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Flavan–Isoflavan Rearrangement: Bioinspired 

Synthetic Access to Isoflavonoids via 1,2-Shift–

Alkylation Sequence
† 

Kayo Nakamura, Ken Ohmori* and Keisuke Suzuki* 

 

An approach to 2-substituted isoflavonoids is reported based 

on 1,2-shift of the aryl group in the catechin skeleton followed 

by the in-situ alkylation. Synthesis of (–)-equol, a natural 

isoflavan with estrogenic activities, was achieved. 

Isoflavonoids constitute a class of natural products widely 

found in leguminous plants. In addition to the phytoalexin 

activitity for the original plants,1 some compounds are 

attracting special attention related to human health care, e.g., 

the estrogen activities identified in the soybean-derived 

compounds 1–3.2 Furthermore, several elaborated compounds 

with stereogenicity are found in nature, including isoflavans, 

pterocarpans, and rotenonoids, such as 4–6 (Figure 1). Due to 

the diverse range of bioactivities,1 isoflavonoids have become 

one of the current targets for chemical synthesis.3 

 
Figure 1 Natural isoflavonoids. 

The isoflavonoid biosynthesis shares its early stage with that of 

the flavonoid, branching at the flavanone stage by P-450 

mediated oxygenation to induce the aryl 1,2-shift within the 

chroman skeleton to form the 3-aryl derivatives (Scheme 1). 

Although the following dehydration give isoflavones,4 

stereogenic compounds, e.g., 4–6 are generated by further 

biosynthetic elaborations. This biogenetic 1,2-shift and 

presence of intriguing natural products 4–6 prompted us to 

devise a synthesis of isoflavonoids. 

In this communication, we describe a synthetic access to 

isoflavonoids via the 1,2-shift and alkylation sequence within 

the flavonoid scaffolds.  

 
Scheme 1 Biosynthesis of isoflavonoids. 

We took inspiration from our previous study (Scheme 2).5 Eq.1 

is a pinacol-type shift of a phenyl group by activating a 

mesylate with Et3Al to effect stereospecific 1,2-shift.5a A 

related process involves trapping of the intermediary oxonium 

species by an organoaluminum ligand (eq. 2).5b By analogy, we 

asked ourself whether such a 1,2-shift was viable within a 

catechin framework, and the model study started with a 

catechin-derived substrate, i.e. mesylate 7.6 
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Scheme 2 Organoaluminum-mediated stereospecific 1,2-shift. 

Mesylate 7 was prepared from tetra-O-benzyl catechin7 

(CH3SO2Cl, Et3N, CH2Cl2, 0 °C, 96% yield). Upon treatment of 

7 with Me3Al (2 equiv) in CH2Cl2 at –78 °C followed by 

gradual warming to 0 °C, a single new product 8a was 

produced in 90% yield (eq. 3). The trans stereochemistry of the 

aryl and the methyl groups was assigned by the coupling 

constant (J2,3=9.2 Hz) and the ROESY experiment.8 The 

stereochemical outcome could be attributed to the invertive 1,2-

shift followed by trapping by a methyl nucleophile from the 

opposite side. Furthermore, the enantiomeric purity of 8a 

(>99% e.e.) was verified by the HPLC analysis using a chiral 

stationary phase.9 

 
 

A control experiment showed the well-known importance of the 

anti relationship of the leaving group and the migrating group 

(eq. 4): Epicatechin derivative 9, upon reaction with Me3Al, led 

only to a slow 1,2-shift of hydride to give 10 in 21% yield, and 

mesylate 9 was largely recovered. The ee of 10 was 0%, not 

surprizingly, suggesting that the reactive species that underwent 

trapping by a methyl nucleophile was the oxonium species after 

the hydride shift fully completed. 

 
 

Table 1 shows generality of the process, giving various 2-

substituted isoflavans. Reaction of 7 with Et3Al proceeded 

smoothly to give the ethylated product 8b in excellent yield 

(run 1). AlH3, in-situ prepared from LiAlH4 and AlCl3,
10 

induced the 1,2-shift of 7 followed by the hydride trapping, 

giving isoflavan 8c in 73% yield (run 2). Reaction of 7 with i-

Bu3Al gave the expected product 8d with an i-butyl group. A 

small ammount of 8c was obtained, arising from the β-hydride 

delivery from i-Bu3Al (run 3). Furthermore, reactions of other 

organoaluminum reagents gave various isoflavans 8e–8i in 

moderate to high yields and rigorous trans selectivities. In runs 

4–6, triorganoaluminum reagents were generated in situ from 

the respective organolithium and AlCl3.
11 In runs 7 and 8, 

EtAlCl2 was used for this purpose, where the alkynyl ligands 

were exclusively transferred.12 

Table 1. Conversion of catechin mesylate 7 to various isoflavans. 

