
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

Analytical
 Methods

www.rsc.org/methods

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


 1 

A novel approach to discriminate Lycium barbarum 

from Zhongning area using FT-IR spectroscopy and 

chemometrics 

Yuan Gao, Xiuzhu Yu *, Lirong Xu, Ning Wang, Rui Zhang 

College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road Yangling, 

712100, Shaanxi, P. R. China 

*Corresponding author. Tel.: +86-29-87092206; fax: +86-29-87092486. E-mail address: 

xiuzhuyu1004@hotmail.com. 

Abstract:  An increasing number of fake and inferior Lycium barbarum fruits from Zhongning 

production area appear in the market due to large demand of consumers. Present study was focused on 

the classification and identification of Zhongning Lycium barbarum (ZNL) from different production 

areas using Fourier transform infrared (FT-IR) spectroscopy coupled with chemometrics. Results 

revealed that the spectral region between 1909-1311 cm-1 was found to be feasible for both 

classification and identification of ZNL. FT-IR in combination with discriminant analysis (DA) and soft 

independent modeling of class analogy were used for classification and identification of ZNL among 

different Lycium production areas in China, and FT-IR coupled with DA can classify and identify ZNL 

from the other production areas successfully. The recognition rates of the calibration and validation sets 

were 94.0 % and 100 %, respectively. In conclusion, the proposed method is a useful tool to identify 

ZNL among different Lycium production areas in China. 

Introduction 1 

Lycium barbarum L., known as Chinese wolfberry or Goji, is a 2 

kind of multi-branched shrub that belongs to Solanaceae. Its 3 

chemical constituents, which are commonly used in herbal 4 

medicine and tonic applications, have been extensively studied 5 

and found to contain polysaccharide-protein, polysaccharides, 6 

flavonoids, vitamins and zeaxanthin1-4. Therefore, L. barbarum 7 

has numerous biological activities for potential pharmaceutical 8 

interest, including immune-regulatory, antitumor, anti-fatigue, 9 

and antioxidant properties; it also reduces neuronal damage 10 

and blood-retinal barrier disruption5-8. Geographical origin is 11 

one of the most important quality parameters for many foods, 12 

because climate, soil, and cultivation methods cause 13 

differences in the chemical composition of plants9. In China, 14 

the most popular Lycium ecotype currently growing is in 15 

Zhongning County, Ningxia Hui Autonomous Region, China. 16 

Zhongning Lycium barbarum (ZNL) with its unique geography 17 

and suitable climate features, always produces high quality. 18 

The main features of Lycium are its large fruit size, nice color 19 

and high contents of polysaccharide, flavonoid, and trace 20 

elements, resulting in its high price in traditional medicine and 21 

international markets. Moreover, given the aforementioned 22 

features, ZNL is attracting increasing attention, which leads to 23 

its great need in the field of pharmacy and functional foods. At 24 

present, with the increasing demand for Lycium, the ZNL 25 

market is saturated with fake and inferior Lycium, and the 26 

specific differential detection method of Lycium is rarely 27 

reported. Therefore, simple and efficient methods to meet the 28 

demand are of urgent need. 29 

Fourier transform infrared (FT-IR) spectroscopy 30 
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 2 

