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Serum peptide profile contains important bio-information which 

may help disease classification. The motivation of this work is to 

take advantage of porous silicon microparticles with multiple 

surface chemistries to reduce the loss of peptide information and 

simplify the sample pretreatment. We developed a multi-

dimensional on-particle MALDI-TOF technology to acquire high 

fidelity and cross-reactive molecular fingerprints for mining 

disease information. Peptide fingerprint of serum samples from 

colorectal cancer patients, liver cancer patients and healthy 

volunteers were measured with this technology. The featured 

mass spectral peaks can successfully discriminate and predict the 

multi-category disease. Data visualization for future clinical 

application was also demonstrated. 

Human diseases are biological states caused by multiple 

components of perturbed pathways and regulatory networks 

rather than individual failing components.1 The constituents of 

serum sample are derived from diverse biological processes and 

many of them are logically linked with the complex physiological 

changes associated with disease.2, 3 Therefore, to reveal the 

complexity of molecules variation occurred in disease progress, 

innovations in analytical technologies are urgently needed. Serum 

peptide profile has been known as the “fingerprint library” which 

containing important bio-information.4 By analyzing and 

comparing differences in the expression of serum peptides 

between target disease and normal healthy population, multiple 

different-expressed serum peptides can be therefore mapped out.5 

However, acquiring serum peptide fingerprints with high fidelity 

is quite difficult, as the concentration and nature of serum 

peptides have a large dynamic range. Numerous technologies to 

capture and enrich serum peptides have been developed in recent 

years. For example, magnetic beads,6-8 porous particles,9-13 and 

carbon-based nanomaterial have been used for peptide 

enrichment.14-17 Following by the sample pretreatment steps, 

mass spectroscopic technologies are usually required to profile or 

identify those captured peptides. Multi-dimensional liquid 

chromatography coupled with electrospray ionization (ESI) mass 

spectrometry (MS) is undoubtedly the most powerful technology 

to acquire high authentic peptide information owing to its strong 

separation capability. However, this technology is not appropriate 

for large scale clinical screening. Matrix-assisted laser 

desorption/ ionization time-of-flight mass spectrometry (MALDI-

TOF-MS) is a fast and high throughput technology for analyzing 

metabolites/ peptides in clinical samples. But the resolution of 

MALDI-TOF is significantly lower than that of LC-MS due to 

the lack of chromatographic separation step. The complexity of 

biological samples will impose severe interference and thereby 

decrease the authenticity of molecular pattern. Therefore, 

innovation in sample pretreatment and ionization technology is 

urgently needed for the MALDI-TOF analysis. Surface-enhanced 

laser desorption/ionization (SELDI) chip has been 

commercialized as a suitable tool for serum peptide profiling, 

since a SELDI chip can capture a fraction of peptides based on 

their specific surface chemistry.18, 19 However, the surface of 

SELDI chip is none porous, which cannot exclude large proteins. 

Meanwhile, the efficiency of laser desorption/ ionization of 

SELDI chip was not improved. In the present work, we 

developed an “on-particle” detection technology to profiling 

peptide fingerprint. Porous silicon microparticles (PSMPs) with 

ordered pore channel and accurate cutoff pore size can selectively 

capture peptides below a specific molecular weight. Furthermore, 

peptides captured on PSMPs do not need to be eluted from the 

particles. The captured molecules can be ionized on the PSMPs 

by MALDI technology with enhanced peak intensity . In order to 

increase the capacity of molecular information, PSMPs were 

functionalized with different surface chemistry, which will have a 

cross-reactive affinity for peptides with different pI, 

hydrophobicity, and ligand complexity. As a proof of concept 

work, we use three types of surface chemistry to demonstrate the 

advantage of the multidimensional on-particle (MDOP) detection 

technology. The porous silicon with quaternary ammonium 

groups (Q-pSi) and carboxylation porous silicon (C-pSi) were 

designed to capture negative and positive charged peptides, 

respectively, while the Au coated PSMPs (Au-pSi) target to 

peptides with rich cysteine residues or other metal affinity group. 

The goal of this work is to take the advantage of MDOP detection 

technology to rapidly acquire overlaid peptide profiles for reliable 

disease prediction. Serum samples from colorectal cancer (CRC) 

patients, liver cancer patients and healthy volunteers were tested 

with the MDOP detection technology. The results demonstrated 

the three groups of clinical samples can be successfully 

discriminated based on the featured mass spectral peaks obtained 

from different surface chemistry.  

