, TSS, and RSC, are examined to characterize samples’ 15 

quality. SR and DCSSR methods are used to extract eigen values of e-nose measurement data. 16 

Bayberry quality predicting model is proposed through linear fitting regression of SR eigen values. 17 

2. Materials and methods 18 

2.1 Materials 19 

2.1.1 Samples 20 

Fresh Chinese bayberry samples are purchased from Hangzhou Gouzhuang fruit market. Samples 21 

nearly in the same size, weight, and maturity were selected. All samples were without any ripening 22 
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pretreatment and free of diseases. Upon arrival to the laboratory, the samples have the same weight 1 

(20.0 ± 4.0g) and curvature radius approximately. The samples are placed in non-hermetic box and 2 

stored at 4℃ in a cooler. Each day, 20 bayberries are taken randomly out of the box. 20 samples are 3 

used in e-nose measurement. Firmness, pH, soluble sugar content, color, and reducing sugar content are 4 

respectively examined using 10 samples. The samples are taken randomly. The experiments are 5 

conducted for 7 successive days. Another 70 bayberries are used in model validating experiments and 6 

stored at 4℃. 21 samples are randomly-taken and used for e-nose measurement every day. 7 

2.1.2 Chemicals 8 

NaOH (Tianjin Damao Chemical Reagent Co., Ltd, China), HCl (Quzhou Juhua Chemical 9 

Reagent Co., Ltd, China), H3BO3 (Dongguan Dongjiang Chemical Reagent Co., Ltd, China), MgO 10 

(Beijing Tongguang Chemical Reagent Co., Ltd, China), Methyl red (Tianjin Jizhun Chemical Reagent 11 

Co., Ltd, China), Methylthionine chloride (Shanghai Sanai Chemical Reagent Co., Ltd, China), Ethanol 12 

(Sinopharm Group Chemical Reagent Co., Ltd, China). Deionized water. All chemicals were of 13 

analytically pure grade or better quality. 14 

2.1.3 E-nose system 15 

The bayberry samples were monitored by a self-developed portable e-nose [21-23]. Its structure is 16 

shown in Fig.1(a). It consists of three main parts: data acquisition unit (U1); gas sensor array unit (U2); 17 

power supply unit (U3). The pump is FML201 (Xinweicheng Technology Co., Ltd, Chengdu, China). 18 

The valve is WTA-2K (Takasago Electrical Co., Ltd, Tokyo, Japan). The data acquisition unit is 19 

developed by laboratory. The sensor array unit has 8 metal oxide semiconductor (M.O.S) sensors with 20 

various chemical compositions and thickness to provide selectivity towards different gases. The 21 

selectivity toward volatile compound classes of M.O.S sensors is indicated by the manufacturer: sensor 22 
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S1 (TGS-825, sulfide), sensor S2 (TGS-821, flammable gases), sensor S3 (TGS-826, ammonia gas), 1 

sensor S4 (TGS-822, ethanol, aromatic hydrocarbons), sensor S5 (TGS-842, hydrocarbon component 2 

gas, sensor S6 (TGS-813, methane, propane, butane), sensor S7 (TGS-2610, propane, butane), sensor 3 

S8 (TGS-2201, nitrogen oxides). E-nose has a gas sensor chamber, which contains eight M.O.S gas 4 

sensors (see Fig. 1(b)). The sensor has the gas inlet hole at the hole. The gas sensing membrane is 5 

located within the sensor. The detecting mechanism is displayed in Fig. 1(c). The sensing membrane is 6 

heated by the resistance wire, and VH is the heating voltage. VC is the supplying voltage. VRL is 7 

sampling voltage. So E-nose response is measured as sampling voltage (V). The M.O.S sensors rely on 8 

changes in conductivity induced by the adsorption of molecules in the gas phase and on subsequent 9 

surface reactions. They consist of ceramic substrate coated by M.O.S film, and heated by wire resistor. 10 

Due to the high temperature (250-500℃), the volatiles transferred to the surface of the sensors are 11 

totally combusted to carbon dioxide and water, leading to a change in the resistance. The high 12 

temperature avoids water interference and provides M.O.S fast response and rapid recovery time. 13 

Polytetrafluorethylene (PTFE) material is used to fabricate gas sensor chamber. We design a rounded 14 

separated sensor chamber, and its schematic diagram is shown in Fig. 1(d). We distribute 8 gas sensors 15 

along a circle. The sampling gases are blown from the center of the circle into the separated chamber 16 

for the reaction with the sensors. The distance between the circle center and the chamber entrance is the 17 

same. At the chamber entrance, the foam is placed to disperse the gas flow, which ensures that the flow 18 

influence on the sensor is reduced to the lowest. This method actually reduces the cross-influence and 19 

flow influence on sensors in the chamber. 20 

(The preferred position of Fig.1) 21 

2.2 Methods 22 
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2.2.1 HSE 1 

HSE experiments are conducted according to Table 1. The bayberry samples are evaluated from 2 

the following aspects: (a) Vision observation on bayberry’s color, and skin wetness. (b) Touch 3 

estimation on bayberry’s firmness and resilience by hand. (c) Taste estimation on bayberry. (d) Odor 4 

estimation on bayberry’s smell by human nose [18]. 5 

(The preferred position of Table 1) 6 

The HSE of Chinese bayberry samples is evaluated by 10 experienced panelists (ranged in age 7 

from 28 to 48 years), and voting number is set at k, k∈(1,10) [18]. Bayberry quality is divided into m 8 

levels, and the score of a specific level is set at hj, j∈(1,m). Bayberry attributes are divided into n 9 

elements, and a specific element is set at ui, i∈(1,n). The contributory weight is determined by 10 

pairwise comparison of contribution weight of attributes is set at xi (∑xi=1). If there is a specific 11 

relationship between two objects of hj and ui, the relation set (matrix) of f is calculated as follows: 12 

