
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

www.rsc.org/pccp

PCCP

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


1 

 

First principles investigation of the activity of thin film Pt, Pd and Au surface 

alloys for oxygen reduction 

Vladimir Tripkovic1,2,3*, Heine Anton Hansen1, Jan Rossmeisl2, Tejs Vegge1 

1Department of Energy Conversion and Storage, Technical University of Denmark, DK-4000 
Roskilde, Denmark 

2Center for Atomic-scale Materials Design, Department of Physics, Technical University of 
Denmark, DK-2800 Kgs. Lyngby, Denmark. 

3Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 
DK-2100 Copenhagen, Denmark 

Further advances in fuel cell technologies are hampered by kinetic limitations associated with the 

sluggish cathodic oxygen reduction reaction. We have investigated a range of different formulations 

of binary and ternary Pt, Pd and Au thin films as electrocatalysts for oxygen reduction. The most 

active binary thin films are near-surface alloys of Pt with subsurface Pd and certain PdAu and 

PtAu thin films with surface and/or subsurface Au. The most active ternary thin films are with pure 

metal Pt or Pd skins with some degree of Au in the surface and/or subsurface layer and the near-

surface alloys of Au with mixed Pt/Pd skins. The activity of the binary and ternary catalysts is 

explained through weakening of the OH binding energy caused by solute elements. However, given 

the low alloy formation energies it may be difficult to tune and retain the composition under 

operating conditions. This is particularly challenging for alloys containing Au due to a high 

propensity of Au to segregate to the surface. We also show that once Au is on the surface it will 

diffuse to defect sites, explaining why small amounts of Au retard dissolution of Pt nanoparticles. 

For the PtPd thin films there is no pronounced driving force for surface segregation, diffusion to 

defects or surface self-assembling. On the basis of stability and activity analysis we conclude that 

the near surface alloy of Pd in Pt and some PdAu binary and PtPdAu ternary thin films with a 

controlled amount of Au are the best catalysts for oxygen reduction. 

Keywords: Density Functional Theory, oxygen reduction reaction, thin films, platinum, palladium, 

gold, alloys, fuel cell cathode 
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1. Introduction 

The development of new materials in the field of energy conversion and storage is a prerequisite for 

finding an alternative to environmentally detrimental use of fossil fuels. One possible solution is to 

use the Proton Exchange Membrane Fuel Cell (PEMFC). However, the PEMFC technology is not 

cost-competitive with contemporary internal combustion engines due to the high cost of the 

platinum catalyst. Reducing the Pt-loading at the cathode by improving the catalyst performance 

(activity & stability) is a key factor needed for commercialization of the technology. However, the 

Pt loading cannot be reduced without overcoming kinetic limitations associated with the cathodic 

oxygen reduction reaction (ORR) and/or extending the life-time of the catalyst.1,2 Although, the 

maximum theoretical efficiency in PEMFCs is 83%, in practice, the efficiency is about half of the 

theoretical value. The loss of catalytic activity is mainly attributed to surface poisoning of the 

catalyst by water oxidation products. The poisoning shifts the working potential by ca. 0.4 V from 

the equilibrium potential even on the most active Pt-group catalysts.3–7 The stability loss, on the 

other hand, is associated with platinum dissolution under highly corrosive conditions at the PEMFC 

cathodes.2 Several strategies to improve the activity and stability performance have been 

implemented over the past decades. For instance, the Pt activity can be satisfactorily tuned by 

alloying Pt with non-noble metal elements. 8–13 The idea behind alloying is to change the electronic 

properties of the platinum surface in order to retard the onset potential for water oxidation. This, in 

turn, will increase the working potential and the overall efficiency of the cell. Activity 

enhancements might, however, be offset by degradation of the membrane electrode assembly 

caused by leaching-out of base-metals and contamination of the ion-exchange sites in the 

membrane.2 Alloying Pt with metals that have higher dissolution potentials can overcome this 

problem.  