combined with chemometrics has been widely used in many 31 

scientific studies. It is a direct, reliable, and fast method that 32 

makes it possible to simultaneously obtain specific information 33 

about different parameters, mainly in the 3000–400 cm−1 34 

region, because bands are associated with the vibrations of 35 

functional groups of the molecules10-12. The associated bands 36 

of proteins, fats, lactose, and lactic acid are well known and 37 

have been described in milk and cheese13-16. Currently, in the 38 

field of Lycium classification, different Lycium species are 39 

usually distinguished through micro-section, observation, and 40 

analysis by professionals. Such methods are highly subjective 41 

and undeterministic. Some works used FT-IR, second 42 

derivative IR spectra and 2D correlation infrared spectroscopy 43 

for the distinction of eight Lycium species and obtained 44 

acceptable results17-18. The discrimination of Goji’s 45 

geographical origin through non-targeted liquid to quadruple 46 

time-of-flight mass spectrometry also obtained good results19. 47 

However, such methods had some disadvantages, such as 48 

complex, tedious and hard operation. Moreover, FT-IR 49 

spectroscopy combined with multivariate analysis has been 50 

used as a rapid and reliable method to determine the cultivation 51 

ages and cultivars of ginseng20-22. Some researchers also 52 

conducted FT-IR spectroscopy with multivariate techniques to 53 

discriminate and classify red, blue, and green spray paints, and 54 

results proved the method’s effectivity23–25. FT-IR spectroscopy 55 

has also been successfully used in the classification and 56 

discrimination of living matters26-30. 57 

This study was conducted to identify the cultivation 58 

region and quality of ZNL. A total of 149 samples were 59 

obtained, and different spectral pretreatments were conducted. 60 

Various spectral regions were chosen, and different 61 

chemometric methods were applied to achieve ZNL 62 

classification from other regions. This study aimed to provide a 63 

new trend and perspective for ZNL discrimination and quality 64 

evaluation. 65 

Material and method 66 

Samples 67 

Mature wolfberries (L. barbarum) were obtained from Ningxia 68 

Chinese Lycium Group Company, including ZNL (Ningxia, 69 

China) and non-Zhongning Lycium (NZNL), which came from 70 

other regions of Ningxia, Xinjiang, Qinghai, Gansu, China  71 

Reference samples were prepared by removing all foreign 72 

matters, cut into pieces with scissors, and desiccated by heated 73 

air combined with vacuum drying for 12 and 8 h, respectively. 74 

Finally, the dried samples were evenly milled and passed 75 

through a 60 mesh sieve to obtain the final samples. 76 

Analytical protocol 77 

A Bruker VERTEX 70 series FT-IR spectrometer equipped 78 

with a deuterated triglycine sulfate (DTGS) was used for this 79 

study. Moreover, high-speed universal grinder (Tianjin Taisite 80 

Instrument Co., Ltd.) and vacuum drying oven (Dalian Eilite 81 

Instrument Co., Ltd.) were used in this work. Transmission 82 

FT-IR spectra were taken though KBr pellets, in which the 83 

ratio of KBr to sample was 100:1 (w/w). The measurement 84 

parameters were as follows: 150× 150mm window size, 85 

4.0cm-1 resolution, 32 co-added spectra, and 4000–400cm-1 86 

range. Each sample was measured three times. The average of 87 

the three spectra obtained from the same sample was used in 88 

subsequent analyses. 89 

Data processing 90 

Data covering the FT-IR wavelength region (4000–400cm-1) 91 

were collected, and models were developed and validated 92 

using this complete range along with a number of subsets. 93 

Each spectrum was an ensemble average of three scans 94 

collected from the cell. The spectra of 149 samples were 95 

pretreated through normalization to correct the measurement 96 

variation. Each spectrum was aligned to the baseline using an 97 

instrumentation software before converting the spectra into 98 

JCAMP-DX format. The most accurate models were developed 99 

using the wavelength range of 1909-1311cm-1, and only these 100 
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 3 