11 11 1

21 22 2

1 1

/    /     /

/    /     /  

                    

/    /     /

m

m

n n nm

f k f k f k

f k f k f k
F

f k f k f k

=

�

�

� � � �

�

                    (1) 13 

Thus, the overall acceptability of bayberry is calculated by the weight grade method as follows: 14 

      
1 1

n m

i m

fij
Z xi hj

k= =

= •∑ ∑                          (2) 15 

2.2.2 Texture 16 

TA.XT2i Texture Analyzer (Stable Micro Systems, UK) is used to conduct texture measurement. 17 

Flat cylindrical probe p/5 (5mm in diameter) was used. In texture analyzer software setting, TPA mode 18 

was selected for instrument control. Speed in pre-measurement and after-measurement was 3mm/s. 19 
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Measurement speed was 1mm/s. Compression degree was 50%. Residence time interval was 5s. Load 1 

probe type was Auto-0.2g. Data collection rage was 200. 2 

2.2.3 Color 3 

The surface fresh colour of jumbo squid is measured using a chromatic meter (TES-135, Taiwan 4 

Taishi Electronic Technology Co., Ltd.) and reported as L*, a*, and b* as CIELab coordinates. 5 

Parameters of L*, a*, and b* indicate the lightness (the scale range of 0-100 points from black to 6 

white), red (+) or green (-), and yellow (+) or blue (-), respectively. Because of differences from the 7 

data measured in different positions of a specific sample, we cut meat nearly in the same area to detect. 8 

Every group has three coordinate samples and each sample’s color detection was repeated eight times. 9 

Calculate the mean value and standard deviation as color value. 10 

Changes in the external color are monitored by measuring L*, a*, and b*. According to Carrno 11 

group’s method, the hue angle (H ) and the chroma (C ) are defined in this research. 12 

* *arctan( / )H b a= , and * 2 * 2[( ) ( ) ]C a b= +  [19]. Hue angle can be distributed in the four 13 

quadrants of the * *a b plane, and chroma will be higher the further it is from the origin of the 14 

coordinates. We use the color index for red grapes (CIRG) proposed by Carrno et al to characterize 15 

color changes of bayberries. *(180 ) / ( )CIRG H L C= − + . 16 

2.2.4 pH 17 

In pH measurement, 10g bayberry is smashed by a muller. A little purified water is added into the 18 

smashed bayberry to fully dissolve chemical substances. Bayberry sample and water were poured into 19 

conical flask. The muller is washed by purified water, and the washing liquid was also poured into 20 

conical flask. The mixture in the conical flask was finally diluted to 100 mL, and left to stand for a 21 

while. Then the mixture was filtered and measured by PHS-3C pH meter. 22 
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2.2.5 TSS 1 

Bayberry is ground in a mortar and squeezed with a hand press for juice. The juice was used for 2 

TSS measurement. The measurement was conducted utilizing refractometer (WZ113/ATC, China) at 3 

25℃ temperature. 4 

2.2.6 RSC 5 

RSC index is examined according to China standard protocols GB/T 5009.7-2008: Determination 6 

of reducing sugar in foods [20]. 7 

2.3 E-nose measurement 8 

Each sample is placed into a 50mL air-tight vial, and sealed with sealing membrane. The vials are 9 

equilibrated for 30 min at 20℃. Turn on e-nose power, then start washing pump and valve 2. The 10 

sampling pump and valve 1 remain off. The air is filtered by active carbon to obtain zero gas. Sensor 11 

array are recovered by zero gas. When sensors’ responses return to the baseline, washing pump and 12 

valve 2 are shut off. Then sampling pump and valve 1 are turned on. The gases in sample’s headspace 13 

are pumped into gas sensor chamber by sampling pump at a flux speed of 400 mL/min for 40s. E-nose 14 

measurement interval is 0.05 s. E-nose real-time responses to bayberry samples are recorded. When 15 

measurement finishes, gas sensors are recovered by zero gas at a flux speed of 1000 mL/min for 600s, 16 

waiting for the next measurement. 17 

2.4 Data treatment 18 

2.4.1 PCA 19 

PCA is one of the most commonly used methods in E-nose data processing. It is a method to 20 

analysis some principal components (PCs) from experimental data. It can transform some related 21 

variates into unrelated variates. In the mathematical transformation, we should make sure the total 22 
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variance of all variates remains unchanged, and the variate that has maximum variance becomes the 1 

first variate (or the first PC). Similarly, the variate which variance just behind the maximum becomes 2 

the second variate (or the second PC), and make sure it has no relativity with the first variate and other 3 

variates. And by this analogy, the number of the variates is same as PCs, and there are no relativity 4 

between all variates. So, PCA method is a useful tool for reduced data. 5 

2.4.2 SR 6 

SR was proposed by Italian scientist Benzi to give an explanation for Earth climate periodical 7 

changes [24-26]. SR model can be described as follows: 8 

( )
( ) ( )

dx dV x
MI t C t

dt dx
ξ= − + +                  (3) 9 

Where x is the position of the Brownian particle, t is the time, M and C are adjustable parameters, 10 