The whole procedure for peptide profiling based on the MDOP 

technology is illustrated in Scheme 1. The detail method for the 

particle preparation and surface modification is described in 

supporting information. SEM images of the PSMPs surface 

before (see Fig. S1A, ESI†) and after surface modification (see 

Fig. S1B~D, ESI†) indicate that the uniform pore structure 

retained after the particles was modified. The particle size was 30 

- 50 μm measured by optical microscopy (see Fig. S2, ESI†). The 

surface chemistry of PSMPs was confirmed by X-ray 
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photoelectron spectroscopy (see Fig. S3, ESI†). The fresh etched 

PSMPs sample shows Si 2p, Si 2s, and a low-intensity C 1s peak, 

which is mainly due to adventitious carbon contamination. The Si 

2p peak was observed at about 103 eV due to the partial oxidation 

of PSMPs. For the carboxyl surface, the relative intensities of the 

C 1s and O 1s lines increase concomitantly with a decrease in the 

intensity of Si 2p and Si 2s lines. As for the Q-pSi sample, a low-

intensity of N 1s peak at 402.0 eV was observed. For the Au-pSi, 

a high-intensity of Au 4f double-humped peak is shown at 83.8 

and 87.5 eV. The surface chemistry of Q-pSi and C-pSi were also 

proved by diffuse reflectance infrared Fourier transform spectral 

(see Fig. S4, ESI†). 

 
Scheme 1 Schematic procedures for the preparation and application 

of PSMPs in serum peptide profiling. 1) Porous Si film was prepared 

by an electrochemical etch of a crystalline silicon wafer. 2) The 

porous layer was removed and fractured into microparticles in an 

ultrasonic bath. 3) The particles were chemically modified with 

different functional group to impart affinity for peptides and to 

stabilize the porous nanostructure. 4) After incubation and washing, 

the microparticles laden with peptides were isolated and spotted on a 

MALDI plate and then subjected to on-particle detection with 

MALDI-TOF MS. 

 
Figure 1 An example that shows the on-particle cross-reactive affinity of 

PSMPs with different surface chemistry. (A) The normalized MS 

spectrum from the same serum sample enriched and detected on PSMPs 

with three different surface functionalities. (B) Relative peak intensity of 

selected four peaks (m/z ratio: 4065, 6435, 6635, and 8600) marked in A. 

To confirm that PSMPs with different surface chemistry 

could have a cross-reactive affinity for different peptides, the 

mixture of RGDC (pI = 6.2, MW = 450 Da), TP2 (pI = 10.8, 

MW = 1.49 kDa), and insulin (pI = 5.3, MW = 5.8 kDa) were 

detected with the MDOP technology. RGDC peptide was 

chosen for its cysteine group that can be strongly bonding 

with Au-pSi. While TP2 and insulin was selected as positive 

and negative charged peptide in physiological condition, 

respectively. The mass spectra indicate that the relative peak 

intensity of TP2 and insulin is apparently different on C-pSi 

and Q-pSi, respectively(see Fig. S5B, ESI†). The results are 

complied with the discipline of electrostatic interaction 

mechanism.  When Au-pSi was used, both the TP2 and insulin 

peaks increased in relative to the control experiment due to 

the localized surface plasmon resonance effect of Au layer. 

However, the intensity of RGDC peak on Au-pSi was lower 

than that on the other materials (see Figure S6-S7, ESI†). The 

special phenomena observed on Au-pSi could be ascribed to 

the strong interaction between Au and sulfhydryl group in 

RGDC. The too strong Au-S bonds may hinder the peptides 

from ionization on the Au-pSi, resulting in the reduction of 

signal intensity. Nevertheless, these model peptides confirmed 

that cross-reactive affinity exists on different surfaces, which 

is sensitive to the chemical nature of peptides. 