models were discussed further in this study. 101 

Software 102 

All statistical treatments were performed using 103 

Unscrambler X10.1(CAMO, Norway) and TQ Analyst 8.3.125 104 

(Thermo Scientific, USA). The commercial database software 105 

used included OMNIC 7.3 (Thermo Scientific, USA) and 106 

OPUS 5.5(Bruker, Germany). 107 

Data analysis 108 

Visual grouping 109 

The samples were randomized and divided into two groups: a 110 

calibration group that consisted of 111 of the samples and a 111 

validation group that consisted of the remaining sample of 38. 112 

Sample assignment to each group was performed by selecting 113 

every sample as a member of the calibration group and the 114 

remaining samples were assigned to the validation group. 115 

Random selection did not generate equal-sized groups. 116 

Soft independent modeling of class analogy (SIMCA) 117 

SIMCA is based on making a PCA model for each class in 118 

the training set. Unknown samples were then compared with 119 

the class models and assigned to classes according to their 120 

proximity to the training samples. It is also known as a 121 

supervised pattern recognition method as the individual PCA 122 

models define classification rules. In the case of all 123 

classification methods, making a SIMCA model needed a 124 

training stage and a test stage. SIMCA modeling requires 125 

building one PCA model for each class which describes the 126 

structure of that class as well as possible. The optimal number 127 

of PCs should be chosen for each model separately, according 128 

to a suitable validation procedure. Before developing a SIMCA 129 

model, it is helpful to determine if the data being considered 130 

exhibit any tendency to cluster by the classes. Before using the 131 

models to predict class membership for new samples, one 132 

should also evaluate the model specificity, i.e. whether the 133 

classes overlap or are sufficiently distant from each other. 134 

Specific tools, such as model distance and modeling power are 135 

available for this purpose. The discrimination power of SIMCA 136 

was based on the largest possible distance among classes. 137 

Discriminant analysis (DA) 138 

DA is a classification method of TQ Analyst software. 139 

Different spectral pretreatment methods, including a constant, 140 

peak or normalize ratio (A/b=k*c), multiplicative signal 141 

correction (MSC), Standard Normal Variate (SNV), Norris 142 

derivative filter, and Savitzky–Golay (SG) filter ) were selected 143 

to produce better results. The Savitzky-Golay filter is a type of 144 

filter. The method essentially performs a local polynomial 145 

regression (of degree k) on a distribution (of at least k+1 146 

equally spaced points) to determine the smoothed value for 147 

each point. Methods are also provided for calculating the first 148 

up to the fifth derivatives. The samples were classified, and the 149 

spectral information of the samples was imported. To make a 150 

robust and available discriminate model, different spectral 151 

pretreatment method were applied, and the analysis spectral 152 

regions and various principal component (PC) numbers were 153 

changed. The value was either decided by the highest 154 

recognition rate or the lowest error rate. 155 

Results and discussion 156 

Spectral analysis 157 

The chemical compounds of Lycium are polysaccharides, 158 

organic acids, steroids, peptides, flavonoids, and trace elements. 159 

Fig. 1 shows the FT-IR spectra of the two kinds of typical 160 

Lycium samples at room temperature. 161 
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(a) Original spectrum of the ZNL sample 163 
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 164 

(b) Original spectrum of the NZNL sample 165 

Fig 1. Original spectra of the two typical Lycium (a) and (b) 166 

As shown in Fig. 1, several characteristics could be extracted, 167 

such as the strongest peak at 3390cm-1 belonging to the 168 

stretching vibration of O-H groups, and the peak at 2925 cm-1 169 

assigned to the stretching vibration of -CH2 groups. 170 

Furthermore, the peak at 1626 cm-1 was mostly ascribed to the 171 

stretching vibration of C=O groups in the volatile oils and 172 

other compounds embodying carbonyl group, and the stronger 173 

peaks in 1600-1000 cm-1 were mainly attributed to the 174 

stretching vibration of C-O and C=O, which displayed the 175 

characteristic absorption bands of polysaccharides and 176 

glycosides. 177 

Although the spectra of the two kinds of Lycium species 178 

were rather similar, some differences in the shape or intensity 179 

were observed. The absorbance peak of Lycium was extremely 180 

different under the range of 1800–1000 cm−1. In particular, the 181 

characteristic band at 1108 cm-1 was from the ZNL sample, 182 

while characteristic band at 1098 cm-1 was from the NZNL 183 

sample. Therefore, we could create a robust classification 184 

model of Lycium under the spectra range of 1800–1000 cm−1. 185 

Effective wavenumber (EW) selection 186 

EW selection can simplify the model, and improve the 187 

forecasting capacity and robustness of the calibration models 188 

to eliminate of collinear variables31. The value of X-loading 189 

weights was employed in the EW selection method and it was 190 

estimated using the PCA model. 191 
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Fig. 2 Effective wavenumber selection using X-loading 194 