( ) ( ) ( )I t S t N t= + is an input signal ( )S t with an intrinsic noise ( )N t , ( )tξ is the external noise, 11 

and ( )V x  is the simplest double-well potential with the constants a and b . 12 

2 41 1
( )

2 4
V x ax bx= − +                         (4) 13 

Eq. (3) can be transformed as 14 

3 ( ) ( )
dx

ax bx MI t C t
dt

ξ= − + +                  (5) 15 

 The minima of ( )V x are located at
mx± , where 1/2( / )mx a b= . A potential barrier separates the 16 

minima with the height given by 2 / 4U a b∆ = . The barrier top is located at 0bx = . When three 17 

elements of SR interact coherently, the potential barrier can be reduced and the Brownian particle may 18 

surmount the energy barrier and enter another potential well. The intensity of signals will increase, 19 

which makes it possible that the weak signal can be detected from noise background. 20 
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 Suppose the input signal is ( ) sin(2 )I t A ftπ ϕ= + , where A is signal intensity, f is signal 1 

frequency. D is external noise intensity. SNR is the common quantifier for SR and it can be 2 

approximately described as: 3 

2 /2 ( / ) U DSNR U A D e−∆= ∆                          (6) 4 

 Noise intensity is a parameter in SR model. This model is used for e-nose data analysis. 5 

( ) sin(2 ) ( ) ( )I t A ft EN t N tπ ϕ= + + + denotes an input matrix. It has a sinusoid 6 

signal sin(2 )A ftπ ϕ+ , electronic nose response data ( )EN t , and intrinsic noise ( )N t . SNR 7 

between the output and input is calculated. This model has been successfully used in food analytical 8 

applications [21,22]. 9 

2.4.3 DCSSR 10 

Under adiabatic elimination condition, supposing signal amplitude is much smaller (A<<1), the 11 

Brownian particle is in one of potential wells because no enough driving energy is provided by the 12 

bistable system to drive the particle to jump from one potential well to another one in the absence of 13 

external noise. The signal period is longer than some characteristic intrawell relaxation time for the 14 

system. The existence of periodic forcing inclines the potential function, and forms the Brownian 15 

particle’s transfer from one potential well to another one. So the potential function ( )V x  changes 16 

with the input signal and becomes 17 

2 41 1
( , ) sin(2 ) ( ) ( )

2 4
V x t ax bx Ax ft EN t x N t xπ ϕ= − + + + + +    (7) 18 

Equation (7) indicates the potential function gets time dependence. Equation (8) displays the first-order 19 

and second-order derivation of ( , )V x t  with respect to x , and let the equations equal to zero: 20 

3

2 2 2

( , ) / sin(2 ) ( ) ( ) 0

( , ) / 3 0

V x t x ax bx A ft EN t N t

V x t x a bx

π ϕ∂ ∂ = − + + + + + =

∂ ∂ = − + =

  (8) 21 
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Setting noise intensity 0D = and sin(2 ) 1ftπ ϕ+ = , the critical amplitude value of the periodic 1 

signal can be obtained: 34 / 27cA a b= . If
cA A< , the particle hovers around its original stable 2 

state and can not jump from one potential well to another one. However, the particle can jump from 3 

one potential well to another one with the help of external noise even if cA A< , which means the 4 

occurrence of SR phenomenon. We use fourth-order Runge-Kutta numerical algorithm to solve 5 

Equation (3): 6 

1 1 2 3 4
1 [ (2 2) (2 2) ]6n nx x k k k k+ = + + − + + + , 0,1, , 1n N= ⋅⋅⋅ −   (9) 7 

3
1 ( )n n nk h ax bx sn= − +                                       (10) 8 

31 1
2 [ ( ) ( ) ]

2 2n n n

k k
k h a x b x sn= + − + +                          (11) 9 

      32
3 1 2 1

2 1 2 2
[ ( ) ( ) ]

2 2 2n n n

k
k h a x b x k k sn +

− −
= + − + + +       (12) 10 

      3
4 3 2 3 1

2 2 2
[ ( ) ( ) ]

2 2n n nk h a x k b x k k sn +

+
= + − − + +          (13) 11 

nx is the nth numerical value of ( )x t , and nsn is the nth numerical value of ( )nS t . h is the 12 

computation step. Much progress has been achieved on the applications of SR in the past few decades. 13 

Single SR system connected in series forms the cascaded SR to obtain DCSSR (see Fig. S1 (b)). 14 

According to Equation (3), the relative Langevin equations of the cascaded bistable systems can be 15 

respectively written as: 16 

     

3
1 1 1

3
2 2 2 1

3
1

/ [ sin(2 ) ( ) ( )]

