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Characterization of colorimetric sensor array by multi-spectral 
technique† 

Li Zhihuaa, Zhou Xuchenga, Zou Xiaoboa,*, Shi Jiyonga, Huang Xiaoweia, Haroon Elrasheid Tahira, 
Shen Tingtinga 

A new method based on multi-spectral technique was proposed to characterize the signal of colorimetric sensor array for 

gas detection. Firstly, the characteristic wavelengths, which are most relevant to the detected substance, were extracted 

from the hyperspectral information of the colorimetric sensor arrays. Then, narrowband filters with the corresponding 

central wavelengths were selected to isolate the effective signal of the sensor arrays. In this study, ammonia (NH3) was 

taken as example to test the performance of the proposed multi-spectral method. Prediction of NH3 concentration based 

on the hyperspectral method and normal tri-color (R/G/B) method was also performed for comparison. Compared with 

the tri-color method, the correlation coefficient for testing set (Rt) based on the multi-spectral method increased from 

0.902 to 0.976, root mean squared error of prediction (RMSEP) decreased from 1.213 to 0.548, and residual predictive 

deviation for testing set (RPDt) increased from 2.903 to 6.151, which means that the results were improved obviously both 

in accuracy and stability. Furthermore, the multi-spectral method still possesses the advantages, as low-cost, easy 

operating and greatly reduced data size. The proposed multi-spectral method could be used to characterize the signal of 

the colorimetric sensor arrays for gas detection.

1. Introduction 

The colorimetric sensor array, which mimics mammalian 
olfactory or gustatory system, is a novel sensing technique 
developed in recent years 1-4. The chemically responsive dyes 
used to fabricate colorimetric sensor arrays usually have open 
coordination sites for intense coloration and axial ligation. 
Interactions such as π-π molecular complexation, bond 
formation, acid-base interaction, physical adsorption, van der 
waals interaction could take place when they were exposed to 
different analytes 5. These interactions change the optical 
property of a colorimetric sensor array which presents 
different colors or spectra 6. Combined with certain 
chemometric methods, qualitative or quantitative analysis 
could be realized utilizing the response signal of all dyes in the 
array. At present, the colorimetric sensor arrays have been 
widely applied in the detection of various substances, e.g., 
metal ions 7, 8, toxic industrial chemicals 6, 9, 10, volatile organic 
compounds 11-14, amines 3, formaldehyde 15, explosives 16, 
hydrogen sulfide 17, etc.  
Generally, the response signal of the sensor arrays could be 
characterized through two methods, i.e., spectroscopic 
method and tri-color imaging method as reported by many 
authors 2, 12, 18, 19. The spectroscopic method is highly 
advantageous because its integrated spectra contain massive 

information. However, it always needs complex equipment 
and certain time to obtain the spectrum from each sensor 
element, and it is not suitable for sensors with a solid opaque 
substrate and gas detection. Furthermore, only part of the dye 
spot could be covered since the focal region of the 
spectroscopic detector is relative limit, which means 
unavoidable operation error. Compared with spectroscopic 
method, the tri-color imaging methods could detect several 
sensing elements in a given field of view and are easier to 
operate and need no special instruments 20, which could be a 
common digital camera, flatbed scanner, cellphone camera, 
etc. However, the tri-color imaging method usually provide 
only three or four channels, i.e., red, green and blue (RGB), 
sometimes red, yellow, green and blue (RYGB). Thus, the 
information collected by the tri-color imaging methods is 
significantly less than that of spectroscopic method. However, 
the detected three channels are highly correlated to each 
other and contained relatively high noise because the 
response wavelength range of the three kinds of 
photosensitive units of a camera is wide and overlapping.  
It is necessary to explore a new method to collect the most 
useful information of the colorimetric sensor array, while 
keeping the advantages as low-cost and easy operating. To 
perform this task, the characteristic wavelengths, which are 
most relevant to the detected substance, must be extracted 
from the full wavelength rang first, then the signal change of 
the colorimetric sensor arrays at the characteristic 
wavelengths should be acquired with a simple device. With 
this consideration, a multi-spectral method was developed to 
characterize the signal of the colorimetric sensor arrays based 
on our former studies 21-25. Firstly, hyperspectral imaging 
technique, which could provide both spatial and spectral 
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information simultaneously 26, 27, was used to extract the 
characteristic wavelengths. Then narrowband filters with the 
corresponding central wavelengths were selected to isolate 
the effective signal change of the sensor array at the selected 
wavelengths. Ammonia (NH3) was taken as example to test the 
performance of the proposed multi-spectral method. 
Prediction results based on the multi-spectral information, 
hyperspectral information and tri-color information were 
compared. 