weight 195 

The X-loading weights of the first four PCs by PCA are 196 

shown in Fig. 2. The loading weights showed how much each 197 

wavenumber contributed to the response variation. Wave 198 

numbers with large loading weight values are important for the 199 

PCA model. The spectral regions of X-loading weights with 200 

absolute values of over 0.02 were used for modeling. As shown 201 

in Fig. 2, the spectral regions of 3700-3100 and 1800-900 202 

cm-1showed higher loading weight and contributed more to the 203 

robustness of the identification model. Compared with the PCA 204 

model obtained with full spectra, the X-loading weight 205 

methods considerably improved the performance of the model. 206 

Excellent performance was obtained from the PCA model with 207 

EWs selected using the X-loading weight method. PCA is a 208 
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kind of data dimension reduction technique of multivariate 209 

statistical analysis. PC is the result of the original variable 210 

reorganization, replacing the original variables involved in the 211 

modeling, reduced the workload of the analysis process. 212 

Selected a suitable PCs value, when the cumulative 213 

contribution rate of PC was greater than 85%, we can think it is 214 

enough to response the information of original variables, the 215 

corresponding value is the number of PCs. According to the 216 

PCA analysis, we found that the value of 3 PC is perfect, with 217 

the cumulative contribution rate of 90%, selected for further 218 

research. Most of the peaks that appeared in the regions of 219 

3700-3100cm-1 belonged to the vibration of O-H bond, 220 

including stretching vibration, deviational vibration and 221 

bending vibration. All those molecular movements made a 222 

small difference among various Lycium samples. Nevertheless, 223 

simple and effective identification pre-analysis was conducted. 224 

According to the pre-analysis results and the X-loading weight 225 

values, the spectra of 1909-1311cm-1 was chosen for in-depth 226 

and detailed analysis. 227 
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(a) Characteristic spectrum of the ZNL sample 230 
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(b) Characteristic spectrum of the NZNL sample 233 

Fig. 3 Characteristic spectra of two typical Lycium 234 

samples (a) and (b) 235 

Fig. 3 compiles the characteristic FT-IR spectra of Lycium from 236 

different production areas under room temperature. As shown 237 

in Fig. 3, the typical part of 1900-1300cm-1 was chosen. 238 

Detailed peak positions of the typical samples are also 239 

illustrated in Fig. 3. 240 

These FT-IR spectra showed their macro-fingerprints. 241 

Comparative and separate analyses were performed in the 242 

spectra of two typical samples. For example, the strongest peak 243 

at 1638 and 1630cm-1 was due to the bending of carbonyl. The 244 

absorbance values of these two sample types greatly differed, 245 

and various amounts of amino acid and polypeptide possibly 246 

exist in these samples. The peak at 1501 and 1509cm-1 247 

belonged to the bending of –C-H groups in Lycium, whereas 248 

that at 1458 and 1459cm-1 was attributed to the bending 249 

vibration of methyl and methylene groups. Several kinds of 250 

amino acids might be present in these samples. The peak at 251 

1386 and 1385cm-1 was due to the plane vibration of O-H 252 

groups in Lycium, phenolic acid compounds and carbohydrates. 253 

In the spectrum of ZNL sample, an absorbance peak was 254 

observed at 1401cm-1, which was attributed to the bending 255 

vibration of methyl and methylene groups. This finding 256 

indicated the typical absorption of amino acids. The typical 257 
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peak of NZNL sample was at 1542cm-1, which was mainly 258 

attributed to the bending vibration of N-H groups and tretching 259 

vibration of C-N groups in protein amide II band. This peak 260 

displayed the characteristic absorptions of fatty acid and 261 

protein. 262 

SIMCA 263 

Upon analysis of the spectral region and considering the 264 

result of the SIMCA classification, a suitable spectral region 265 

was selected. Model and data processing were performed under 266 

this region. Various spectral pretreatment methods were 267 

applied to identify the ZNL in the typical production areas. All 268 

of the methods were verified by multivariate statistical 269 

analysis. 270 

Table 1 Measurement of performance in the discrimination of Lycium samples of the calibration and validation groups using 271 