/ ( )

/ ( )n n n n

dx dt ax bx M A ft EN t N t

dx dt ax bx x t

dx dt ax bx x t

π ϕ

−

 = − + + + +


= − +

⋅⋅⋅
 = − +

      (14) 17 

In practical engineering measurement, measured data usually consists of signal and intrinsic noise. 18 

If an aimed weak signal is submerged in strong noise, we are not able to detect it. With the help of SR, 19 
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the energy of intrinsic noise is lowered, and the embedded weak signal is amplified effectively so that 1 

the signal can be caught for measurement characterization. In some special measurement, the weak 2 

signal is so weak that the aimed signals are still embedded in the noise. DCSSR is designed to solve 3 

this problem. For a DCSSR system, several bistable systems are in serial. If the measurement signals 4 

are still embedded in the noise, the output of the former bistable system is taken as the latter bistable 5 

system. If the aimed signals are successfully obtained, the current number of bistable systems is the 6 

suitable for the information measurement. The schematic diagram of double-layered cascaded series 7 

stochastic resonance is showed as Fig. 1(e). 8 

2.5 Statistical analysis 9 

 HSE and physical-chemical data were subjected to one-way analysis of variance (ANOVA). 10 

Mean separations were performed by Tukey’s multiple range test (SPSS version 17.0). Differences at P 11 

< 0.05 were considered significant. 12 

3 Results and discussion 13 

3.1 HSE results 14 

Sensory attributes of Chinese bayberry are divided into 5 elements, whose preference levels are 15 

scored from 1 to 5 (see Table 1). Here, a sensory score of 3 is set as the minimal value for acceptable 16 

bayberry quality. Changes in preference scores of Chinese bayberry stored at 4℃ are displayed in Fig. 17 

2. The initiative preference score is 5 in day 0, and it presents a decrease trend during storage (P < 18 

0.05). After 4 days of storage, bayberry’s preference score is 2.6, which is less than 3 and therefore 19 

considered as unacceptable. HSE results demonstrate that the quality of Chinese bayberry decreases 20 

sharply during cold storage. Changes in sensory attributes of bayberry can be attributed to biochemical 21 

reactions occurred in fruit tissues under the effect of relevant enzymes. 22 
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(The preferred position of Fig. 2) 1 

3.2 Texture measurement results 2 

Texture measurement results of Chinese bayberry stored at 4℃ are displayed in Fig. 3. As shown 3 

in Fig. 3(a), bayberry firmness is 240 g in day 0 and during the following 6 days of storage, it decreases 4 

swiftly. At the end of storage, the firmness value approximately decreases to 125 g, nearly losing 48% 5 

with respective to the initial firmness value. Changes in resilience and cohesiveness of Chinese 6 

bayberry during storage are similar (Fig. 3(b) and (c)). The initiative resilience and cohesiveness of 7 

bayberry are 1.43 and 0.187, respectively. During the following storage days, bayberries suffer sharp 8 

decreases in resilience and cohesiveness, and it decreases to 0.6 for resilience and 0.133 for 9 

cohesiveness after 6 days. Unlike other fruit, Chinese bayberries have no firm peel and thereby are 10 

easily susceptible to losing moisture, which to some extent contributes to the texture decay. On the 11 

other hand, the degradation of cell-wall polysaccharides and other materials due to the effect of 12 

pecinase and other catalysis enzymes largely accelerates this process [27,28]. Similar changes in 13 

texture profiles are also reported in plum [29] and kiwifruit [30]. 14 

(The preferred position of Fig. 3) 15 

3.3 Color measurement results 16 

It is widely accepted that the most important parameter in determining fruit and vegetable 17 

acceptability by consumers is color. Color indexes including L*, a*, and b* are determined and then H, 18 

C, and CIRG are calculated during cold storage for 6 days, as displayed in Table 2. The CIRG value of 19 

bayberry is 8.10 in day 0, with 12.63 of L*, -0.86 of H, and 9.73 of C. After 1 day of storage, 20 

significant changes in H and C are presented (P < 0.05). But in the following 5 days, both of the two 21 

values fluctuate within a small range. By contrast, significant differences in L* and CIRG are presented 22 
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in bayberries nearly for the whole storage period (P < 0.05). The L* and CIRG of bayberry are 24.99 1 

and 3.90 in day 6. Similar changes in L*, H, and C are also reported by Ali et al. in papaya [27]. 2 

Changes in color suggest that Chinese bayberries get ripe with the increase of storage time. These 3 

results are supported by Zheng et al. [31] and agree well with the HSE results. 4 

(The preferred position of Table 2) 5 

3.4 pH measurement results 6 

Acidity is an indispensible chemical index that reflects the taste of fruit. Changes in pH of 7 

Chinese bayberry during cold storage are displayed in Fig. 4. Bayberries show a pH value of about 2.30 8 

in day 0 and they have a minor increase in pH with the first 2 days. Afterwards, the pH values of 9 

bayberry increase rapidly, and significant differences are presented (P < 0.05). Bayberry’s pH value is 10 

recorded as 2.752 after 6 days of storage. The main organic acids existing in Chinese bayberries are 11 

malic acid and citric acid [32]. During postharvest storage, living cells still conduct normal respiratory 12 

metabolism by consuming organic acids and other materials [29,33], which is the main cause for the 13 

increase in pH. On the other hand, oxidation resulted from oxygen also contributes to this change. This 14 

finding is in consistent with the report of Zheng et al. [31]. 15 

(The preferred position of Fig. 4) 16 

3.5 TSS measurement results 17 

TSS is one of the most important chemical indexes utilized to evaluate internal quality of fruit.  18 