Different alloys of Pt, Pd and Au have previously been investigated as potential catalysts for 

oxygen reduction. In the following section we will examine the current status of research on these 

alloys. The activity of Pt(111) skins on late-transition for the ORR metals has been systematically 

analyzed in the past.14 A Pt(111) monolayer on Pd(111) stood out as the only catalyst whose 

activity surpassed that of Pt(111). The same analysis performed for Pd(111) skins showed no 

activity improvement whatsoever with respect to Pd(111).15,16 Different formulations of PtPd bulk 

catalysts have been synthesized and tested for oxygen reduction. In ref. 17, the authors found that 

non-supported PtPd aerogels exhibited a volcano-type dependence on the Pd content, with the 
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highest activity centered at 20-30% Pd. The virtue of these catalysts is that they combine high 

stability of extended surfaces with high surface area of nanoparticulate catalysts. Other 

nanostructured PtPd alloys have also shown very encouraging results.18–27 Despite the fact that Pt 

and Au are immiscible in the whole concentration range, it is possible to make PtAu alloys using 

specific synthesis procedures.28–30 The activity of PtAu was found to be strongly dependent on the 

catalyst pretreatment. After heating the catalyst in a CO atmosphere or cycling it into the oxide 

formation region, the observed activity was greater than that on Pt.26,28,31–34 The activity 

enhancement was attributed to a reversible surface segregation of Pt induced by CO or O 

adsorbates. Au has a low surface energy and thus naturally prefers to be on the surface. On the other 

hand, CO binds more strongly to Pt, which can stabilize Pt in the surface layer. In addition to 

prompting the activity, Au has shown another beneficial effect on Pt. Small Au clusters added to Pt 

nanoparticles improved its stability by increasing the average nanoparticle dissolution potential.35,36 

PdAu alloys have mainly been used as electrocatalysts for the oxidation of small organic molecules 

such as CO,37 formic acid38,39, ethanol40 or glycerol.41 The only reported study on the ORR activity 

was for PdAu nanowires.42 The PdAu nanowires displayed an approximately two-fold activity 

increase with respect to archetypal Pt. As for the ternary catalysts, there are promising new reports 

for nanoparticles with Pt shell on a Pd core with some additional gold in the subsurface layer.42 The 

role of gold was ascribed to lowering the activity loss during operation. 

In this work using Density Functional Theory (DFT) calculations, we systematically 

investigate different formulations of Pt, Pd and Au binary and ternary thin films for the ORR. We 

establish composition-activity and activity-stability relationships using the binding energy (BE) of 

OH and surface energy of the thin film terminated slab as activity and stability descriptors. 

Furthermore, we discuss stability in terms of how easily the composition can be changed during 

operation and the driving forces behind the change. More specifically, we analyze and compare 

surface segregation energies without the presence of adsorbates and with OH/O at a fixed 1/3 

monolayer (ML) coverage. In addition, we examine the site and distribution preference for 

segregation. The site preference indicates whether solute atoms segregate more favorably to terraces 

or defects. The distribution preference indicates whether solute atoms segregate forming uniform 

distributions, alike those in surface alloys, or distinct solute enriched domains. For establishing the 

composition-activity and activity-stability relationships, we employ the most stable and well-

defined close-packed (111) termination. For the analysis of a defect driven diffusion, we employ the 

stepped (221) surface. 
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2. Results and discussion  

2.1. Binary alloys 

Six binary combinations of Pt, Pd and Au elements are initially investigated, i.e. Pt@PtPd, 

Pt@PtAu, Pd@PtPd, Pd@PdAu, Au@PtAu and Au@PdAu, where composition before the @ sign 

is for core and after for the thin films. Utilizing a √3x√3R30º unit cell size allows the composition 

in each layer to be varied uniformly in increments of 1/3 ML, yielding in total 16 possible 

compositions for the two surface layers. Four possible arrangements of the host and solute elements 

in the surface layer are presented in Figure 1. Two out of six thin films, Au@PtAu and Au@PdAu 

are discarded a priori. These thin films will not be active for the ORR due to the large Au lattice 

constant. Overlaying a Au substrate with a Pt or Pd overlayer will induce a tensile strain in the 

overlayer. This will, in turn, increase the OH BE making the catalysts even more prone to surface 

poisoning. As a result, the ORR activity will decrease.11,16 Hereafter, in order to distinguish between 

different compositions, in the text the thin alloy films are denoted by the composition of the surface 

layer, subsurface layer and bulk using the following nomenclature 1st layer/2nd layer/bulk 

composition. The composition in the 1st and 2nd layer is denoted by the number of atoms in the 

surface unit cell, and bulk composition by the host element symbol. For example, the Pt2Au/Pt3/Pt 

notation denotes a thin film that has two Pt and 1 Au atom in the surface layer, 3 Pt atoms in the 

subsurface layer while rest is bulk Pt. We use the same nomenclature in the figures with a 

difference that the host element is given by color; red for Pt and blue for Pd.  