For real serum sample analysis, the advantage of on-particle 

detection methods is significant. The PSMPs with different pore 

size display excellent size exclusion effect in serum analysis due 

the well-controlled pore size (see Fig. S8, ESI†). The PSMPs can 

eliminate the interference from larger proteins (see Fig. S8 , 

ESI†). On the contrary, when the serum sample was directly 

spotted on MALDI plate without PSMPs pretreatment, only few 

peaks can be detected (see Fig. S9A, ESI†). The on-particle 

detection method can also avoid the dilution of analytes during 

the elution step. Meanwhile, the semiconductor nano-structure 

may help to enhance the energy transfer efficiency within the 

particles, leading to the improved signal intensity. To clarify the 

advantage of on-particle method, serum peptides enriched by 

PSMPs were eluted using 5 μL of the solution (50 % ACN 

aqueous solution + 0.1 % TFA), which was subsequently 

subjected to conventional MALDI detection. Compared with on-

particle detection method (see Fig. S9B, D, F, ESI†), the peak 

number and signal to noise ratio found in the eluted sample 

decreased significantly (see Fig. S9C, E, G, ESI†). The results 

may not only be caused by the dilution of peptides during the 

elution step,20 but also due to the irreversible adsorption and low 

ionization efficiency of peptides on a conventional MALDI plate.  

To acquire more peptides information, a serum sample was 

incubated with the three types of PSMPs, which were 

subsequently detected with the on-particle method. PSMPs 

with a specific surface chemistry can generate high quality 

and distinguishable peptide profile (Fig. 1A), since the PSMPs 

can effectively exclude the interference from large molecular 

weight protein and sequester a subset of peptide according to 

their surface chemistry. To display the cross-reactive 

characteristics of peptide fingerprint obtained with the MDOP 

technology, four peaks was selected and their relative signal 

intensity detected on three types of PSMPs was compared. On 

the Q-pSi, a high signal intensity at m/z = 4065 was observed, 

whereas on the C-pSi surface, with the peak at m/z = 8600 

increased significantly. The Au-pSi produced a larger signal at 

the m/z = 6435 and 6635 (Fig. 1B). The results suggest that 

surface chemistry exert a great effect on the signal intensity, 
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inferring that the complementary peaks found on different 

surface chemistry can significantly increase the capacity of 

molecular information. Theoretically, the three-dimensional 

surface can produce triple peak information compared to that 

on the one-dimensional surface. The expanded peak 

information may help to enhance the ability of disease 

prediction and diagnosis based on molecular fingerprint.  

Table 1 The number of m/z values that obtained after student’s t test 

(p < 10-7). 

Groups Q-pSi C-pSi Au-pSi 

CRC vs health N/A 7 peaks 9 peaks 

Liver cancer vs health 12 peaks N/A 11 peaks 

CRC vs liver cancer 25 peaks 5 peaks N/A 

Table 2 Biomarker candidates those calculated using ClinProTools 

and matched with the peaks screened by student’s t test.  

Groups Q-pSi C-pSi Au-pSi 

CRC vs health 3444 
535 

2210 
3161 

8640 
8820 
8700 

Liver cancer vs 
health 

4065[a] 
8127 
2710 

3242 
4286 

1530 
8820 
3170 

CRC vs liver 
cancer 

8127 
4065 
8600 

8129 
3242 
3161 

8700 

Total peaks 5 peaks 6 peaks 5 peaks 

[a] The peaks highlighted in bold italic type are selected to be the final 

feature subset. 

Although, in some binary classification cases, one type of 

disease sample can be successfully discriminated from health 

control just based on a subset of peptides enriched with solo 

surface chemistry.21, 22 Nevertheless, in practical clinical 

diagnosis, multi-category disease classification is always 

encountered. To deal with the multi-category problem in 

cancer prediction, a total of 72 serum samples were analyzed 

with MDOP detection technology. Among them, 24 were from 

patients with CRC, 24 from liver cancer patients, and 24 from 

healthy volunteers. Patients were diagnosed according to the 

standard diagnosis criteria23,24. Demographic features of all 

the patients and healthy volunteers are provided in Table S1. 

The raw spectra were processed using FlexAnalysis software 

(Bruker Daltonics Corp.) to eliminate the impact of 

background and remove noise interference (see Fig. S10, 

ESI†). With these data in hand, disease information can be 

mined with statistical method. 

The data analysis here involved three stages: (i) peak 

detection and alignment using student’s t test; (ii) selection of 

differently expressed peaks among the three groups and 

validate the classification by cluster analysis; (iii) sensitivity 

and accuracy examination for the predictive model generated 

from serum profiling data with neural network software (see 

ESI†). In the first stage, for each pair of classes, the number 

of the selected mass spectral peaks (p value < 10-7) was listed 

in Table 1. We found that three groups (health, CRC and liver 

cancer) could not be simultaneously distinguished in one type 

of surface chemistry. For example, when using Q-pSi only, the 

CRC patients and health volunteers could not be discriminated. 

