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We propose an organic field effect transistor (OFET)-based sensor
design as a new and innovative platform for anion detection. OFETs
could be fabricated on low-cost plastic film substrates using
printing technologies, suggesting that the OFETs can potentially be
applied to practical supramolecular anion sensor devices in the
near future.

It is widely acknowledged that the detection of anions is of great
importance to environmental conservation as well as medicinal
chemistry.! For example, excess fluoride (F7) causes crippling skeletal
fluorosis in a number of areas of the world.? Also, phosphates are
known cause of eutrophication. Furthermore, the control of signal
transduction is attained by phosphate groups in phosphorylated
proteins and lipids. In addition, the roles of carboxylates are very
important in pharmaceutical field such as nonsteroidal anti-
inflammatory drugs.* Carboxylate drugs present a significant
environmental burden because of their extensive use. Accordingly,
the development of anion sensors is clearly of great importance.
The monitoring of anions in aqueous media is challenging
because anions are not only larger than their isoelectronic cations,
but they also exhibit various geometries and strong hydration.!
Representative examples of anion-detectable chemosensors in
aqueous systems are metal-ligand coordination,® hydrogen-bonding®
and/or electrostatic interaction’ based anion-sensors. Moreover,
anion sensors based on Lewis acid-base interactions such as
supramolecular boronate esters have also been investigated.® These
research activities centred on colourimetric and/or fluorometric-
based sensors.® Alternatively, we propose a new platform for anion
sensors based on organic field effect transistors (OFETs). To date,
OFET technology has been researched primarily for use in plastic-
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Fig. 1 Schematic structure of the anion sensor based on the extended-gate
type OFET. The extended-gate electrode is functionalised with PBA.

based rollable displays,*° because of their durability, lightweight ar
environmentally friendly manufacturing. However, interest in OFET
and their advantages have now extended beyond informatio:
displays to sensor applications. OFETs possess attractive propertie -
such as printability, simple integration, mechanical flexibility, and
low manufacturing costs; furthermore they can be potential /
applied to wearable and disposable (or recyclable) sensors. As a
result, the research domain for OFET device applications has rece .cly
widened,** allowing for the novel supramolecular anion ser. ~=
platforms proposed here. As an example of anion sensors based o~
OFETs, we decided to employ a phenylboronic acid (PBA) derivativ
(which can bind basic anions) as an anion receptor,’? ari
functionalise it on an OFET gate electrode. In this paper, we are the
first to report an OFET sensor device modified with a supramolecul r
anion receptor.
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For the development of anion sensor devices, we designed an
extended-gate type OFET. In the designed device, a layer of gold (Au)
on a thin plastic film was used as the extended-gate electrode, which
allows us to functionalise its surface with the anion receptor. The
device structure for the extended-gate type OFET is shown in Fig. 1.
The transistor was designed to operate at low voltages®? in order to
avoid electrolysis when immersed in water. For the active layer of
the OFET, we employed a solution-processable organic
semiconducting  polymer  poly{2,5-bis(3-hexadecylthiophene-2-
yl)thieno[3,2-b]thiophene} (pBTTT-Cy6).2* The fabrication details for
the OFET are summarized in Supplementary Information (Sl). The
functionalized PBA on the gate electrode possesses a nitro group in
the m-position to increase the Lewis acidity of boron.’> The
functionalisation of the gate electrode was carried out by immersing
the extended-gate electrode in a methanol solution containing 2-
aminoethanethiol (AET) for preparation of a self-assembled
monolayer (SAM), and then 3-carboxy-5-nitrophenylboronic acid
(CNPBA) with an amide coupling regent in DMF was dropped onto
the electrode. Finally, the electrode was rinsed with DMF, ethanol
and water (see the Sl for details).
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Fig. 2 (a) Photoelectron yield spectroscopy measurements of the gold gate
electrode surface in air. Untreated Au (black circle), 2-aminoethanethiol
(AET)-treated Au (red triangle), 3-carboxy-5-nitrophenylboronic acid
(CNPBA)-treated Au (blue square). (b) Water contact angle measurements
for the Au electrodes.
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We first investigated whether the formation of the AET-SAM
layer and the attachment of CNPBA to the Au electrode by
photoelectron yield spectroscopy (PYS) in air. The results clearly
showed that the work function on the AET-treated Au electrode (4.52
eV) was lower than that of the untreated Au electrode (4.66 eV) (Fig.
2a), suggesting that an electron-donating group (i.e. amino group)
covered the Au surface.’® Moreover, the PYS results after
immobilisation of CNPBA showed a higher work function (4.86 eV)
(Fig. 2a). CNPBA is an electron-withdrawing group, and these results
are in good agreement with a previous report of those of a PBA-
functionalised gold film.1* In addition, we measured the water
contact angle on the surface of the treated Au electrodes using a
contact angle goniometer (Fig. 2b). The water contact angle of the
AET-treated Au electrode (34 + 3.7°) was lower than that of the
untreated Au electrode (38 * 1.2°). In contrast, the CNPBA-treated
Au electrode had a higher water contact angle of 61 + 1.1°. This is
most likely due to the hydrophobicity of CNPBA. Additionally, X-ray
photoelectron spectroscopy (XPS) revealed the presence of carbon,
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Fig. 3 XPS spectra for O1s, N1s, B1s, and S2p regions of the CNPBA-treated
Au electrode.
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Fig. 4 Electric characteristics of the OFET (without the extended-gate) unde,
3 V. (a) Transfer characteristics (/ps-Ves) of the fabricated OFET device. (b)
Output characteristics (/ps-Vbs) of the same device.