Fig. 5 shows the variation of TSS of Chinese bayberry during 6 days of cold storage. The TSS of 19 

Chinese bayberry is 8.8% in day 0 and a minor increase in TSS is observed after 1 day of storage. In 20 

the following 5 days, the TSS in bayberries decreases significantly (P < 0.05). The TSS retention is 21 

merely 6.6% at the end of storage period. The decrease in TSS of Chinese bayberry obtained in this 22 
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research agrees well with previous reports [31,33]. This change may be explained by the 1 

decomposition of relevant components due to strong respiratory metabolism. Although the 2 

solubilization of cell-wall polyuronides and hemicelluloses can improve TSS content [34], this effect is 3 

relatively weak and therefore cannot make up for the considerable loss of TSS. Similar findings are 4 

also reported by Wang et al. in apricot [35]. 5 

(The preferred position of Fig. 5) 6 

3.6 RSC examination results 7 

RSC is an essential indicator that has been widely used for determining the reducing capacity of 8 

fruit. Changes in RSC of Chinese bayberry during cold storage for 6 days are displayed in Fig. 6. The 9 

RSC value of bayberry is 2.31 g/100g in day 0, followed by a significant increase with the first 3 days 10 

(P < 0.05). Afterwards, the RSC of bayberries presents a decrease trend as the storage time advanced, 11 

and the final RSC value is recorded as 2.82 g/100g. A possible explanation for the increase in RSC in 12 

the early stage lies in the degradation of polysaccharides due to enzymatic catalysis [33]. However, the 13 

occurrence of respiratory consumption and oxidation decomposition becomes dominant when fruit 14 

enters into late maturity period and thereby, induces the significant decline of RSC [31,33]. 15 

(The preferred position of Fig. 6) 16 

3.7 E-nose measurement results and bayberry quality forecasting model 17 

3.7.1 E-nose original responses and PCA results 18 

In order to evaluate the time drift of the sensors included in the e-nose, e-nose measurements of 19 

blank samples are conducted. Blank sample is the zero gas. The air is filtered by active carbon to obtain 20 

zero gas. Every day, e-nose responses to blank sample are measured to evaluate the sensors’ time drift. 21 

The measurements last for eight days. Fig. 7(a) displays the sensors’ responses to blank sample as 22 
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function of measurement time on day0. The results indicate that the responses of sensors to zero gas are 1 

stable during measurement. Fig. 7(b) displays the e-nose sensors’ saturated values to blank sample as 2 

function storage time from day0 to day8. Each day, the standard deviations of eight sensors are small 3 

enough. For each sensor, the saturated values are almost the same. Results indicate that the sensors’ 4 

time drift during nine days’ measurement has no influence to e-nose detection. 5 

In order to evaluate the sample drift of sensors, e-nose measurements on samples stored for 6 

different storage time from day0 to day8 have been conducted. Fig. 7(c) shows the maximal errors of 7 

sensor responses during measurement from day0 to day8. Each day, the maximal errors of eight sensors 8 

are tolerable relative to the absolute values of sensors’ responses. For different sensors, the maximal 9 

errors are all less than 0.5%, which indicate that the sample drift can be neglected in measurement. 10 

So, these two groups’ experiments demonstrate that the e-nose instrument was stable during the 11 

period or perform such measurements. 12 

E-nose original responses to bayberry samples are displayed in Fig. 7(d) in day0. The volatile 13 

gases existing in the headspace of samples are inhaled into e-nose gas chamber and sensed by the 14 

functional materials settled in gas sensors. The specific absorption of function materials for specific gas 15 

species induces materials’ changes in their electrical characteristics. So signals induced by electrical 16 

changes can be used to characterize gas concentrations. Sensor S1 presents the maximal responses, 17 

which indicates that there is amount of volatile gas containing sulfide in sample headspace. Sensor S7, 18 

S3, S6, and S5 also have sufficient responses, which suggest that there are some alkane, ammonia, 19 

hydrocarbon, and other reducing gases within the sample headspace. Sensor S4, S8, and S2 present 20 

weak responses, suggesting that there are little ethanol, nitrogen oxides, or flammable gases in the 21 

sample headspace. Eight gas sensors have different responses due to their different sensing abilities for 22 
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specific gas species. The M.O.S sensors rely on changes in conductivity induced by the adsorption of 1 

molecules in the gas phase and on subsequent surface reactions. There is no equivalent circuit or 2 

impedance spectrum in e-nose system. So there is no Nyquist plot in this study [6,8,9]. So e-nose 3 

sensor array forms different responding pattern for bayberries under different storage days.  4 

All sensors’ initiative responses are close to zero. Sensors’ responses gradually increase and 5 

finally reach their stable values. Sensor S1 presents the maximal stable value (about 1.7V). S7’s stable 6 

value is about 1.3V. S3, S6, and S5 are similar, and their stable values are much lower than S1 and S7’s. 7 