Figure 1 Four possible atom arrangements of solute and host elements in the surface layer. 
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2.1.1. Activity 

We assume that the ORR follows an associative reaction pathway, which proceeds through the 

following sequence of intermediates O2 → OOH → O → OH → H2O. The BEs of ORR 

intermediates are mutually correlated through the so-called linear scaling relations.43,44 In a 

theoretical view, the ORR activity is determined by the largest thermochemical free energy barrier 

between any two consecutive steps, and can therefore be approximated by the differences in the 

binding free energies of the reaction intermediates assigned to each electrochemical step.45 Hence, 

by utilizing the linear scaling relations, one can get an activity estimation plot based only on the 

binding energy of a single intermediate.43–45 The activity estimation plot is commonly known as a 

volcano plot. The volcano plot is delimited by potentials at which the first electrochemical step 

(right volcano leg), O2 reduction to OOH, and the last electrochemical step (left volcano leg), OH 

reduction to water are in equilibrium, that is, equal in free energy. The activities of the binary alloys 

are presented on the volcano plots in Figure 2 using the OH BE as activity descriptor. The OH BEs 

are calculated with reference to H2O and H2 using calculated zero-point energies and tabulated 

values for entropies (see ref. 45 for more details).  

a)

 

b)

 

c) d)
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Figure 2 Activity estimates for oxygen reduction for different formulations of a) Pt3-xPdx/Pt3-yPdy/Pt 

b) Pt3-xPdx/Pt3-yPdy/Pd c) Pt3-xAux/Pt3-yAuy/Pt and d) Pd3-xAux/Pd3-yAuy/Pd thin films. To span the 

full composition space the number of atoms, x and y, changes independently by increments of 1. 

The points are color-coded depending on the host metal element; those with Pt are red and Pd blue. 

Almost all thin films with the activities greater than that of Pt have at least 1/3 ML solute 

element content in the subsurface layer. The weakening of the OH BE is explained through a ligand 

effect brought about by the subsurface solute atoms. The influence of the ligand effect depends on 

the host and solute elements. It is weak for PtPd and greater for the PtAu and PdAu thin films. For 

thin films that have a high Au concentration on the surface, and are predicted to be very active for 

the ORR (e.g. PtAu2/Au3/Pt), the 4-electron reduction to water will take place through a non-surface 

mediated splitting of the OOH bond.46,47 The strain effect is fixed and given by the metal host. 

Since Pt and Pd have very similar lattice constants, the strain imposed on the surface is similar. The 

influence of the strain effect can be best discerned by comparing data in Figure 2a and 2b.  

The ligand effect of Au is at first glance counterintuitive. Pt or Pd overlayers bind more 

weakly in the presence of subsurface Au, suggesting that the OH BE should be stronger on these 

alloys. The reason why the opposite is seen is because the average number of electrons in the 

surface layer, subsurface layer and OH is further away from fulfilling the octant rule in comparison 

to OH on pure Pt or Pd.48  
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2.1.2. Stability 

Besides the activity, the stability is the most important requirement for making a good ORR 

catalyst. Pt based catalysts suffer greatly from activity loss caused by particle sintering and/or 

dissolution under a harsh cathode environment.2 Here, we show that the stabilities of the binary thin 

films are strongly correlated to their composition. Once an alloy is formed, its composition is 

dictated by the stability under reaction conditions. In the following, we examine the stability-

composition relationships by exploring 1) bulk stability, 2) surface segregation, 3) adsorbate-

induced surface segregation, 4) site preference for diffusion and 5) organization of solute atoms at 

the surface.  

Table 1 Bulk formation energies in eVs specified on a per atom basis. The values left of the (/) sign 
are for relaxed unit cells and on the right for unit cells fixed to the Pt/Pd lattice constant. The values 
with the minus (–) sign are thermochemically favored.  