2. Materials and methods 

2.1 Colorimetric sensor array preparation 

Colorimetric sensor array is composed of TiO2 porous film 
substrate and gas sensitive material. Porphyrins and 
metalloporphyrins are highly conjugated p-type organic 
semiconductors, and can induce charge transfer between 
various oxidizing or reducing gases and their delocalized p-
systems. This modifies the optical absorbance as well as 
electrical conductance significantly, and offers the option of 
developing both chemiresistive as well as optical gas sensors28, 

29. pH indicators are a class of chemical detector sensitive to 
hydronium ions or hydrogen ions in the Arrhenius model. 
Normally, an indicator could change its color depending on the 
pH, and they have been wildly used in colorimetric sensors 30, 

31. Thus, we decided to select sensitive materials from these 
two classes of chemicals. After several of them were screened, 

nine pH indicators and seven Porphyrins/metalloporphyrins 
(Sigma Chemical, USA) as shown in Fig.S1 (Supplementary 
information) were selected as the sensitive material. More 
details about the preparation process of the colorimetric 
sensor array could be found in previous studies 21, 32-34 and the 
Supplementary information. 

2.2 Equipment and measurement 

2.2.1 Standard NH3 generation and group assignment 

The Permeater Model PD-1B-2 (Gastec Corporation, Japan) 
was used to generate micro-concentration NH3 vapor. As 
shown in Fig.1 (a), gas stream (N2) containing the vapor of NH3 
was generated from a permeation tube with NH3 liquor inside. 
Digital mass-flow controllers were utilized to control N2 flow 
speed. More details about the standard NH3 generation could 
be found in supplementary information. NH3 of 7 
concentration values (0.5, 1, 2, 3.5, 5, 7.5, 10 ppm), each with 
12 replicates, was tested. The humidity was controlled at 50% 
RH. The 84 (7×12) tested arrays for each concentration were 
randomly divided into two subsets. The calibration set, 
consisted of 56 arrays, was used for extraction of the 
characteristic wavelengths, also for the development of the 
prediction models based on hyperspectral information and tri-
color information. The testing set, consisted of 28 arrays, was 
used for validation of the developed models. After the multi-
spectral sensor array detection system was completed, 
another 84 arrays were used to test the performance of the 
multi-spectral method with the same grouping mode. 

 

 
Fig.1 Equipment for standard NH3 generation, hyperspectral information acquisition, and tri-color information acquisition (a); 
Schematic diagram (b) and photo (c) of the multi-spectral colorimetric sensor array detection system.  
 
 
 
2.2.2 Hyperspectral images acquisition 

In order to eliminate the effect of impurities in air, pure N2 was 
employed to clean the sensor array in the first 5 min, and then 
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the array was exposed to NH3 of needed concentration for 25 
min. 
The hyperspectral imaging system could collect spectral 
images in a wavelength range of 430-960 nm with a spectral 
resolution of 2.73 nm, and more details about the 
hyperspectral system could refer to our previous reports 24. 
During image acquisition, the conveyor was driven by the 
stepping motor with a user-defined speed of 1.58 mm/s, which 
was adjusted to the camera exposure time to avoid distortion 
in the spatial resolution of the images. Each array was 
transported by the conveyor to the field of view (FOV) of the 
camera, where a raw image was acquired and stored in the 
computer. The image acquisition process was controlled by 
SpectralCube software, and finally a hyperspectral image data 
cube as presented in previous study 24 was acquired for each 
sensor array. 
2.2.3 Multi-spectral images acquisition 