Therefore, for the discrimination of multi-category disease, 

multi-dimensional detection was so necessary that the disease 

information hidden in the serum profile can be revealed. We 

subsequently used ClinProTools to find the features with the 

best accuracy from the obtained feature subset. The spectral 

overlays of the 16 most distinct mass spectral peaks listed in 

Table 2 were shown in Figure S11. Combined with the 

selected peaks screened by student’s t test, a final feature 

subset was sorted out (shown in bold italic in Table 2) 

according to the order of p value given by ClinProTools. 

If the features selected from one type of PSMPs were used only, 

a misclassified result was observed on the cluster map (see Fig. 

S12, ESI†). In contrast, by using all the 9 features selected from 3 

types of surface chemistry, a high accurate classification can be 

obtained (Fig. 2). The cluster tree indicates that serum samples 

from the CRC patients, liver cancer patients and those from the 

healthy controls appear in separate clusters with only two 

exception (healthy volunteers No. 27 and No. 35 with black 

branches were misclassified as liver cancer patient and CRC 

patient, respectively). It is important to note that the feature 

selection was based on prediction accuracy, not on the order of 

index as shown in Table S2-S4. The 9 peaks were further set as 

the input layer of Artificial Neural Networks to generate a 

prediction model. Validation using training data was performed to 

estimate the error rates of this model (see Fig. S13A, ESI†). The 

percentage of correctly classified training and test data indicated 

that, for CRC group, the specificity is 96 %, the sensitivity is 

100 %, and the false positive predictive value is 4.2 %, 

respectively (Fig. S13B, ESI†). Furthermore, the serum profiles 

allow us to visualize differences in the molecular fingerprints of 

multi-category diseases. The radar chart shows  that the  traces of  

 
Figure 2 Cluster analysis and heat map view of mass spectra data selected 

from NPMPs with different surface chemistry. Serum samples are from 

CRC patients (No. 1~24), healthy volunteers (No. 25~48) and liver cancer 

patients (No. 49~72). The red, black and green color in the heat map 

represents high, medium, and low peak intensity, respectively. Branches 

and clusters in the cluster tree are color-coded: CRC patients in red; 

healthy person controls in black and liver cancer patients in blue. 
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Figure 3 Digital color maps of 3 most significantly different peaks. 

(A) The normalized intensities of the selected peaks, 8127 (red line), 

535 (green line), and 8640 (blue line); (B) Digital color map created 

by the selected peaks in RGB color mode, with the R (8127), G (535), 

and B (8640) values set as the normalized peak intensity of each 

patients using MATLAB software. 

the three groups are significantly different from each other 

(see Fig. S14, ESI†). By picking out the feature peak ranking 

first on each type of surface chemistry (see Table S2-S4, 

ESI†), three most significantly different peaks were obtained. 

The m/z of the three candidates were 8127 (from Q-pSi), 535 

(from C-pSi), and 8640 (from Au-pSi). The normalized 

intensities of the three peaks (Fig. 3A) were set as R (8127), 

G (535), and B (8640) values in RGB color mode using 

MATLAB software. A digital color map could allow to 

directly “see” the disease information hidden in serum (see 

Fig. 3B). We can suggest that one shown in “red” may be a 

CRC patient, while, the one shown in “blue” have a great 

chance to be a liver cancer patient. Thus, this data 

visualization approach could be conveniently used in 

diagnosis and distinguish multi-category diseases in the future. 

In summary, we have developed a MDOP detection 

technology to acquire high fidelity and expanded molecular 

information for disease mining. With the assistance of 

artificial intelligence learning algorithms, a combination of 

the selected mass spectral peaks from different surface 

chemistry can be selected. These candidate biomarkers display 

high accuracy for the multi-category disease classification. 

This method does not care about identities of each peak 

candidate, but rely on the differences in the pattern of selected 

peaks, which can be either statistically classified or visualized 

with chart and color. By integrating molecular fingerprints 

data with other clinical data, early screening, diagnosis, and 

management of cancer disease will be potentially realized. We 

believe this is a promising area in translational medicine. 
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