While the rest three sensors (S4, S8, and S2) present weak responses to samples. 8 

PCA analysis results of bayberries under different storage days at 4℃ are displayed in Fig. 7(e). 9 

The first principal components (PC1) and the second principal components (PC2) capture 92.11% of 10 

data variance. The first two principal components of bayberries fluctuate during storage. Although 11 

bayberries stored for 0, 3, and 4 days have obvious discrimination borders, those stored for 1, 2, 5, and 12 

6 days get together and cannot be well discriminated from each other. Therefore, bayberries stored 13 

under different storage days cannot be qualitatively or quantitatively discriminated by the 14 

two-dimensional PCA. 15 

(The preferred position of Fig. 7) 16 

3.7.2 SR and DCSSR SNR spectrum 17 

Bayberry e-nose measurement data SNR spectrum calculated by SR as function of external noise 18 

intensity is displayed in Fig. 8(a). Derivative vales arise before the formation of eigen peaks for 19 

bayberry samples under different storage days. After that, SNR value increases gradually with the 20 

increase of white noise intensity. Eigen peak appears at noise intensity of 208. The SNR-Max values 21 
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range between -65 and -50 dB. SNR-Max values increase with the increase of storage time. Bayberries 1 

under different storage days can be discriminated using SNR-Max values. 2 

 Bayberry e-nose measurement data SNR spectrum calculated by DCSSR method as function of 3 

storage time is displayed in Fig. 8(b). Obvious derivative vales appear at noise intensity of 83. Then 4 

SNR value increases gradually with the increase of noise intensity. Eigen peaks appear at noise 5 

intensity of 134. The SNR-Max values range between -56 and -45 dB. SNR eigen values increase with 6 

the increase of storage days. Bayberries of different quality can be discriminated according to 7 

SNR-Max values. 8 

(The preferred position of Fig. 8) 9 

3.7.3 MVR between physical-chemical indexes and SR/DCSSR eigen values 10 

Quality is a general description for fruits. The physical-chemical indexes including firmness, pH, 11 

CIRG, TSS, and RSC have significant changes during storage. These indexes reflect internal quality of 12 

Chinese bayberries, while flavor is an external quality signal. If the relationship between bayberry 13 

internal quality and e-nose responses can be quantitatively modeled, it will provide a novel strategy for 14 

bayberry quality prediction. MVR results between physical-chemical indexes and SR SNR-Max values 15 

are displayed as Equation (15) and Table 3. 9992.02 =R demonstrates that SR eigen values have 16 

good linearity with physical-chemical indexes. P= 0.01789 <0.05 and F=1800.95668, which indicate 17 

that SR SNR-Max values present significant linearity relation with physical-chemical indexes. SR can 18 

be used to characterize bayberries’ quality. 19 

RSCTSSpH

CIRGFirmnessSR

×−×−×−

×+×−=

053.1298790.6805706.19

6226.13134.01595.91
 ( 9992.02 =R )   (15) 20 

(The preferred position of Table 3) 21 
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MVR results between physical-chemical indexes and DCSSR SNR-Max values are displayed as 1 

Equation (16) and Table 4. 9944.02 =R demonstrates that DCSSR eigen values have better linearity 2 

with bayberry quality indexes. P= 0.12819 >0.05 and F=34.67745, which show that DCSSR eigen 3 

values have no significant linearity relation with physical-chemical indexes. DCSSR SNR-Max values 4 

are not suitable for bayberry quality characterization. 5 

RSCTSSpH

CIRGFirmnessDCSSR

×−×−×+

×+×−−=

7910.1549790.1810476.0

1550.00461.06630.23
 ( 9944.02 =R )  (16) 6 

(The preferred position of Table 4) 7 

In section 2.5.3, we discuss DCSSR model. If two bistable SR systems are cascaded in serial, the 8 

intrinsic noise reducing efficiency can be improved to some extent. However, in Chinese bayberry 9 

quality analysis occasions, SR SNR spectrum eigen values have more significant linearity relation with 10 

fruit’s physical-chemical indexes than DCSSR SNR eigen values. A possible explanation lies in 11 

bayberry quality feature information loss induced by DCSSR noise reduction procedure. When e-nose 12 

measurement data passes through 1st SR system, most of intrinsic noise has been restrained, and its 13 

energy has been transferred into feature information, which effectively amplifies the feature 14 

information. When the output signal of 1st SR system passes through 2nd SR system, the remained weak 15 

intrinsic noise is further reduced, and its energy is also transferred into feature information. However, 16 

partial feature information is also restrained by 2nd SR system. Finally, the effectiveness of 2nd SR 17 

system for intrinsic noise reduction relies on the dynamic balance between intrinsic noise reduction and 18 

partial feature information inhibition. If the former procedure holds superiority, 2nd SR presents its 19 

advantage in noise reduction. If the latter procedure holds superiority, 2nd SR presents its disadvantage. 20 

In this research, it is obvious that the latter procedure is on the ascendant in Chinese bayberry quality 21 

analysis. So SR is more suitable for bayberry quality analysis. 22 
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3.7.4 Chinese bayberry quality forecasting model 1 