Fig.1 (b) illustrates the multi-spectral colorimetric sensor array 
detection system. It is consisted of a filter panel with 4 
uniformly distributed narrowband filters (Jingyi high-tech 
Co.ltd, Beijing, China ), a charge-couple device (CCD) camera 
(XS-1.7-320, Xenics infrared solution, Belgium), three 150 W 
quartz-halogen DC illuminators (Fiber-Lite PL900-A, Dolan-
Jenner Industries Inc., USA), computer, and image processing 
and analysis software (Matlab R2012a; The Math works, Natick, 
MA, USA). The whole imaging system was enclosed in a 
duralumin shield box (350 × 500 × 800 mm) to avoid the 
interference from external light. 
Prior to image acquisition, the multi-spectral imaging system 
would be opened for preheating for 30 min. During image 
acquisition, the filter panel was driven by the microstep motor 
to locate different filters under the camera. Thus, 4 gray-level 
images at different wavelengths of the sensor array were 
acquired for each test. 
2.2.4 Tri-color images acquisition 

Tri-color images were obtained at 1200 dots per inch in RGB 
color mode using an ordinary flatbed scanner (HP Scanjet 
G4050). The image before exposed to NH3 was first acquired 
on the flatbed scanner; and the array was scanned again after 
exposed to NH3 of needed concentration. More details could 
refer to previous literature 22 

2.3 Data analysis 

As shown in Fig.2, the data analysis procedure could be 
roughly divided into two parts, i.e., characteristic wavelengths 
extraction from the hyperspectral images (Step 1~4) and 
prediction based on the multi-spectral information (Step 5-8). 
(1) Spectra of dye x (x is the xth dye in the array) were 
extracted from the hyperspectral images of the sensor arrays 
before and after exposed to NH3 separately. To avoid factitious 
nonuniformity, the center of the dye spot (about 400 pixels) 
was averaged to acquire mean spectrum in the range of 430 to 
960 nm 2. The mean spectrum was pre-processed by moving 
average (MA) and standard normal variate (SNV) as described 
in reference 35, 36.  
(2) The difference spectrum of dye x was obtained by 
differentiating its spectrum before and after exposed to the 
NH3 gas. All difference spectra for dye x in the calibration set 
were calculated using the same method. 
(3) The correlation coefficient between NH3 concentrations 

and the difference values at λnm ( r ) was calculated 

according to formula (1).  
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            (1) 

Where 
,ix  represents the value of the difference spectra at 

  nm for dye x of the 
thi  array in the calibration group, iy  is 

the corresponding NH3 concentration, x  is the mean value of 

,ix , y is the mean value of iy , n is the total number of the 

arrays in the calibration set. 
The 3 wavelengths with the local optimum r were selected as 
the characteristic wavelengths for dye x.  
(4) Characteristic wavelengths for all 16 dyes in the sensor 
arrays were selected according to step (1) ~ step (3). 
 (5) Four narrowband filters were selected according to the 
distribution of the characteristic wavelengths for all 16 dyes, 
and used to develop the multi-spectral colorimetric sensor 
array detection system as introduced in Section 2.2.  
(6) For each test, 4 gray scale images of the sensor array were 
obtained with changing the selected filters. To quantify the 
signal change of the dye spot, 4 difference values were 
obtained from the gray scale images by digitally subtracting 
the image before exposure to NH3 from the image after 
exposure, using a 400-pixel average from the center of each 
dye spot (thus avoiding subtraction artifacts at the periphery 
of the spots) as follows. 