SIMCA 272 

Spectral regions/cm−1 

1909–1311 

Calibration 

 

Validation 

No pretreatment SNV SG (9.4) MSC No pretreatment SNV SG (9.4) MSC 

Recognition rate/% 
ZNL 55.56 90.60 83.76 52.99  58.12 85.47 82.91 52.99 

NZNL 53.13 87.5 84.37 46.88  53.13 81.25 81.25 56.25 

A suitable value of three PCs was chosen for each class. The 273 

spectral region of the model was 1909–1311cm−1. Different 274 

models were constructed using various data processing 275 

methods (No, SNV, SG 9.4, and MSC). Table 4 presents the 276 

classification rate of each model. The type of ZNL sample 277 

obtained a better classification regardless of the technique 278 

used, in which the type of NZNL sample was extremely 279 

confusing. The processing method of SNV and SG showed a 280 

better classification than that of MSC and No pretreatment. 281 

The SNV processing undoubtedly showed great significance in 282 

the identification of ZNL samples. As we all know, an 283 

applicable model at least meet the demands of recognition rate 284 

over 90%, and the further study should be performed without 285 

any hesitation. 286 

DA 287 

The DA method employed various spectral regions under 288 

the same pretreatment and various PCs or various 289 

pretreatments on the typical spectral region. An identification 290 

method was achieved according to the results of the model. 291 

Table 2 Effect of different spectra without pretreatments on recognition rate of calibration and validation samples 292 

Spectral 

regions/cm-1 

PC 

numbers 

Calibration set/% Validation set/% 

ZNL NZNL ZNL NZNL 

3999–410 10 74.70 81.82  85.71 70 

3780–2980 10 73.49 86.36  78.57 70 

2980–2100 10 78.31 81.82  82.14 80 

2560–1760 10 81.93 77.27  85.71 80 

2100–1120 10 89.16 86.36  92.86 90 

1300–960 10 86.75 81.82  85.71 80 

1909–1311 10 93.98 90.91  100 100 

920–410 10 86.75 86.36  92.86 80 

1240–660 10 81.93 81.82  85.71 90 

3999–410 10 74.70 81.82  85.71 70 

The numbers of the ZNL calibration and validation sets were 293 83 and 28, respectively, and the remaining number of samples 294 
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 7 

was the number of NZNL. Different spectra were purposefully 295 

selected without any pretreatments. Various spectral regions 296 

obviously resulted in various recognition rates of the 297 

calibration and validation sets. As shown in Table 2, in order to 298 

find a suitable spectral region, a constant value of 10 PCs was 299 

chosen for each treatment, different spectra exerted tiny effects 300 

on the recognition rate of the validation set. A perfect result of 301 

100 % was achieved in the range of 2560-1760 cm1. Various 302 

spectral regions exerted a great influence on the calibration set 303 

compared with the validation set. Only one spectral region had 304 

a recognition rate over 90% for both samples, and the 305 

recognition rates under the range of 1909-1311 cm1 were 306 

93.98% and 90.91%. These results were due to the fact that the 307 

two samples exhibited different feature absorbance peaks in the 308 

range of 1909-1311 cm-1. 309 

Table 3 Effect of different PCs without pretreatments on the recognition rate of calibration and validation samples 310 