Fig. 9 shows the individual SNR-Max value of samples under different storage time. Bayberry 2 

quality predicting model is established by linear fitting regression of SNR-Max values. The fitting 3 

results are displayed as Eq. (17), and the regression coefficients R= 0.98644. After one-step’s 4 

transform, Eq. (18) is used as bayberry quality forecasting model. The input is e-nose measurement 5 

data SR processed SNR-Max values, and the output is the bayberries’ storage time. According to 6 

Equation (18) and physical-chemical examination results, the approximate quality of the measured 7 

samples can be obtained. This method is suitable for most of samples following the bayberry quality 8 

changing discipline. It can not be used as quality forecasting for special ones. 9 

-64.27206 1.73297y x= + , R= 0.98644                (17) 10 

64.27206
1.73297bayberry

SNRMax
Quality

+
=                 (18) 11 

(The preferred position of Fig. 9) 12 

3.7.5 Validation experiment results 13 

Validating experiments are carried out to examine forecasting accuracy of the developed model. 14 

Eq. (18) is used to examine the freshness of bayberries. Another 70 samples are prepared, and 21 15 

samples are randomly taken out for e-nose measurement. The results are displayed in Table. 5. The 16 

forecasting accuracy of this model is 95%. Validating experiment results demonstrate that the 17 

developed predicting model detects the samples’ quality with good accuracy and repeatability. 18 

(The preferred position of Table 5) 19 

4. Conclusions 20 

Chinese bayberry (Myrica Rubra Sieb. Et Zucc.) quality rapid determination method using e-nose 21 

and non-linear SR technique has been investigated in this paper. Bayberry samples are stored at 4℃ 22 
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temperature for continuous 7 days. E-nose responses to bayberries stored at 4℃ for different storage 1 

days are measured. Meanwhile, some physical-chemical indexes including HSE, texture, color, pH, 2 

TSS, and RSC, are examined to characterize samples’ quality. E-nose measurement data is processed 3 

by PCA, SR and DCSSR methods. PCA only gives a qualitative discrimination for bayberry samples. 4 

SNR spectrum calculated by SR and DCSSR discriminates samples successfully. SNR eigen peak 5 

values increase with the increase of storage days. MVR between physical-chemical indexes (firmness, 6 

pH, CIRG, TSS, and RSC) and SR/DCSSR output SNR-Max values have been conducted. Regression 7 

results indicate that SR eigen values have more significant relation with physical-chemical indexes. SR 8 

is more suitable for Chinese bayberry quality characterization than DCSSR. Bayberry quality 9 

predicting model 
64.27206

1.73297bayberry

SNRMax
Quality

+
=  (R=0.98644) is developed via linear 10 

fitting regression on SR SNR-Max values. Validating experiments results demonstrate that the 11 

developed model presents a predicting accuracy of 95% for Chinese bayberry quality. 12 
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Collected Table and Figure captions in sequence: 1 
 2 
Table 1 HSE scheme for evaluating the Chinese bayberry during storage 3 
 4 

Table 2 Color measurement and CIRG calculation of Chinese bayberries during storage at 4 ℃a,b 5 

 6 

Table 3 Multiple variable regression between SR eigen values and physical-chemical indexes (F= 7 

246.9722, P=0.0483, regression of SS (sum of squares) =397.2905, regression of MS (mean square) 8 

=79.4581, residual of SS= residual of MS=0.3217) 9 

 10 

Table 4 Multiple variable regression between DCSSR eigen values and physical-chemical indexes (F= 11 

35.6078, P=0.1265, regression of SS (sum of squares) =27.8097, regression of MS (mean square) 12 

=5.5619, residual of SS= residual of MS=0.1562) 13 

 14 
Table 5 Bayberry quality predicting results (√ right; × wrong; / not calculated) 15 
 16 
Fig. 1 Schematic diagram of detecting system: (a) e-nose; (b) M.O.S gas sensor; (c) M.O.S gas sensor 17 
detecting mechanism; (d) e-nose chamber design; (e) DCSSR 18 

Fig. 2 HSE results. Each data point is the mean of five replicates. Vertical bars represent standard 19 

deviation of means. Different letters on the same sampling day indicate significances (p < 0.05). 20 

Fig. 3 Texture measurement results: (a) firmness; (b) resilience; (c) cohesiveness. Each data point is the 21 

mean of five replicates. Vertical bars represent standard deviation of means. Different letters on the 22 

same sampling day indicate significances (p < 0.05). 23 

Fig. 4 pH measurement results. Each data point is the mean of five replicates. Vertical bars represent 24 

standard deviation of means. Different letters on the same sampling day indicate significances (p < 25 

0.05). 26 

Fig. 5 TSS measurement results during storage. Each data point is the mean of five replicates. Vertical 27 

bars represent standard deviation of means. Different letters on the same sampling day indicate 28 

significances (p < 0.05). 29 

Page 27 of 42 Analytical Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
tic

al
M

et
ho

ds
A

cc
ep

te
d

M
an

us
cr

ip
t



 

 ２８ 

Fig. 6 Reducing sugar measurement results. Each data point is the mean of five replicates. Vertical bars 1 

represent standard deviation of means. Different letters on the same sampling day indicate significances 2 