1 1 1
I I Ix d x a x b                                               (2) 

2 2 2
I I Ix d x a x b                                              (3) 

3 3 3
I I Ix d x a x b                                              (4) 

4 4 4
I I Ix d x a x b                                             (5) 

Here, d represents difference, a represents after exposure, b 

represents before exposure, λ1, λ2, λ3, λ4 are the central 

wavelengths of the 4 narrowband filters, 
1

Ix d 
, 

2
Ix d 

, 

3
Ix d 

, 
4

Ix d 
 are the intensity difference of dye x with the 

filtration of the corresponding filters. 
(7) Three of the 4 difference values, Ix-1, Ix-2, Ix-3, were used to 
characterize the signal change of dye x according to their 
optimum wavelength (see Section 3.3). Finally, a 48-
dimensional vector (16 dyes×3 intensity differences) was 
acquired to characterize the signal change of a colorimetric 
sensor array. 
 (8) Since too many variables are against the stability of the 
prediction model, principal component analyses (PCA) was 
used to decompose the vector into several principal 
components (PCs), which are uncorrelated and account for the 
most common spectral variations 37. The top 3 PCs contained 
most of the useful information were used to develop a 
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multiple regression model with the arrays in the calibration set. 
Arrays in the testing set was used to test the regression model. 
In addition, prediction of NH3 concentration based on 
hyperspectral information and tri-color information was also 
performed for comparison purposes. The difference here is the 
48-dimensional vector used to characterize the signal of the 
colorimetric sensor arrays. For prediction based on the 

hyperspectral information, the 48-dimensional vector is 
consisted of the spectrum difference values at the 48 
extracted characteristic wavelengths mentioned in step (4). 
For prediction based on the tri-color information, the 48-
dimensional vector is consisted of the R/G/B difference values 
of the 16 dyes. 

 
Fig.2 The data analysis flow chart for prediction of NH3 concentration based on the multi-spectral method. 

 
 

2.4 Software 

All image processing and data analysis procedures described 
above were executed using programs developed in Matlab 
R2012a (MathWorks, Natick, MA, USA). Extraction of 
reflectance spectra from the hyperspectral images was 
finished using ENVI 4.5 (ITT Visual Information Solutions, 
Boulder, CO, USA). The software for the multi-spectral 
colorimetric sensor array detection system was programmed 
with Visual Basic.net. 

3. Results and discussion 

3.1 Hyperspectral images investigation 

Hyperspectral imaging system acquired abundant spatial 
information while collecting spectral information. Fig.3 (a) was 
the combined spectral images at three wavelengths located in 
the red (670 nm), green (525 nm), and blue (460 nm) regions. 
Hence, it appeared similar to its natural color. Representative 
single-band reflectance images of the sensor arrays at 6 
selected wavelengths from 430 to 680 nm were shown in Fig.3 
to demonstrate general pattern of the hyperspectral images 
and differences among different spectral regions. When the 
wavebands increased, the intensity of the dyes showed 
different trends because of their different colors. As a result, 
different difference-images which contained abundant 
information were acquired at different wavelengths. 
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Fig.3 The combined images and images at selected wavelengths from 430 to 680 nm. 

 
 

3.2 Difference spectra of the dye  

Mean spectrum in the range of 430 to 960 nm of each dye 
were acquired using ENVI 4.5. Then these spectra were pre-
processed by MA and SNV sequentially to eliminate variations 
caused by stochastic noise and baseline drift. The spectrum of 
a dye before exposed to NH3 was subtracted from the after 
one to calculate the difference spectrum as explained in 
section 2.3. 

Fig.4 (a) shows the typical spectra change of a pH indicator 
(Methyl orange) exposed to NH3 of 5 ppm. The spectra before 
exposure showed relatively strong reflection in the bands at 
550-650 nm, which agrees well with its antic orange color. An 
obvious absorption peak at 770 nm was observed after 
exposed to NH3, and the mechanism may be explained as 
shown in Fig.4 (b) 38. NH3 would ionize to NH4

+ and OH- when 
combined with H2O, then OH- attached to Methyl orange, and 
changed it from acid form to alkali form. 

