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The spiroindimicins are a family of structurally unprecedented
alkaloids isolated from the deep-sea-derived marine actinomycete
Streptomyces sp. SCSIO 03032. The total syntheses of (i)-
spiroindimicins B and C are disclosed, the first of any member of
this family. Central to the successful strategy was installing the
spirocentre using a mild intramolecular Heck reaction, the
assembly of a pentacyclic spirobisindole by Fischer indolization
and a late-stage Schoéllkopf-Magnus-Barton-Zard (SMBZ) reaction
to construct the trisubstituted pyrrole.

Deep-sea organisms have evolved to survive under their extreme
environment by adapting a wide range of their biochemical
processes and metabolic pathways, often assembling secondary
metabolites that are structurally distinct to those produced by
organisms dwelling in shallow waters." A pertinent example is the
deep-sea-derived marine actinomycete Streptomyces sp. SCSIO
03032, which produces a range of structurally unprecedented
natural products2 including spiroindimicins A-D (1—4),3 dichlorinated
bisindole alkaloids possessing unique heteroaromatic frameworks
featuring [5,6] (1) or [5,5] (2-4) spiro-rings (Fig. 1). Biological
evaluation revealed 2-4 are moderately cytotoxic to various cancer

R'=Me, R2=H; Spiroindimicin B (2)
R'=R2?=H; Spiroindimicin C (3)
R = Me, R?=CO,Me; Spiroindimicin D (4)

Fig. 1 Spiroindimicins A-D (1-4).
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cell lines (ICsq ranging from 4 to 12 pg/mL), with 1 showing no
activity.

The combination of an ongoing interest in bisindole alkaloids®
and the unprecedented molecular architecture present in the
the spiroindimicins led us to instigate a program pursuing their
syntheses, initially geared towards the [5,5]-spiroindimicins B
(2) and C (3) (Scheme 1). Spiroindimicin B (2) will be available
by methylation of spiroindimicin C (3), itself secured by the
late-stage the pyrrole ring from
heteroannulation®  of vinylsulfone 5 with  methyl
isocyanoacetate according to Magnus,Sal a mechanistically
identical procedure to the Schéllkopf-Barton-Zard reaction.®’

construction  of

The vinylsulfone 5 will be obtained by oxidation of the
vinylsulfide resulting from subjecting ketone 6 to Mukaiyama’s
protocol,8 which in turn is available from the Yonemitsu
oxidation® of spirobisindole 7. A Fischer indolization is to be
used to construct the spirobisindole 7 from spiroindolinyl
pentanone 8, the all-carbon spirocentre in which will be
installed by an intramolecular reductive Heck cyclization10 of 9,
itself acquired by alkylation of iodoaniline 10 with bromide 11.
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Scheme 1. Retrosynthesis of spiroindimicins B (+)-2 and C (+)-
3; Ts = p-toluenesulfonyl.
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The first task was to assemble the intramolecular Heck
precursor 9 (Scheme 2). The alkylation of iodoaniline 10! with
bromide 112 proceeded through the Sy2 pathway13 to give the
desired product 9. Upon subjecting 9 to reductive Heck
conditions (HCO,Na as the hydride source), the spiroindolinyl
pentenone (%)-12 was formed, the result of a ‘normal’ Heck
reaction and migration of the double bond. The formation of
‘normal’ Heck products under reductive conditions is due to
rapid syn-B-hydride elimination occurring before the reduction
with isomerization of the double bond resulting from
reinsertion of the hydridopalladium species into the alkene
and subsequent migration.ls'16 Interestingly, silver nitrate’
could be added to the reductive conditions to increase the
yield of (+)-12 (63% vs 93%). In this case, the double bond was
not required and (%)-12 was readily hydrogenated to 8 in
excellent yield.

With the spiroindolinyl pentanone 8 in hand, the stage was
set for the critical Fischer indolization (Scheme 3). Upon
heating a solution of 8 and 4-chlorophenylhydrazine in acetic
acid to reflux, the spirobisindole 7 was obtained in excellent
yield, demonstrating the timeless utility of this classic reaction
in complex natural product synthesis.”® The spirobisindole 7
resisted conversion to ketone 6 under classic Yonemitsu
oxidation conditions® (DDQ, THF-H,0, RT to reflux), leaving the
substrate 7 untouched and an alternative bromination-
hydrolysis strategy was performed accordingly.19 N-Protection
of 7 gave 13 which upon radical bromination followed by
immediate hydrolysis gave alcohol 14 (inconsequential mixture
of diastereomers) that was oxidized to ketone 15 (69% over 3
steps from 13).