PtAu3 0.035/0.172 PdAu3 -0.072/0.068 PtPd3 -0.004/-0.003 

Pt2Au2 0.080/0.143 Pd2Au2 -0.072/-0.016 Pt2Pd2 -0.013/-0.012 

Pt3Au 0.054/0.071 Pd3Au -0.035/-0.019 PtPd3 -0.014/-0.014 

 

We start the stability analysis by discussing the calculated bulk alloy formation energies in 

Table 1. We assumed that the alloys crystalize in the face-centered-cubic crystal structure, given 

that this is the native crystal structure of all the metals. Formation energies are a first indication of 

how facile is to retain different compositions. Owing to the low alloying energies, the noble metal 

alloys form solid solutions with no distinct atom arrangements as in the case of e.g. intermetallic 

alloys. The activity of these catalysts is given by a weighted sum of activities over a range of 

possible compositions. As expected, the formation energies are lower when the unit cell is allowed 

to relax than when it is constrained to the Pt/Pd lattice, with the differences increasing with the 

solute element content and generally being higher for Au containing alloys. The latter values are 

more relevant because the surface unit cell of the thin films is fixed to the Pt/Pd lattice constant.  

The change in composition can happen either between different layers or within the same 

layer. In the former case, the change is known as surface segregation and in latter case surface 

diffusion. Surface segregation can be further separated into an intrinsic surface segregation (ISS) or 

adsorbate-induced surface segregation (AISS) depending on a driving force. For the ISS, the main 

driving force is the difference in surface energies between the elements in the alloy. The driving 

Page 7 of 22 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



8 

 

force for the AISS is the difference in the BE of adsorbate on different elements forming the alloy. 

The ISS and OH/O AISS are schematically illustrated in Figure 3 on the example of the Pt3/Au3/Pt 

near surface thin film.  

  

a)  

 

 
 

  

b)  

 

 

 

c)  

 

 

Figure 3 Illustrations of the a) intrinsic, b) OH induced and c) O induced surface segregations. The 

OH/O coverage is 1/3 ML. Gray and yellow balls represent Pt and Au atoms, respectively. 

It is important to note that the OH/O AISS energies also include the ISS energy of the second 

component. Applied to the above example, in order to get the OH/O AISS energy of Pt, one has to 

subtract the ISS of Au from the OH/O AISS energy of the total system. This is because Pt 

segregates to the surface simultaneously with Au displacement to the subsurface layer (see Figure 

3b and 3c). Hereafter, the AISS of the second component is simply termed the AISS. The ISS and 

OH/O AISS energies at 1/3 ML coverage are shown in Figure 4 for the bimetallic thin films as a 

function of the number of solute atoms. The reported energies are integral energies referring to a 

simultaneous exchange of all solute atoms between the subsurface and surface layer. The 

corresponding energies for substitution between the 2nd and the 3rd layer are typically more than an 

order of magnitude smaller. This indicates that there is a very strong driving force for surface 

segregation from subsurface and a small driving force for segregation beneath the surface layers. 

Actually, it has been shown that Au deep inside nanoparticles can prevent dissolution of a non-

noble component in multimetallic Pt alloys.49,50 Which energy prevails, the ISS or AISS energy, is 

given by differences between the red and blue/green lines in Fig. 4. The two segregation energies 

for the PtPd thin films are almost identical owing to similar surface energies of the two metals. Pd 

displays a slight preference for bulk over the surface, which appears to contradict the expectation 

based on experimental surface energies of the two metals.51 For the PtAu and PdAu thin films, the 

ISS energies of Au are generally very high. They are highest for the 1/3 ML Au subsurface 
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concentration and decay monotonically per Au atom with increasing Au content. Au has a 

somewhat higher propensity to segregate to the surface in PtAu than PdAu thin films. Moreover, the 