 
Fig.4 Typical spectra change of pH indicator (illustrate with Methyl orange) (a) and the suggested mechanism for the spectra 
change (b); Typical spectra change of metalloporphyrin (illustrate with 5,10,15,20-Tetraphenyl-21H,23H-porphine cobalt(II), 

CoP )(c) and the reaction between CoP and NH3(d). 
 
 
Fig.4 (c) shows the typical spectra change of a 
metalloporphyrin dye ((5,10,15,20-Tetraphenyl-21H,23H-
porphine cobalt(II), CoP) exposed to NH3 of 7.5 ppm). The 
spectra showed relatively strong reflection in the bands 
510~540 nm and 650~670 nm, which is in consistent with its 
dark green color. An obvious hypsochromic shift was observed 

between 680 nm to 960 nm after exposed to NH3. The 
mechanism 39 of this response could be explained as Fig.4 (d). 
An σ-bonding interaction in α-orbitals formed due to the 
overlap of NH3 HOMO with the empty orbital of Co, which 
leads to the electron density transfer from NH3 molecule to 
the metal center. In addition, π-bonds formed by back 
donation from the CoP dπ and рπ orbitals to the π*-
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antibonding orbitals of NH3. In β-orbitals, electrons appear to 
be redistributed around the porphyrin ring. Such electron 
density transfer finally converts the saddle-like structure into a 
coplane one. 
Generally, the selected dyes showed good response to NH3 
and different spectrum changes could be observed according 
to their different molecule structures and reaction 
mechanisms. 

3.3 Extraction of characteristic wavelengths 

In order to select the proper narrowband filters to build the 
multi-spectral colorimetric sensor array detection system, the 
characteristic wavelengths should be extracted from the 
hyperspectral images first. The 3 wavelengths with the local 
optimum r were selected as the characteristic wavelengths for 
each dye as described in Section 2.3. Fig.5 illustrates the 
correlation coefficient curve of CoP mentioned in Section 3.2 
and its selected 3 characteristic wavelengths (shot dash lines). 
The optimum characteristic wavelengths for all 16 dyes are 
listed in Table S1. 
 

 
Fig.5 Dependence of the correlation coefficient between NH3 

concentration and the spectrum difference values on 
wavelength. 

 

3.4 Design of the multi-spectral colorimetric sensor array 

detection system 

As mentioned in step (5) of the data analysis procedure, Fig.6 
illustrates the distribution of the optimum characteristic 
wavelengths for 16 dyes. It was found that the distribution of 
these wavelengths could be divided into 4 regions roughly. To 
balance the sensitivity of the involved dyes and ensure the 
convenience and practicality of the system, mean value of the 
characteristic wavelengths located in each region (marked 
with solid lines) was regarded as the center transmission 
wavelength of one filter. Thus, 4 narrowband filters in total 
were used to isolate the effective signal change of the sensor 
arrays at the selected wavelengths. The center transmission 

wavelength of the 4 filters are 540±2 nm (BP540/10K), 610±

2 nm (BP619/10K), 808±2 nm (BP808/10K), 935±5 nm 
(BP935/30K). Furthermore, the bandwidth of the first 3 filters 

are 10±2 nm, and the last one is 30±5 nm. The employed 
filters for each dye to characterize its color change were listed 

in Table.1. The structure of the developed multi-spectral 
colorimetric sensor array detection system was shown in Fig. 1 
(b) and (c), and explained in section 2.2.3. 

 
Fig.6 The distribution of the characteristic wavelengths for 16 

dyes. 
 

