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A new catalyst Co1.5PW12O40 was synthesized with 

perfect catalytic performance of converting methanol to 

ethylene. Under the optimal conditions, both the conversion 

of methanol and the selectivity of ethylene are almost 100%, 

which can avoid product separation process. 

     At the present time, ethylene has been mainly obtained by stream 

cracking of naphtha, natural gas liquid and other light fractions of 

petroleum. Conversion of methanol to light olefins (MTO) is a 

promising alternative process for the synthesis of ethylene. In the 

exploration of catalysts used for the conversion of MTO, a wide 

variety of catalysts were tried for this reaction. As early as in 1977, 

Chang et al in Mobil Company reported that ZSM-5 molecular sieve 
1 could be used as catalyst for MTO reaction. But selectivity of 

ethylene is a very low and some by-products such as hydrocarbon 

and wax are produced. In 1984, USA Union Carbide Company 

synthesized SAPO-34, 2 which is small pore molecular sieve using 

tetraethylammonium hydroxide (TEAOH) as template. SAPO-34 

consists of four elements Si, Al, P and O and their ratio can change 

in a certain range. Using SAPO-34 molecular sieve as the catalyst 

for the MTO reaction, methanol conversion can reach to 100% and 

C2～C3 selectivity is about 80%. What’s more, Ni-SAPO-34 had 

improved ethylene selectivity 3 to 88%. 

      However, SAPO-34 molecular sieve catalyst has its inherent 

defects. Firstly, rapid carbon deposition makes the reaction cycle  
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very short and the SAPO-34 catalyst requires frequent regeneration. 

Therefore, catalyst single-pass lifetime is normally less than 13h 

according to reported literature.4 Secondly, the usage of expensive 

template greatly increases catalyst manufacturing cost. Furthermore, 

ethylene selectivity of 50% and propylene selectivity of 30% can not 

meet the requirement of industrial production.  

In this paper, an original catalyst of Co1.5PW12O40 was 

synthesized and the catalyst was found to show perfect catalytic 

activity and longer single-pass lifetime for MTO reaction. The 

preparation process of Co1.5PW12O40 is much simpler than that of 

SAPO-34.5 The Co1.5PW12O40 catalyst can afford the optimal 

catalytic activity at a very low temperature range of 250℃～350℃, 

whilst the optimal temperature for MTO reaction using other 

catalysts normally in the range of 400℃～600℃. Under the optimal 

conditions, both the conversion of methanol and the selectivity of 

ethylene are 100%, which can effectively avoid the product 

separation and purification process.  

7.5g (2.205 mmol) H3PW12O40 was dissolved in 200mL 

deionized water. The H3PW12O40 solution was heated up to 80℃  and 

then 0.476g (2.10 mmol) CoCO3 was added very slowly to the 

H3PW12O40 solution. The reaction solution was filtrated after stirring 

for 3h. Then the filter liquor was concentrated and crystals 

precipitated out upon evaporating. The crystals were dried at 100℃, 

ground with agate mortar and then sifted with 200 mesh sieve to get 

the final catalyst Co1.5PW12O40. Some preparation steps are referred 

to literature.6 

Methanol-to-Ethylene (MTE) reaction was carried out in a 

continuous tubular fixed-bed micro-reactor at 200℃～350℃ and 

under 0.1 MPa. Helium was purged into tubular reactor to exhaust 

the air inside before the catalyst bed was heated up to the set 

temperature. Methanol was fed in by using helium as a carrier gas, 

which was saturated by flowing it through a methanol saturator 

placed in a thermostatic bath. The helium flow rate and methanol 

container temperature were chosen to give a methanol WHSV of 1.5 

h-1. The products of the reaction were identified by GCMS-QP2010 

Plus equipped with a capillary column of Rxi-5ms and were real-

time detected by GC-7890F equipped with a flame ionization 
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detector (FID) through a six-way valve to connect with the reactor. 

The used catalyst was regenerated by heating at 350oC for 2 h in 

fixed-bed reactor with flowing dried air.  
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Fig.1 X-ray Diffraction (XRD) patterns of Co1.5PW12O40 
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Fig.2 Catalytic performance of Co1.5PW12O40 as a function of time 

on stream (reaction temperature 35 ℃ , reaction pressure 

0.1MPa, methanol WHSV is 1.5h-1, carrier gas He is 60mL/min) 

Fig. 1 shows the XRD patterns of synthesized Co1.5PW12O40. 

The peaks (2θ=8.925°, 28.732°) of Co1.5PW12O40 can be indexed to a 

well defined Keggin structure of heteropolyanions. Table 1 shows 

the effects of reaction temperature on the catalytic performances of 

Methanol-To-Ethylene reaction over Co1.5PW12O40 catalyst. With 

increasing reaction temperature, methanol conversion continuously 

increases and achieves a complete transformation at temperature of 

300℃. At lower temperature of 200℃, the main product is dimethyl 

ether and ethylene is hardly produced. On the contrary, at higher 

temperature of 300℃, the main product is ethylene and dimethyl 

ether is hardly yielded. It is obvious that the yield of ethylene 

dramatically increases and the yield of dimethyl ether rapidly 

decreases with increasing reaction temperature from 200oC to 300 

oC. After regeneration, the used catalyst also exhibits nearly 100% 

methanol conversion and 85.7% ethylene selectivity with 34 h 

single-pass longevity in second run.  

