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Carbon-substituted isocyanates and isothiocyanates are common building 

blocks in organic synthesis. In contrast, synthetic uses of N-substituted 

isocyanates and isothiocyanates are severely underdeveloped: few have 

been reported and their reactivity had not been compared. Herein, we 

compare the reactivity of blocked (masked) N-isocyanate and N-

isothiocyanate precursors in cascade reactions. Divergent reactivity is 

observed with secondary propargylic and allylic systems, leading to new 

syntheses of imidazolones, thiazolidines, and a tool to form complex 

azomethine imines. 

Carbon-substituted isocyanates are very important reagents in 

chemical manufacturing, and are used as building blocks to 

assemble agrochemicals, pharmaceuticals, polyurethanes, 

etc.
1
 Over 100,000 publications and patents describe uses of C-

isocyanates, and >10 million tons are used annually in 

polyurethane production alone. In stark contrast, N-

substituted isocyanates have only been a scientific curiosity 

(<60 publications!)
3c

 and their synthetic potential remains 

severely underdeveloped. Their amphoteric / 

ambident nature, which results in a tendency to dimerize, can 

likely explain this scarcity. However, we have recently shown 

that controlled reactivity is possible using blocked N-

isocyanate precursors, which form the desired N-isocyanates 

in situ upon heating or using base catalysis. Using this 

approach allowed the development of alkene cycloaddition 

reactions,
2
 and of several cascade reactions forming nitrogen 

heterocycles possessing the NNCO motif.
3
 These latter 

provided syntheses of saturated nitrogen heterocycles,
3a

 

amino-hydantoins,
3b

 acyl-phtalazinones,
3c

 acyl-pyrazoles
3c

 and 

azauracils.
3c

 Importantly, this work also allowed a comparison 

of the reactivity of different N-substituted isocyanates (amino-

, imino- and amido- N-isocyanates). Naturally, we became 

interested in using their sulfur analogues, N-isothiocyanates,
4
 

in heterocyclic synthesis.
5
 In a recent study, we have reported 

a single example of a cascade reaction involving an -amino 

ester and a blocked N-isothioisocyanate reagent to form a 

thiohydantoin (Scheme 1, top).
3b

 This work highlighted the 

need for a thorough study of N-isothiocyanate reactivity and 

for a comparison with N-isocyanates (which to the best of our 

knowledge has not been reported in the literature). Herein, we 

report such a study highlighting the divergent reactivity 

observed in cascade reactions of N-isocyanates and N-

isothiocyanates, forming imidazolones and thiazolidines 

products under similar conditions with propargylic amines 

(Scheme 1, bottom). In addition, we show that only N-

isothiocyanate precursors are effective to form complex 

azomethine imines upon heating with allylic amines. 
Scheme 1. Divergent Reactivity of N-isothiocyanates  

 

 

  

 

 

 

 

 

 

 

 

 

  

 We were drawn to the use of secondary propargylic amines 

in cascade reactions as we felt that the intermediate formed 

by addition on the N-isocyanate or N-isothiocyanate could 

undergo a 5-exo-dig cyclization (Scheme 1, bottom). Either 

nitrogen or oxygen (sulfur) (X = O, S) could attack the alkyne, 

and double bond isomerization also offered the possibility of 

forming an aromatic heterocycle. Such cascade reactivity 

would also allow the formation of biologically active 

compounds
6
 more readily than the typical cyclizations 

approaches used for the synthesis of imidazolones
7
 and 

thiazolidines.
8
 Thus we decided to first optimize the reaction 
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conditions using a hydrazone-based N-isocyanate precursor 1a 

and N-methylpropargylamine under thermal conditions (Table 

1). In parallel, N-isothiocyanate was subjected precursor 1q 

similar reaction condtions (Eq 1). 

Table 1 : Optimization of N-isocyanate cascade involving N-methylpropargylaminea 

 

Entry Source Temp. 