3.5 Performance evaluation of the multi-spectral method 

NH3 was taken as example to test the performance of the 
proposed multi-spectral method. For each array, 4 gray scale 
images were obtained with changing the selected filters before 
and after exposure to NH3, separately. A digital image 
processing technique, as explained in Section 2.3, was applied 
to quantify the signal change of the sensor array at different 
wavelengths. Then, 4 difference values were acquired for each 
dye and 3 of them were used to characterize the signal change 
according to their optimum wavelength (see Table S1). Finally, 
a 48-dimensional vector (16 dyes×3 intensity differences) was 
acquired to characterize the signal change of a colorimetric 
sensor array.  
PCA was used to extract information from the acquired vector. 
Fig.S2 shows the cumulative contributions of the top 10 PCs. It 
can be seen that the first 3 PCs account for 81.3% 
accumulation contribution rate, which indicates that the top 3 
PCs has the potential to explain 81.3% of the signal change of 
the sensor arrays. Thus, the top 3 PCs were used to establish 
the multiple regression model for NH3 concentration 
prediction. After tried with several models, a three-variable 
quadratic equation was selected as the regression model. 
Results were shown in Fig.7. Several commonly used 
parameters 40, 41, i.e., correlation coefficient (Rc for calibration 
set, Rt for testing set), root mean squared error of cross 
validation(RMSECV), root mean squared error of prediction 
(RMSEP) and residual predictive deviation42 (RPDc for 
calibration set, RPDt for test set) were used to evaluate the 
performance of the developed models. The calibration group 
could be predicted with Rc of 0.976, RMSECV of 0.536 ppm, 
and RPDc of 6.167, the testing set with Rt of 0.977, RMSEP of 
0.548 ppm and RPDt of 6.151 respectively. For comparison 
purposes, prediction of NH3 concentration based on 
hyperspectral information and tri-color information was also 
performed, and the results were shown in Fig.7.  
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Fig.7. Prediction results based on the multi-spectral information (a, b), tri-color information (c, d), and hyperspectral information 

(e, f) for calibration set and testing set, respectively. 
 
 
Compared with detection based on the traditional tri-color 
information, Rt based on multi-spectral information increased 
from 0.902 to 0.976, RMSEP decreased from 1.213 to 0.548, 
and RPDt increased from 2.903 to 6.151, which means that the 
results were improved obviously both in accuracy and stability. 
It is because the multi-spectral detection system could detect 
the targeted signal change at the optimum wavelengths more 
effectively and avoid the interference from other useless 
wavelength region. 
The results also show that measurement based on the multi-
spectral information is only slightly less effective than on the 
hyperspectral information, which is caused by the balance of 
the sensitivity for the involved dyes. However, it is such a 
balance make it possible for the multi-spectral method to keep 
the advantages, such as low-cost, easy operating, greatly 
reduced data size. Thus, the proposed multi-spectral method is 

suitable for the signal characterization of the colorimetric 
sensor arrays. 

4. Conclusions 

A multi-spectral method based on the selected narrowband 
filters was proposed to characterize the signal of the 
colorimetric sensor arrays. Firstly, the characteristic 
wavelengths, which are most relevant to the detected 
substance, were extracted from the hyperspectral information 
of the colorimetric sensor arrays. Then narrowband filters with 
the corresponding central wavelengths were selected to 
isolate the effective signal change of the sensor array at the 
selected wavelengths. Based on the multi-spectral method, the 
calibration set could be predicted with Rc of 0.976, RMSECV of 
0.536 ppm, and RPDc of 6.167, the testing set with Rt of 0.977, 
RMSEP of 0.548 ppm and RPDt of 6.151 respectively. Results 
demonstrate that the multi-spectral method shows highly 
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advantageous compared with the tri-color method, both 
accuracy and stability were improved. Compared with the 
hyperspectral method, the multi-spectral method possesses 
the advantages, such as low-cost, easy operating and greatly 
reduced data size. Thus, the proposed multi-spectral method 
could be used to characterize the signal of the colorimetric 
sensor arrays. 
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