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With the help of our recently developed massively parallel DGDFT (Discontinuous Galerkin Density Functional Theory) method-
ology, we perform large-scale Kohn-Sham density functional theory calculations on phosphorene nanoribbons with armchair
edges (ACPNRs) containing a few thousands to ten thousand atoms. The use of DGDFT allows us to systematically achieve
conventional plane wave basis set type of accuracy, but with a much smaller number (about 15) of adaptive local basis (ALB)
functions per atom for this system. The relatively small number degrees of freedom required to represent the Kohn-Sham
Hamiltonian, together with the use of the pole expansion the selected inversion (PEXSI) technique that circumvents the need to
diagonalize the Hamiltonian, result in a highly efficient and scalable computational scheme for analyzing the electronic structures
of ACPNRs as well as its dynamics. The total wall clock time for calculating the electronic structures of large-scale ACPNRs
containing 1080-10800 atoms is only 10-25 s per self-consistent field (SCF) iteration, with accuracy fully comparable to that
obtained from conventional planewave DFT calculations. For the ACPNR system, we observe that the DGDFT methodology
can scale to 5,000-50,000 processors. We use DGDFT based ab-initio molecular dynamics (AIMD) calculations to study the
thermodynamic stability of ACPNRs. Our calculations reveal that a 2 × 1 edge reconstruction appears in ACPNRs at room
temperature.

1 Introduction

Kohn-Sham density functional theory (DFT)1,2 is the most
widely used methodology for performing ab initio electronic
structure calculations to study the structural and electronic
properties of molecules, solids and nanomaterials. However,
until recently, DFT calculations are limited to small systems
because they have a relatively high complexity (O(N2−3))
with the system size N. As the system size increases, the cost
of traditional DFT calculations becomes prohibitively expen-
sive. Therefore, it is still challenging to use DFT calculations
to treat large-scale systems that may contain thousand or tens
of thousands of atoms. Although various linear scaling O(N1)
methods3–5 have been proposed for improving the efficiency
of DFT calculations, they rely on the nearsightedness princi-
ple, which leads to exponentially localized density matrices in
real-space for systems with a finite energy gap or at finite tem-
perature. On the other hand, most of the existing linear scal-
ing DFT codes, such as SIESTA,6 CONQUEST,7 OPENMX8

and HONPAS,9 are based on the contracted and localized ba-
sis sets in the real-space, such as Gaussian-type orbitals or
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numerical atomic orbitals.4 It is relatively difficult to improve
the accuracy of methods based on such contracted basis func-
tions in a systematic fashion compared to methods based on
conventional uniform basis sets, for example, the planewave
basis set.10 The disadvantage of using uniform basis sets is the
relatively large number of basis functions required per atom.

Recently, we have developed a massively parallel DGDFT
(Discontinuous Galerkin Density Functional Theory) method-
ology for performing efficient large-scale Kohn-Sham DFT
calculations. The methodology is based on the combination
of the adaptive local basis (ALB) set11 and the pole expan-
sion and selected inversion (PEXSI) technique.12–14 The ALB
functions are localized in the real space and discontinuous
in the global domain. The continuous Kohn-Sham orbitals
and density are assembled from the discontinuous basis func-
tions using the discontinuous Galerkin (DG) method.15,16 Be-
cause it is rooted in a domain decomposition approach that
takes the chemical environment effects into account, the ALB
set constructed by the DGDFT methodology is systematically
improvable. It can achieve the same level of accuracy ob-
tained by conventional plane wave calculations with much
fewer number of basis functions. The sparse Hamiltonian
matrix generated from DGDFT can take advantage of the
PEXSI method. The PEXSI method overcomes the O(N3)
scaling limit for solving Kohn-Sham DFT, and scales at most
as O(N2) even for metallic systems at room temperature. In
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particular, the computational complexity of the PEXSI method
is only O(N) for 1D systems, and is O(N1.5) for 2D systems.
This also makes the DGDFT methodology particularly suit-
able for analyzing low-dimensional (1D and 2D) systems re-
gardless whether the system is a metal, a semiconductor or an
insulator.13

In this paper, we demonstrate the accuracy and efficiency
of DGDFT by using it to analyze the electronic structures and
thermodynamic stability of armchair phosphorene nanorib-
bons (ACPNRs), which is an interesting 1D derivative of phos-
phorene with some remarkable properties. We use DGDFT to
perform both static electronic structure calculations as well
as ab initio molecular dynamics (AIMD) calculations. Our
AIMD calculations reveal that a 2×1 edge reconstruction ap-
pears in the edge unpassivated ACPNRs at room temperature.