Table 1 Catalytic performance of different temperatures on 

Methanol-To-Ethylene reactiona 

Catalyst Reaction 

Temperature/

℃ 

Methanol 

Conversion/

% 

Product Ⅰ

(CH3OCH3) 

Selectivity/

% 

Product Ⅱ

(C2H4) 

Selectivity/

% 

 

 

 

Fresh  

catalyst 

200 60.3% 97.3% 2.70% 

240 84.6% 33.7% 66.3% 

250 92.1% 26.8% 73.2% 

300 100% 2.90% 97.1% 

350 97.3% 1.6% 95.6% 

Regenerated 

catalyst 

350 98.5% 14.3% 85.7% 

a catalyst is Co1.5PW12O40, reaction pressure 0.1MPa, methanol 

WHSV is 1.5 h-1, carrier gas He is 60 mL/min, methanol conversion 

and products selectivity were the average data within 12 h 

Fig. 2 is the catalytic performance of Co1.5PW12O40 versus 

reaction time on stream at 350℃. At the beginning stage of reaction, 

catalyst activity rapidly increases in terms of increased methanol 

conversion and ethylene selectivity. Thereafter, the catalytic activity 

almost levels off with a methanol conversion of nearly 100% during 

a long period. Meanwhile, ethylene selectivity maintains a very high 

value of about 95% with a slight oscillation. At the end stage of 

reaction, catalyst starts to deactivate. It is evidenced that the catalytic 

activity for ethylene formation decreases gradually with dramatically 

decreasing by-products. During this period, ethylene selectivity is 

almost 100% with no observation of by-products. Nevertheless, 

ethylene yield decreases rapidly due to methanol conversion 

decreases. Consequently, ethylene yield (methanol conversion × 

ethylene selectivity) keeps higher than 90% for a long period of 27h.  

According to literature7, ethylene yield was generally less than 

60% and single-pass lifetime was normally less than 13h. For 

example, there was a best record for the same reaction that ethylene 

yield could reach to 88% with single-pass lifetime of 12h. In this 

connection, the synthesized catalyst Co1.5PW12O40 exhibits superior 

catalytic activity compared to reported catalysts.  

Presumably, this is due to that the “Pseudo-Liquid Phase” 

behavior of Co1.5PW12O40 catalyst shows perfect catalytic 

performance. The “pseudo-liquid phase” behavior is a specific 

character of polyoxometalate. Alcohols and other polar molecules 

are very easy to get into the bulk phase of polyoxometalate because 

heteropoly-anions in the bulk phase of polyoxometalate have a 

certain gap between them. In bulk phase, the reaction is carried 

out just like in liquid phase because of reactant molecular diffusion 

and anionic rearrangement. There are three advantages when 
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catalytic reaction is carried out in catalyst bulk phase (pseudo-liquid 

phase). Firstly, active centers in bulk phase and on the surface of 

catalyst both play catalytic roles. Secondly, the reactant molecules 

or reaction intermediates in pseudo-liquid phase show coordination 

state. Thirdly, reaction often has unique selectivity owing to special 

“pseudo-liquid phase” reaction environment. For Co1.5PW12O40 

catalyst, methanol is easy to enter its bulk phase and catalyzed by 

active centers of bulk phase and surface. Moreover, the special 

catalytic environment leads to extremely high selectivity of ethylene. 
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Fig.3 TPD-NH3 profile of Co1.5PW12O40 

In order to investigate the acid nature of catalyst, the NH3 

adsorption on Co1.5PW12O40 catalyst is shown in Fig. 3. Two peaks 

of NH3 desorption are observed in the TPD-NH3 profiles for fresh 

Co1.5PW12O40 catalyst. One peak appears at relatively lower 

temperature range (128-240℃) and another at relatively higher 

temperature range (240-445℃). However, there is only a very weak 

and broad peak for used catalyst, suggesting that the amount of acid 

sites drop to a very low level after catalyst deactivation. Bronsted 

acid sites generally play the major role because H2O is needed to be 

introduced during the reaction. Prior to using Co1.5PW12O40 catalyst, 

it was completely dried at 100℃. Moreover, methanol ionization 

was also difficult in the reaction process. Therefore, Co1.5PW12O40  

does not have hydrion and it belongs to Lewis acid with relatively 

stronger acid sites. 

Fig.4 shows thermal weight loss of used catalyst in N2 and air, 

respectively. Under the N2 atmosphere, total weight loss is less than 

3%. In air atmosphere, there is about 11% total weight loss. The 

catalyst decreases rapidly at temperatures higher than 400 ℃ , 

because carbon deposition on the catalyst surface is rapidly 

combusted. There is about 10% carbon deposition on the catalyst’s 

surface.  
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Fig. 4 Thermogravimetric analysis (TG) of used 

Co1.5PW12O40 catalyst 

 

In summary, a novel catalyst of Co1.5PW12O40 that can be 

readily synthesized by crystallization method is firstly reported. The 

synthesized catalyst shows extremely high catalytic activity for the 

transform reaction of methanol to ethylene at a relatively lower 

temperature compared with literature. Under the optimal conditions, 

a complete transformation from methanol to ethylene can be 

achieved with almost no by-product formation. Compared to the 

disclosed catalysts for the reaction of methanol to ethylene, the 

Co1.5PW12O40 catalyst shows attractively much higher ethylene 

selectivity and catalyst lifetime. Owing to these advantages, the 

synthesized Co1.5PW12O40 catalyst shows potentially industrial 

application for the transformation reaction of methanol to ethylene.  
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