(p < 0.05). 3 

Fig. 7 E-nose original responses and PCA results: (a) e-nose to blank samples; (b) e-nose saturated 4 

values to blank sample; (c) e-nose sensor array saturated value to samples; (d) e-nose original 5 

responses; (e) e-nose PCA results. 6 

Fig. 8 SNR spectrum calculated by (a) SR and (b) DCSSR respectively. 7 

Fig. 9 Chinese bayberry quality predicting model using SR SNR-Max values. 8 
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Table 1 HSE scheme for evaluating the Chinese bayberry during storage 1 

Attributes 
Attribute degree 

5 4 3 2 1 

Color Red Slight purple Purple Dark purple Purple brown 

Skin 

wetness 

Very dry Dry Slight wet Wet Very wet 

Touch Very hard Hard Slight soft Soft Very soft 

Taste Delicious No off-flavor Slight off-flavor Off-flavor Strong off-flavor 

Odor Fruity Silight fruity Slight vinosity Vinosity Strong vinosity 

Maturation Strong 

crudeness 

Crudeness Slight maturation Maturation Strong maturation 

 2 
 3 
 4 
 5 
 6 
 7 
 8 

Table 2 9 

Storage time (d) *L  H  C  CIRG  

0 12.63±0.28 a -0.86±0.41 a 9.73±0.70 a 8.10±0.32 d 

1 16.17±0.16 b 0.18±0.03 c 23.25±1.30 b 4.57±0.15 c 

2 17.35±0.43 c 0.18±0.02 bc 22.61±2.74 b 4.51±0.26 c 

3 19.39±0.25 d 0.25±0.01 d 23.60±3.36 b 4.20±0.33 ab 

4 20.33±0.13 e 0.14±0.03 b 22.49±1.88 b 4.21±0.19 b 

5 22.00±0.67 f 0.12±0.03 b 20.86±1.46 b 4.20±0.13 b 

6 24.99±0.38 g 0.16±0.10 bc 21.20±1.56 b 3.90±0.11 a 

a Mean of five replications ± standard deviation. 10 
b Means in same row with different letters are significantly different (p＜0.05). 11 
 12 
 13 
 14 
 15 
 16 
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 1 
 2 
 3 

Table 3 4 

Index Value Standard error T Stat P 

Y-Intercept 91.1595 48.8990 1.8642 0.3134 

Firmness -0.3134 0.0739 -4.2422 0.1474 

CIRG  1.6226 0.8105 2.0020 0.2949 

pH -19.5706 12.4436 -1.5728 0.3605 

TSS -680.8790 153.9114 -4.4238 0.1415 

RSC -129.0530 70.5743 -1.8286 0.3186 

 5 

 6 

 7 

Table 4 8 

Index Value Standard error T Stat P 

Y-Intercept -23.6630 34.0718 -0.6945 0.6136 

Firmness -0.0461 0.0515 -0.8957 0.5350 

CIRG 0.1550 0.5647 0.2744 0.8295 

pH 0.0476 8.6704 0.0055 0.9965 

TSS -181.979 107.2423 -1.6969 0.3390 

RSC -154.7910 49.1747 -3.1478 0.1958 

 9 
 10 
 11 
 12 
 13 
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Table 5 Bayberry quality predicting results (√ right; X wrong; / not calculated) 1 

Sample No. SNR-Max Predicting value Storage days Error (%) Results 

evad-1 -62.5893 0.971 1 2.9 √ 

evad-2 -55.2364 5.214 5 4.28 √ 

evad-3 -59.1095 2.979 3 0.7% √ 

evad-4 -64.0554 0.125 0 / X 

evad-5 -60.9673 1.907 2 4.65 √ 

evad-6 -53.6368 6.137 6 2.28 √ 

evad-7 -57.16 4.104 4 2.6 √ 

evad-8 -62.4576 1.047 1 4.7 √ 

evad- 9 -59.2516 2.897 3 3.43 √ 

evad-10 -55.2121 5.228 5 4.56 √ 

evad-11 -54.2798 5.766 6 3.9 √ 

evad-12 -58.8843 3.109 3 3.63 √ 

evad-13 -60.7056 2.058 2 2.9 √ 

evad-14 -64.2495 0.013 0 / √ 

evad-15 -54.1671 5.831 6 2.82 √ 

evad-16 -55.9555 4.799 5 4.02 √ 

evad-17 -58.8739 3.115 3 3.83 √ 

evad-18 -57.6417 3.826 4 4,35 √ 

evad-19 -53.3925 6.278 6 4.63 √ 

evad-20 -55.2883 5.184 5 3.68 √ 

evad-21 -58.8496 3.129 3 4.3 √ 

 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
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 20 
 21 
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Fig. 1(a) 2 
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Fig. 1(b) 6 
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Fig. 1(c) 9 
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Fig. 6 4 
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Fig. 7(d) 4 
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Bayberry quality predicting model 
64.27206

1.73297
bayberry

SNRMax
Quality

+
=  (R=0.98644) is 

developed via linear fitting regression on SR SNR-Max values. Validating experiments results 

demonstrate that the developed model presents a predicting accuracy of 95% for Chinese bayberry 

quality. 
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