OH/O AISS energies are higher on PdAu than PtAu, implying that Au segregation will more readily 

occur in PtAu than PdAu thin films. The energy gain from Au segregation can be offset by a 

potential dependent O induced platinum segregation. The resulting direction of segregation depends 

on the coverage of oxygenated species. It is clear from Figure 4 that the 1/3 ML OH coverage is not 

sufficient to instigate Pt segregation. This is achieved only if OH is entirely oxidized to O. It should 

be noted that running reactions at potentials corresponding to 1/3 ML O, i.e. 1.0 V, is not possible 

because kinetic limitations set in already at potentials corresponding to ca. 1/3 ML OH coverage, 

i.e. 0.85 V.52,53 Avoiding activity losses caused by Au segregation can be accomplished by 

periodical potential excursions to higher potentials. In reality, this happens during stop-and-go 

drives, where the potential occasionally jumps to 1.5 V.  

a)   

b)  

Page 9 of 22 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



10 

 

c)  

Figure 4 Integral surface and OH/O induced segregation energies on the a) PtPd, b) PtAu and c) 

PdAu thin films as a function of the number of solute atoms in the subsurface layer. 

2.1.3. Site preference 

So far, we have only discussed changes in the composition caused by segregation. As stated 

earlier, the changes can also occur within the same layer. These changes include diffusion of solute 

atoms to surface defects and/or self-assembling to form surface alloys or larger surface aggregates. 

Solute atoms that segregate to the surface can organize in different ways, e.g. forming a 

uniform distribution, such as a surface alloy or homogenous islands. The outcome is given by the 

preference of solutes to be surrounded by other solute atoms or host element atoms. To elucidate the 

surface ordering of solutes, we have performed calculations with fixed 1/3 and 1/6 ML 

concentrations of solutes in an otherwise pure Pt or Pd host. Here, we employed a larger non-

orthogonal (111) cell with 3x3 surface atoms. The energy differences between two structure 

extremities are shown in Figure 5.  

 

 

 

Surface 

composition 

Arrangement BE(OH) 

vs. Pt 

Pt2Au uniform -0.023 

Pt2Au islands -0.027 

PtAu2 uniform -0.036 

PtAu2 islands -0.116 

Pd2Au uniform 0.072 

Pd2Au islands -0.118 

PdAu2 uniform 0.072 

PdAu2 islands -0.236 
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Figure 5 The plot shows the energy difference between the uniform and cluster arrangement of 

solute atoms in the surface layer as illustrated below. Solid and transparent columns are for 1/3 ML 

and 2/3 ML surface solute concentration, respectively. The tabulated values show the changes in the 

OH BE for the two extremes for PtAu and PdAu thin films. Values are given in eVs. The reference 

value is +0.1 eV relative to Pt that corresponds to the OH BE at the top of the volcano. 

As seen, there is a tiny driving force for making Pd rich domains in Pt and a larger driving 

force for making Au rich domains in Pt. Au on the Pd(111) surface, on the other hand, energetically 

prefers to form surface alloys. The higher the solute concentration, the lower the probability the 

solute atoms will form islands. In the following, we discuss how surface ordering of solute atoms 

affects the ORR activity. For Pt with 2/3 ML surface Au the activity reduces by 0.08 eV (more than 

an order of magnitude) going from the uniform to energetically more stable island distribution. For 

the lower, 1/3 ML Au concentration, the effect on the activity is negligible. For the PdAu thin films 

the OH BE increases when surface Au atoms organize into islands irrespective of the solute element 

content. This is detrimental for the activity, however, as the island formation is not favored in the 

PdAu thin films, their activities will not be appreciably affected. Formation of uniform Pd-Au 

distributions is very good from a perspective of the active Pd2Au/Pd3 thin film. The theoretically 

estimated activity is more accurate because the assumed distribution model is uniform (see Figure 

1). 

2.1.4. Coordination preference 

In order to elucidate the site coordination preference for surface segregation, we have 

modeled the diffusion of solute atoms on a stepped surface of the host metal. The selected, stepped 

(221) surface has 4 atoms-wide terraces terminated by (111)x(111) steps (see illustrations in Figure 

6). The terrace width is sufficiently large to construct diffusion energy profiles from a terrace to a 

step site. The energy profiles are presented in Figure 6 as a function of the distance from the step. 

For simplicity, the analysis is limited to a low solute atom concentration corresponding to 1/8 ML. 