Attention then turned to the conversion of ketone 15 to
the SMBZ precursor, with the initial plan to convert ketone 15
to the vinyIsquide8 that upon oxidation would deliver the
vinylsulfone 16 (Scheme 4). Although the conditions from the
initial report8 (1 equiv. TiCls, 2 equiv. Et3N, 1.1 equiv. thiol)
failed to effect any reaction on ketone 15, when an excess of
each reagent was employed the thioketal 17 was formed,
which underwent oxidation-elimination® to give a mixture of
vinylsulfone 16 and vinylsulfoxide 18 (1.3:1), with extended
reaction times and additional oxidant failing to drive the
reaction to completion. The critical SMBZ reaction’ of 16 with
methyl isocyanoacetate proceeded smoothly to give 19,
securing the complete heteroaromatic framework of the [5,5]-
spiroindimicins, as confirmed by X-ray analysis.”* Although the
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Scheme 2. Constructing the spirocentre; Reagents and

conditions: a) NaH, TBAI, THF, 0 °C to RT, 3 h; 81%; b) Pd(OAc),
(20 mol %), HCO,Na, TBAC, AgNOs, NMP, RT, 3 h; 93%; c) Pd/C
(10 mol %), H, (balloon), EtOAc, RT, 1 h; 99%. TBAI = tetra-n-
butylammonium iodide, TBAC = tetra-n-butylammonium
chloride hydrate, Ts = p-toluenesulfonyl.
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Scheme 3. Fischer indolization and ketone formation;

Reagents and conditions: a) AcOH, 110 °C, 40 h; 75% of 7; b)
Boc,0, DMAP, THF, RT, 1 h; 96%; c) NBS, AIBN (5 mol %), CCl,,
65 °C, 2 h; d) THF-ag. NaHCO;s (3:1), RT, 1 h; e) MnO,, CH,Cl,,
RT, 16 h; 69% over 3 steps. Boc,0 = di-tert-butyl dicarbonate,
DMAP = 4-dimethylaminopyridine, NBS = N-bromosuccinimide,
AIBN = azobisisobutyronitrile, Ts = p-toluenesulfonyl.

vinylsulfoxide 18 could be oxidized to the vinylsulfone 16, it
was itself a viable substrate®® for the SMBZ reaction (31% of
19).
without incident to give spiroindimicin C (%)-3, which upon
reductive amination delivered spiroindimicin B (%)-2. The
spectroscopic data for the synthetic samples of spiroindimicins
B and C were in agreement with the literature data®>*® and
with authentic samples of the natural products.23

In summary, the first total syntheses of spiroindimicins B
and C have been achieved, which serve to confirm the unique
heteroaromatic structure of these deep-sea derived natural
products. Some observations with implications beyond this
synthetic study 1) construction of all carbon
spirocentre using an intramolecular Heck reaction under mild,
reductive conditions promoted by silver(l); 2) successful
application of the Fischer indolization to construct a
pentacyclic spirobisindole; 3) a late-stage SMBZ reaction using
both a vinyl sulfoxide and a vinyl sulfone to form a
trisubstituted pyrrole.

Removal of the protecting groups from 19 proceeded

include:

This journal is © The Royal Society of Chemistry 20xx
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Scheme 4. Total syntheses of spiroindimicins B and C by late-
stage SMBZ reaction, with X-ray crystal structure of 19 (N-

protecting groups omitted for clarity); Reagents and
conditions: a) TiCl, (3 equiv.), EtsN (10 equiv.), 4-
methylbenzenethiol (3.7 equiv), RT, 2 h; 78%; b) m-

chloroperbenzoic acid (5 equiv.), K,CO; (excess), CH,Cl,, 0 °C to
reflux, 24 h; 70% (16:18 = 1.3:1); c) m-chloroperbenzoic acid
(1.1 equiv), K,CO; (1.5 equiv), CH,Cl,, RT, 3 h; 70%; d)
potassium tert-butoxide (4 equiv.), THF, 0 °C to RT; 62% from
16, 31% from 18; e) sodium naphthalenide, THF, -78 °C, 15
min; f) AlCl;, CH,Cl,, RT, 30 min; 67% over 2 steps; g) 37% ag.
formaldehyde, NaBH3;CN, AcOH, MeOH, RT, 15 min; 92%. STol
= p-toluenesulfenyl, S(O)Tol = p-toluenesulfinyl, Ts = p-
toluenesulfonyl.
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