oxygen, sulphur, and boron on the gold electrode (Fig. 3). Collectively,
these characterisation results for the Au electrode confirm that
functionalisation of the electrode by PBA was successfully achievec.
The electric properties of the fabricated OFET were measure i
by a source meter. The OFET functioned reproducibly at below 3 v
(Fig. 4). By repetitive measurements, we also found that the OFL
device was stable against the DC bias. (See the SlI). These resul »
mean that the device could be applied to anion sensing in water. W _
next examined the ability of the extended-gate type OFET to deter .
anions. The OFET was connected to the extended-gate electroa
through a copper cable. The gate voltage was applied through a sil* 2r
chloride electrode (Fig. 1). Fig. 5 shows the transfer characteristii : of
the OFET upon the addition of F~ (50 mM) in a MES (=2-(iv
morpholino)ethanesulfonic acid) buffer solution at pH 5.5. The: -
weak acidic conditions are important in avoiding interference of Ot
with PBA.12 As a result, we observed distinct positive shifts in tt
transfer curves with increasing F~ concentrations. The limit ¢~
detection for F~ was estimated to be 0.7 mM.Y” On the other hant
the changes in the field effect mobility and the gate-source currer”
of the OFET devices were very small (See the Sl), suggesting that »-
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Fig. 5 Transfer characteristics (/ps-Ves) of the OFET device upon the addition
of F~ (50 mM) in a MES buffer solution (100 mM) with NaCl (100 mM) at pH
5.5 atr.t. Inset shows the changes in threshold voltage for the OFET device by
fluoride at various concentrations in a MES buffer solution (100 mM) with
NaCl (100 mM) at pH 5.5 at r.t.

degradation of the OFET occurred. These observed positive shifts are
attributed to changes in conductance within the OFET channel by the
negatively charged anionic phenylboronate on the extended-gate
electrode, such that the operating mechanism of extended-gate type
FETs can be explained as an interfacial shift in potential at the
gate/electrolyte interface.*®

Anion selectivity was also investigated using F-, CI~, Br~, AcO~
and H,PO,~, which represent families of biologically and
environmentally important anions. Fig. 6 shows the relationship
between the anion concentration and changes in threshold voltage
(as calculated from the transfer characteristics) (see details of
calculations in the SlI). While the OFET device showed almost all no
responses to Cl~and Br~, significant responses to basic anions such as
F~, AcO~, and H,PO,4~ were observed. The response to basic anions is
attributed to the Lewis acidity of boron in PBA.22 The observed
selectivity and sensitivity are comparable those for PBA-based
fluorescent sensors,’® colorimetric senosors®® as well as
electrochemical sensors?! that have been reported, meaning that the
OFET sensor can electrically read out anion recognition behaviours
of the receptors. We believe that these preliminary results are quite
important because it means that OFETs can be used as a novel anion
sensor platform in the same manner as fluorometric, colourimetric,
and electrochemical sensors. One of the advantages of OFET-based
anion sensors over these other molecular sensors is that OFETs are
readily integrated into a compact device with inexpensive printed
electronic circuits.?? Thus, the expertise we have gathered is
expected to open avenues for the development of more practical
supramolecular anion sensor devices.

In summary, we have succeeded in detecting basic anions in
water using OFET-based sensor functionalised with a PBA derivative.
The observed selectivity and sensitivity was derived from anion
recognition ability of PBA. While we have selected a PBA derivative
as a representative example of anion receptors in this research, we
could similarly functionalize metal-ligand coordination and/or
hydrogen-bonding based anion receptors on the gate electrode.
Although these results are preliminary, we feel they validate the
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Fig. 6 Changes in threshold voltage for the OFET devices by anions at var
concentrations in a MES buffer solution (100 mM) with NaCl (100 mM) at pn
5.5 atr.t. [Anion] = 0-50 mM.

potential of OFETs as a promising platform for anion sensing in
supramolecular chemistry. Further development of these nc...
proposed OFET-based anion sensors is being carried out in ol -
laboratory.
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