Spectral 

regions/cm-1 
PC numbers 

Calibration set/% 
 

Validation set/% 

ZNL NZNL ZNL NZNL 

1909-1311 4 51.81 78.57  68.42 90 

1909-1311 5 66.26 71.43  78.95 80 

1909-1311 6 69.88 78.57  78.95 100 

1909-1311 7 79.52 82.14  86.84 100 

1909-1311 8 77.11 82.14  84.21 100 

1909-1311 9 75.9 82.14  84.21 100 

1909-1311 10 93.98 90.91  100 100 

1909-1311 11 87.95 89.29  100 100 

1909-1311 12 87.95 89.29  100 100 

1909-1311 13 87.95 89.29  97.37 100 

Under the analysis of different spectral interval, considering 311 

that the PC numbers contributed to the classification of the 312 

samples, a constant value of 10 PCs was chosen for each 313 

treatment. From the Table 3, it's tempting to conclude that the 314 

PCs of 10 perfected for the deeper DA classification research. 315 

Further analysis of the results showed that different spectral 316 

interval had the same conclusion, the value of 10 PCs was an 317 

appropriate identification conditions. 318 

Table 4 Effect of different spectral pretreatments on the recognition rate of calibration and validation samples 319 

Spectral 

regions/cm-1 

Spectral 

pretreatment 

Calibration set/% Validation set/% 

ZNL NZNL ZNL NZNL 

1909-1311 SNV 87.95 86.36  92.86 80 

1909-1311 SNV+SG(7.3) 84.34 86.36  96.43 90 

1909-1311 SG. (7.3) 79.51 87.95  100 100 

1909-1311 MSC+SG. (7.3) 80.72 81.81  89.29 100 

1909-1311 MSC 84.34 86.36  96.43 90 

1909-1311 MSC+N (7.3) 81.93 81.81  85.71 90 

1909-1311 Norris (7.3) 83.13 86.36  85.71 100 

1909-1311 SNV+Norris (7.3) 85.54 77.27  92.86 90 

1909-1311 SG (9.4) 86.75 89.29  96.43 80 

1909-1311 Norris (9.4) 83.13 90.91  89.28 80 

1909-1311 SNV+Norris (9.4) 81.93 86.36  96.43 90 

1909-1311 MSC+Norris (9.4) 87.95 90.91  89.29 100 

To reduce the scattering effects and compare the Lycium 320 samples, the spectral region of the FT-IR (1909–1311 cm−1) 321 
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was subjected to different pretreatments (i.e., normalization, 322 

first and second derivative, SG, and Norris. Only the best 323 

classification results for the spectral region are presented in the 324 

present study (Table 4). Different pretreatments of the spectral 325 

region led to a small fluctuation on the recognition rate of the 326 

calibration set. The original spectrum is available and valuable. 327 

The optimal reference set was obtained by iteratively adding 328 

and removing reference samples until the recognition error and 329 

the uncorrected number of external estimates were minimized 330 

or more precisely balanced. Finally, the no-pretreatment of the 331 

spectral region at 1909–1311 cm−1 was regarded as the best 332 

choice. Under this condition, the recognition rates of the 333 

calibration set were 93.98% and 90.91%, whereas those of the 334 

validation set were 100% and 100%. 335 

Conclusions 336 

FT-IR combined with discrimination technique is a powerful 337 

tool for Lycium sample discrimination. Two methods were 338 

tested on different Lycium produces areas and good results 339 

were obtained. DA is an excellent methodology for ZNL 340 

discrimination, because it is a rapid technique that does not 341 

need a chemical reagent. The optimal identification results of 342 

the recognition rates of the ZNL and NZNL calibration set 343 

were 93.98% and 90.91%, respectively, whereas the ZNL and 344 

NZNL validation set were 100% and 100%, respectively. DA 345 

can meet the requirements of simple, feasible, and ordinary 346 

data processing with common software. Therefore, a simple, 347 

rapid, and reliable overall discrimination of ZNL cultivar was 348 

obtained at a low cost, which might be applied for rapid 349 

classification of ZNL Lycium cultivar. However, this study 350 

presented some limitations, and further work is necessary to 351 

obtain more robust classification rules with consideration for 352 

regional and time variability. Nevertheless, this study achieved 353 

a powerful and practical identification method for ZNL and 354 

provided a new trend and perspective for quality evaluation 355 

and breed discrimination. 356 
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