Although, considering a particular concentration is insufficient for a comprehensive analysis, it can 
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point to a general tendency for diffusion. We assume that the binding on a third atomic row from 

the step is the same as on the defect-free (111) terraces. For the adsorbate-mediated diffusion, the 

OH/O coverage is fixed to ½ ML with respect to the number of step sites (1/8 ML if the terrace 

atoms are also accounted for). The most favorable O binding configuration is in a three-fold hollow 

site behind the step on both Pt(221) and Pd(221). For OH, the most stable adsorption configuration 

with co-adsorbed water is on a top site. Co-adsorbed water has not been explicitly modelled, which 

is equivalent to assuming that the effect of water on OH is the not affected by the nature of the step 

atom and its surroundings. 

For Pd on Pt(221), the energy differences are small, which supports the notion that alloys of 

Pt with Pd are typical solid solutions of the two metals. For diffusion of Au on Pt(221) and Pd(221) 

there is a significant difference that favors Au segregation to the step. This difference can be 

rationalized through a higher surface energy gain from moving an Au atom from a terrace to a step 

site than a Pt atom in the opposite direction. Here, we have used the stepped crystal as the simplest 

model for a surface defect. We expect that an even larger energy gain is obtained on more under-

coordinated sites. Diffusion of Au to defects can add interpretation to experimental evidences in 

which small amounts of Au are found to stabilize Pt nanoparticles against dissolution. The results 

further evince that the formation of oxygen on defects, which sets in at lower potentials than on 

terraces,54 will force Au atoms to change the direction of diffusion, from steps to terraces. 

a)  
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b)  

c)  

 

 

 

 

 

 

 

 

 

 
 

 

Figure 6 Diffusion energy profiles from terraces to steps for a surface a) Pd atom on Pt(221) b) Au 

atom on Pt(221) and c) Au atom on Pd(221). The illustrations show top views for diffusion of a Au 

atom on the Pt(211) surface.  
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2.1.5. Activity versus stability 

The OH BE is used as activity descriptor to estimate the ORR activity. As stability descriptor we 

choose the surface energy. Surface energies of the bimetallic thin films are calculated through Eqs. 

(1)-(2). 

E����
���	 = E�	��� −mE�

���� − nE�
���� − E�

���	  (1) 

EB
surf=�E�m+n�B-�m+n�EB

bulk�/2  (2) 

Here, we chose a different "	#$%	notation because the total number of atoms A and B in the unit 

cell becomes important. This notation is used only at this time to explain the approach for obtaining 

surface energies; for distinguishing among the different thin films we keep the former notation, 

introduced in section 2.1. &'()*

+,-. and &)
+,-. are surface energies of an AmBn binary thin film (A-

solute and B-host element) and B, respectively, where m and n are the total numbers of A and B 

atoms in the slab. For the √3x√3R30º surface unit cell and 4 layers thick slabs, the number of atoms, 

m+n, in the slab sums up to 12. &)
/,01 and &'

/,01 are the energies of A and B in bulk and  &�#2%�) is 

the total energy of the fixed slab made of pure element B. The first three terms in Eq. (1) are used to 

calculate surface energies of AmBn thin films. As each slab has two surfaces exposed to vacuum, in 

order to get the surface energy of a thin film terminating side of the slab one has to subtract the 

surface energy of metal B, &)
+,-., from backside of the slab. Eq. (2) is used to estimate &)

+,-.using a 

similar rationale as for AmBn. Number 2 enters into Eq. (2) because slab B has two equivalent 

surfaces. Here, we have used the bulk values as references, which is justified by the small alloying 

energies of the thin films (see Table 1). If the alloy formation energies were larger then the 

chemical potential of the solute element in the alloy would be the right reference. 

To select the best bimetallic thin films catalysts, in Figure 7 we plot the activity against the 

stability. The activity is approximated by the OH BE on the x-axis and the stability by surface 

energy on the y-axis. The grey box in Fig. 5 designates the area, where the activities are higher than 

that on pristine Pt(111); that is, for the OH BE values ranging from that on Pt(111) to a symmetric 

point on the opposite side of the volcano. As seen, for the binary PtPd systems (red triangles) it is 

best to have the near-surface alloy of Pd in Pt. Notice that surface energies for the PtPd thin films 

change linearly with the Pd content in the subsurface layer. There are many PtAu and PdAu thin 

film formulations that fall in the designated area, however, these will not be stable owing to high 
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surface energies. Even those formulations with Au that have low surface energies might be 

considered unstable because if Au is present in excess, it will segregate to the surface and change 

the thin film compositions to those with smaller surface energies and lower activities for the ORR 