(°C) 

Base Time (h) Solvent Yieldb 

(%) 

1 μW 100 none 3 MeCN 5 

2 μW 100 Et3N  1 MeCN 79 

3 μW 100 Et3N 2 MeCN 87 (86) 

4 μW 100 Et3N 3 MeCN 90 

5 μW 150 Et3N 2 MeCN 86 

6 Oil bath 100 Et3N 14 PhCF3 68 

a) Conditions: Hydrazone (1.0 equiv), N-methylpropargylamine (1.1 equiv.), base 

(20 mol%) and MeCN (0.3 M) were added to an oven-dried microwave vial heated 

in oil bath or microwave (μW) reactor. b) NMR yield base on 1,3,5-

trimethoxybenzene internal standard, isolated yield in parentheses.  

  

 

 

 

 Our first cyclization attempt under microwave (W) 

irradiation at 100 °C yielded only 5% of the heterocycle, with 

mostly the uncyclized semi-carbazone
9
 adduct being formed 

(75%). It was hypothesized that base could help the cyclization 

as reported by Lubell using NaH.
7k

 However, it was also 

expected that in the presence of a mild conjugate acid double 

bond isomerization could occur. Gratifyingly, using 20 mol % of 

Et3N led to a 79% yield of the aromatic imidazolone 2a (Table 

1, entry 2). Remarkably, this cascade reaction involves: 1) 

Isocyanate formation; 2) Addition of the amine; 3) Cyclization; 

and 4) Isomerization to form the desired aromatic 

imidazolone. The optimal conditions were found to be 2 hours 

at 100 °C (entry 3-5).  It was also observed that the reaction 

proceeds with conventional heating, but required longer 

reaction times when PhCF3 was used as solvent (entry 6). In 

parallel, the related reaction of N-isothiocyanate precursor 1q 

was attempted (Eq 1). In contrast to the N-isocyanate cascade, 

the sulphur atom cyclized on the alkyne to provide the 5-

membered thiazolidine ring, with some product isomerizing 

after cyclization. Unfortunately, the 1.7:1 exo:endo ratio did 

not change significantly in the other conditions tested for this 

cascade reaction (see supplementary information). Despite 

this, we had optimized conditions in hand, and then looked at 

the impact of the N-iso(thio)cyanate structure on these 

cascade reactions (Table 2). 

 Gratifyingly, a variety of N-isocyanate precursors react 

efficiently with N-methylpropargylamine to form the amino-

imidazolones (Table 2). First, the reactivity of several aromatic 

aldhydrazones was explored (2b-2h). Electron-rich and 

electron-poor aromatic and heteroaromatic N-isocyanate 

precursors were well tolerated, and yielded the desired 

imidazolones in 80-92% yield. Substrate 2e, possessing an 

ortho-phenol moiety, also cyclized efficiently. More complex 

hydrazones can also be used, such as a N-isocyanate precursor 

possessing the azumolene
10

 bicyclic core which rapidly formed 

the drug analog 2h. The reactivity of ketohydrazones was then 

surveyed, and showed that imidazolones can again be formed 

in high yield (73-86%, 2i-2n). A bulky hydrazone precursor 

proved a competent reagent (2k), and both electron-rich (2i) 

and electron-poor (2l) substrates cyclized with similar 

efficiency. Finally, an aliphatic hydrazone also generated the 

desired heterocycle (2m), albeit in a slightly lower yield. In 

contrast, the structure N-isothiocyanate precursor had an 

impact on product distribution. Indeed, using a fluorenone-

derived N-isothioisocyanate precursor also led through 

cyclization via addition of the sulfur atom, but no 

isomerization occurred resulting in the selective formation of 

product 2n possessing an exocyclic alkene, and for which a X-

ray structure was obtained.
‡
 Similar reactivity was also 

observed other thiosemicarbaones (2n, 2o).  

Table 2.  Hydrazone scope for the cascade reactions, using N-methyl propargylamine
a
 

 

 

 

 

 

 

 

 

 

a) Conditions: Hydrazones (1.0 equiv), N-methylpropargylamine (1.1 equiv.), Et3N 

(20 mol%) and MeCN (0.3 M) were added to an oven-dried microwave vial and 

heated at 100 °C for 2-6 hours. 