 

[a] Prepared from the corresponding organolithium and AlCl3.; [b] Prepared 
from the corresponding alkynyllithium and EtAlCl2 

As variation of the migrating group, an ortho-substituted 

phenyl group was tested (Scheme 3). Mesylate 17 was prepared 

via our method for the flavan synthesis:13 Mitsunobu reaction 

of epoxy alcohol 118 and iodophenol 12 gave ether 13 as a 

single product, and the subsequent cyclization gave flavan 16. 

After removal of TES group in 16, mesylation of the resulting 

alcohol gave mesylate 17. Treatment of 17 with Me3Al (–78 → 

–10 °C) induced a smooth 1,2-shift, giving isoflavan 18 in 84% 

yield as a single product.8 
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Scheme 3 Keys: (a) TMAD, n-Bu3P, toluene, 0 °C, 2 h (83%, single diastereomer) 

(b) Li2NiBr4, THF, 0 °C → RT, 80 h (91%) (c) TESOTf, 2,6-lutidine, CH2Cl2, 0 °C, 20 

min (95%) (d) PhMgBr, PhLi, HMPA, THF, –78 → 0 °C, 30 min (62%) (e) n-Bu4NF, 

THF, 0 °C, 20 min (quant.) (f) MsCl, Et3N, CH2Cl2, 0 °C, 40 min (94%) (g) Me3Al, 

CH2Cl2, –78 → –10 °C, 1.5 h (84%). TMAD = N,N,N’,N’-tetramethyl-

azodicarboxamide. HMPA = hexamethylphosphoric triamide. 

Previously, we noted that o,o’-disubstituted phenyl groups are 

often sluggish to undergo 1,2-shift, particularly when the 

substrate has steric hindrance.5c To address this point, we 

prepared mesylate 19 with an o,o’-dibenzyloxyphenyl group in 

a similar manner. To our delight, the reaction of 198 with Me3Al 

(–78 → –30 °C) gave 79% yield of the rearranged product 20 

(eq. 5). This is a promising result in view of the synthesis of 

many natural isoflavonoids with an aryl group possessing 

ortho-hydroxy group(s). 

 
 

Finally described is the enantiospecific synthesis of (–)-equol 

(4), a soy-derived isoflavonoid known since 1932.14 Recently, 

sizable phytoestrogenic activity has been found in 4,15 making 

it a current target of chemical synthesis.16 

Scheme 4 outlines the synthesis of 4. The key intermediate 27 

was prepared from the resorcinol derivative 21. Union of 21 

with epoxide 22 (>99% e.e.)7 by the Mitsunobu reaction gave 

ether 23 in 78% yield as an inseparable mixture of 

diastereomers (93:7 ratio),13b which was used for the next step. 

Regioselective cleavage of oxirane 23 gave bromohydrin 24 

(87% yield) and its epimer 24’ (4% yield), which were 

separated by flash column chromatography (hexane/toluene/ 

EtOAc = 5/5/1). After protection of 24 as a TES ether, the 

cyclization precursor 25, thus obtained, was treated with 

Ph3MgLi to give flavan 26 in 88% yield.13 After two-step 

conversion of 26 into mesylate 27, treatment with AlH3 

(CH2Cl2, 0 °C → room temp., 2.5 h) cleanly afforded the 

desired isoflavan 28 in 85% yield. Finally, two benzyl groups 

were removed by hydrogenolysis [H2, Pd(OH)2/C, THF, 

MeOH, H2O (2/2/1), room temp., 45 min], giving (–)-equol (4) 

as an white solid (99% e.e.).17 All the physical data of the 

synthetic sample of 4 (1H and 13C NMR, IR, [α]D) coincided 

with the reported data.16 

 
Scheme 4 Keys: (a) TMAD, n-Bu3P, toluene, 0 °C, 1 h (78%, dr = 93/7) (b) Li2NiBr4, 

THF, 0 °C, 24 h (87%) (c) TESOTf, 2,6-lutidine, CH2Cl2, 0 °C, 20 min (97%) (d) 

PhMgBr, PhLi, HMPA, THF, –78 → 0 °C, 45 min (88%) (e) n-Bu4NF, THF, 0 °C → RT, 

15 min (95%) (f) MsCl, Et3N, CH2Cl2, 0 °C, 10 min (99%) (g) LiAlH4, AlCl3, CH2Cl2, 0 

°C → RT, 2.5 h (85%) (h) H2, ASCA-2 [5% Pd(OH)2/C], THF, MeOH, H2O, RT, 45 min 

(quant.). 

In conclusion, an approach to the stereoselective synthesis of 

isoflavans has been established based on the 1,2-shift of aryl 

groups in flavan-3-ol derivatives and in-situ alkylation by 

organoaluminum reagents. The method was applied in the 

synthesis of (–)-equol (4). 
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