(see the points in the lower-right corner of Figure 7). However, if the amount of Au is carefully 

dosed, e.g. in Pd to form Pd2Au/Pd3, then the Pd2Au/Pd3 thin film might be a good catalyst for the 

ORR. It is noteworthy that surface energies of the PdAu thin films are generally lower than those 

for the PtAu or PtPd thin films. This is a result of several effects: 1) the computed Pd surface energy 

is lower than Pt surface energy, 2) the formation energies of PdAu alloys are higher than those of 

PtAu alloys (see Table 1) and 3) the assumed distribution is uniform, which is energetically the less 

stable configuration for the PtAu thin films (see Figure 5). 

 

Figure 7 Comparison between the activity and stability descriptors used to assess the catalyst 

performance. The grey shaded box is the area with the activities higher than that on Pt(111). For 

clarity reasons, only points with the OH binding energies higher than that on Pt are labeled. A table 

with the surface and OH binding energies for the bimetallic systems is given in Note 3 in the ESI. 

2.2. Ternary thin films 

2.2.1. Activity  

In addition to the binary thin films, we have also modeled the activity of ternary Pt, Pd, Au thin 

films for oxygen reduction. Eight different ternary systems are examined in total, four with pure 

metal skins (two with Pt and two with Pd host) and four with mixed Pt-Pd skins. Thin films with Pt 

host include near-surface alloys of PdAu in Pt, Pd skins on Pt with subsurface Au and mixed Pt-Pd 
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skins with some additional Au and/or Pd in the subsurface layer. Ternary alloys with Pd host are 

obtained by substituting Pt with Pd and Pd with Pt in the thin films with Pt host. Activity estimates 

for the selected ternary thin films are shown in Figure 8. For clarity, the results are divided into two 

plots depending on the composition of the surface layer. Data for the pure Pt/Pd skins are shown in 

Figure 8a and for the mixed metal skins in Figure 8b. There are many formulations with both 

surface and subsurface Au that have the activities higher than that of Pt, especially in the case of the 

pure metal skins.  

  

Figure 8 Activity estimates for oxygen reduction of ternary thin film alloy surfaces with a) pure Pt 

or Pd skin and b) mixed Pt-Pd skin.  

2.2.2. Activity vs stability 

To select the best ternary thin films we plot the surface energy as a function of the OH BE in Figure 

9. Again, we make use of Eqs. (1) and (2) with the difference that Eq. (1) will have an additional 

term for the third component. As expected, the results are similar to those for bimetallic thin films 

with Au. Owing to a much lower surface energy than either Pt or Pd, Au energetically always 

prefers to be on the surface. Thus, active formulations with subsurface Au will gradually become 

deactivated due to surface Au segregation. Nevertheless, there are some formulations with surface 

Au, Pt2Au/Pd3/Pd and PtAu2/Pd3/Pd that have reasonably low surface energies and are active for the 

ORR. We conclude that the best ternary catalysts are Pt skins on Pd with a small amount of Au 

whose coverage after segregation should not exceed 2/3 ML. Small amounts of surface Au will as 

well retard platinum dissolution through a charge donation to vicinal undercoordinated surface Pt 

atoms. 
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Figure 9 Comparison between the activity and stability descriptors used to assess the catalyst 

performance. The grey shaded box is the area with the activities higher than that of Pt(111). For 

clarity reasons, only points with the OH binding energies higher than that of Pt are labeled. A table 

with the surface and OH binding energies for the ternary systems is given in Note 3 in the ESI. 

3. Conclusions 

In summary, we have shown that certain binary and ternary Pt, Pd and Au thin films display high 

activities towards the ORR. The major conclusions can be summarized in the following points.  

1. The activity is very sensitive to the alloy composition. Due to the low alloy formation 

energies the thin films form solid solutions with a range of compositions. It might be 

therefore, difficult to retain the composition with the highest activity. Nonetheless, in the 

case of many thin films, there are several different formulations with high activities. For 

instance, as long as Pd in the binary PtPd thin films is restricted to the subsurface layer the 

activities will remain high. Moreover, the higher the Pd subsurface content the more stable 

the alloy. As for the binary and ternary thin films with Au, there are many formulations with 

Au in the surface and/or subsurface layer that are quite active for oxygen reduction. 