 The scope of propargylic amines was then performed using 

N-isocyanate and N-isothiocyanate precursors (Table 3). This 

study was performed using benzaldehyde-derived N-

isocyanate precursor 1a and fluorenone-derived N-

isothioisocyanate 1n. Both precursors could be obtained in 

multigram quantities without the need for purification by 

column chromatography. Interestingly, the cascade reactions 
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with N-isothiocyanate precursor 1n are more efficient (68-

91%), and significantly less sensitive to variations in the 

structure of the propargylic amine than the N-isocyanate 

reactions (37-85%). Nevertheless, reactions with propargylic 

amines possessing N-benzyl group, N-alkyl chains with an 

ester, a nitrile or a free hydroxyl group, N-aryl groups, and also 

an internal phenyl-substituted alkyne all delivered the desired 

thiazolidines or imidazolones. Interestingly, the use of the 

internal alkyne to form thiazolidine 4h appeared to be 

beneficial to the cascade reaction (91%). In contrast the N-

isocyanate cascade using the internal alkyne led to a modest 

34% yield of the desired imidazolone 3h, as substitution 

partially prevented the isomerization (25% of the exocyclic 

imidazolinone 3i was also formed). Overall, a comparison of 

the reactivity shows that cascade reactions of N-

isothiocyanates are more robust likely due to a more facile 

cyclization. 

Table 3.  Divergent heterocyclic synthesis using N-isocyanates and N-isothiocyanates: Scope using several propargylic aminesa 

 

 

a) Condition: Hydrazones (1.0 equiv), propargylamines (1.1 equiv.), Et3N (20 mol%) and MeCN (0.3 M) were added to an oven-dried microwave vial and heated at 100-

150 °C for 2-6 hours, b) Based on NMR yield C) Yield for product with an exocyclic alkene. Flu= fluorenyl 

 We then became interested in the possibility that a 

reaction could also occur with allylic amines, and probed this 

using diallylamine. The results are shown in Scheme 2. 

 
Scheme 2. N-isothiocyanate precursor allowed a [3+2] cycloaddition of in-situ 
generated azomethine imines 

  

 A reaction cascade was observed for N-isothiocyanate 

precursor 1n, and in contrast only amine addition was 

observed using either N-isocyanate precursor 1k (HLG = PhOH) 

or the parent urea 5 (HLG = ArNH2). Using 1n a new cascade 

reaction occurred to form 6a. Similar reactivity was also 

observed with N-cyclohexyl allylamine, but the reaction 

required 4 hours at 150 °C likely due to conformational issues.  

This reactivity provides a new tool for the generation of 

complex azomethine imines from simple precursors, that is 

unprecedented in the broad literature on azomethine imines.
11

 

In contrast to the pioneering work of Overman
12

 who formed 

related dipoles via acid-catalyzed proton-transfer on simple 

thiosemicarbazones, azomethine imine formation occurs 

under mildly basic conditions.  

 In summary, we compared the ability of rare N-isocyanate 

and N-isothiocyanate amphoteric intermediates to engage in 

cascade reactions with propargylic and allylic amines.  

The reactions of N-isocyanates with propargylic amines 

allowed the direct synthesis of imidazolones. In contrast, with 

N-isothiocyanates cyclization occurred via attack of the 

sulphur atom, and with little to no subsequent isomerization, 

to yield alkene-substituted thiazolidines. Both reactions 

proceeded with various N-iso(thio)cyanates and propagylic 

amines, and showed that the cascade involving N-

isothiocyanates was in general more tolerant of structural 

variations. Synthetically, this work provides a modular 
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synthesis of amino-imidazolones and thiazolidines possessing a 

rare substitution pattern. Finally, exploratory work with allylic 

amines and N-isothiocyanates also provided a new approach 

to form complex azomethine imines in situ. Overall, this study 

highlights key differences in reactivity between N-isocyanate 

and N-isothiocyanate precursors, which can help to develop  

new synthetic uses of these rare isocyanates. Efforts along 

these lines are ongoing and will be reported in due course. 

 We thank the University of Ottawa, NSERC, CFI, and the 

Ontario MRI for generous financial support. J.-F. V.-R., thanks 

NSERC (CREATE on medicinal chemistry and biopharmaceutical 

development and PGS-D) and OGS for scholarships.  
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