However only few of these are stable, such as Pd2Au/Pd3/Pd or PtAu2/Pd3/Pd, and that is 

under condition that there is no excess Au that can change the compositions over time 

towards more Au enriched surfaces.  

2. Solute elements in the subsurface layer are generally found to weaken the OH BE through 

the ligand effect. The higher the solute atom concentration, the more the OH BE is 

weakened. Having Pt or Pd in the bulk (below the subsurface layer) does not appreciably 

Page 17 of 22 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



18 

 

affect the results (see Fig 2a and 2b for comparison). Strain effects are essentially the same 

for the two metal hosts, whilst ligand effects from the 3rd and subsequent layers are screened 

at the surface. 

3. There is a large thermochemical driving force for Au to segregate to the surface. The 

segregation energy can be offset by oxygen mediated Pt/Pd segregation. This will happen 

only if the oxygen coverage on the surface is 1/3 ML or greater. As this coverage is attained 

at potentials at which the ORR is kinetically inhibited, occasional excursions to higher 

potentials are required to recover the activity, i.e. the lost platinum surface area. 

4. There is a thermochemical driving force for Au, once segregated to the surface, to diffuse to 

more under-coordinated sites. Au renders Pt less prone to dissolution through charge 

transfer effects. Diffusion of Au atoms to defects can explain high stabilities observed for Pt 

nanoparticles decorated by Au clusters. In addition, Au in Pt shows a tendency to self-

assemble into islands and in Pd into surface alloys.  

5. There is almost no, or a very little, driving force for Pd to segregate to the Pt surface 

irrespective of the surface oxidation state. In addition, Pd in Pt shows no preference for 

defects or surface self-assembling. 

On the basis of the presented data, we conclude that the binary PtPd thin films, in which Pt 

comprises the skin and Pd is restricted to the subsurface layer(s) are the best catalysts for oxygen 

reduction. Addition of a small, controlled amount of Au can, however, further improve the 

performance of the PtPd bimetallic thin films (e.g. Pd2Au/Pd3/Pd and PtAu2/Pd3/Pd) by retarding 

the dissolution of under-coordinated Pt atoms, and perhaps even enhancing the activity, making the 

ternary PtPdAu systems interesting for the ORR in PEMFCs.  

Theory 

Total energies are calculated using Density Functional Theory (DFT) calculations employing grid-

based projector-augmented wave method (GPAW) code integrated with Atomic Simulation 

Environment (ASE).55 Calculations are performed using the RPBE exchange-correlation 

functional56 and a grid spacing of 0.15 Å. The RPBE relaxed lattice constants of Pt and Pd are 3.991 

and 3.980 Å, respectively. The occupation of the one-electron states is calculated at an electronic 

temperature of kBT = 0.1 eV, and then extrapolated to kBT = 0 K. 
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Pt(111) and Pt(221) electrodes are represented by periodically repeated slabs separated by at 

least 10 Å vacuum. Two unit cells with (√3x√3)R30º and (3x3)R30º size in the surface plane are 

used to represent the (111) surface. The Pt(221) electrode was made from the 2x4 Pt(111) slab by 

adjusting the unit cell parameters. The slab thickness for all the electrodes is 4 layers. The bottom 

two layers are fixed both in terms of composition and coordinates, while the remaining atoms and 

adsorbates are allowed to relax in order to assume minimum energy positions. In the ESI we also 

provide a table showing how the BEs relative to Pt(111) change as a function of the number of slab 

layers. 

The total number of configurations for each binary system given the unit cell size is 42. For 

all surfaces the Brillouin zone was sampled by a 4x4x1 Monkhorst–Pack k-point grid, which was 

sufficient to obtain converged results.57 The convergence is reached when the sum of absolute 

forces acting on the atoms becomes less than 0.05 eVÅ−1. Symmetry and dipole corrections are 

applied to reduce the number of k-points in the Brillouin zone and to electrostatically decouple the 

interaction of neighboring slabs.  
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