The paper is organized as follows. In section 2, we in-
troduce our recently developed massively parallel DGDFT
methodology for efficient large-scale Kohn-Sham DFT based
electronic structure calculations. In section 3, we provide
some background on phosphorene nanoribbons that we exam-
ine. We report the results obtained from applying DGDFT
to ACPNRs in section 4. We demonstrate that the DGDFT
methodology can achieve high accuracy with much fewer ba-
sis functions compared to the conventional planewave dis-
cretized calculations. We also show that DGDFT can han-
dle large ACPNRs systems with thousand or even tens of
thousands of atoms. Furthermore, we show that the DGDFT
methodology is highly scalable on modern high performance
computers because it contains multiple levels of paralleliza-
tion. Finally, we show that by using DGDFT based ab-initio
molecular dynamics (AIMD) calculations, we are able to iden-
tify a 2 × 1 edge reconstruction in the edge-unpassivated
ACPNRs at room temperature. This observation suggests that
PNRs may modify their electronic structures over time, hence
are suitable phosphorene-based candidate materials for nano-
electronics.

2 DGDFT Methodology

In this section, we briefly present the mathematical founda-
tion and algorithmic ingredients of the DGDFT methodol-
ogy. DGDFT constructs adaptive local basis set (ALB) in
the discontinuous Galerkin (DG) framework.11 We explain
why the implementation of DGDFT is highly scalable on mas-
sively parallel computers. Because the sparse Hamiltonian
constructed by DGDFT can take full advantage of the recently
developed pole expansion and selected inversion (PEXSI)
method12–14 to overcome the O(N3) scaling of diagonaliza-
tion methods, it can be used to study the electronic structures
and ab initio molecular dynamics (AIMD) of large-scale atom-
istic systems.

2.1 Adaptive local basis set in a discontinuous Galerkin
framework

In our recent work,11 we have presented a new way to dis-
cretize the Kohn-Sham Hamiltonian, called the adaptive lo-
cal basis functions (ALB). The basic idea of ALB is to use
eigenfunctions of the Kohn-Sham Hamiltonian defined on lo-
cal domains to construct basis functions. Compared to atom-
centered basis functions such as Gaussian type orbitals and
numerical atomic orbitals, such procedure encodes not only
atomic structure but also environmental effects into the ba-
sis functions. In practice, we partition the global computa-
tional domain into a number of subdomains (called elements).
Then we define a buffer area for each element that typically
includes its nearest neighbor elements. We refer to the ele-
ment together with its buffer area as an extended element. For
instance, Fig. 1 shows an ACPNR with 54 P atoms (P54 sys-
tem) partitioned along the Z-direction into 5 elements. The
extended element associated with the second element E2 con-
tains elements E1,E2,E3, and the extended element associated
with the third element E3 contains elements E2,E3,E4 and so
on. We compute eigenfunctions for a local Kohn-Sham prob-
lem in each extended element with periodic boundary condi-
tions using a local planewave basis set. The artificial effect
due to the periodic boundary condition of the extended ele-
ment is reduced by restricting the point-wise values of eigen-
functions from the extended element to the element, and the
restricted eigenfunctions are mutually orthogonalized on the
element. We call such orthogonalized functions adaptive local
basis functions. Note that the ALB functions can be com-
puted at each step of the self-consistent field (SCF) iteration
through an efficient iterative eigensolver using e.g. locally op-
timal block preconditioned conjugate gradient (LOBPCG).17

Since the elements are disjoint from each other, each ALB is
strictly zero outside its element, and is not continuous across
the boundaries of different elements. Therefore, we use the
discontinuous Galerkin (DG) method15,16 to construct a finite
dimensional Kohn-Sham Hamiltonian represented by these
types of discontinuous basis functions. For instance, for pe-
riodic systems in a norm-conserving pseudopotential frame-
work, the linearized DG energy functional at each step of the
self-consistent field (SCF) iteration becomes

EDG({ψi}) =
1
2

N

∑
i=1
〈∇ψi,∇ψi〉T + 〈Veff,ρ〉T

+
NA

∑
I=1

LI

∑̀
=1

γI,`

N

∑
i=1

∣∣〈bI,`(·−RI),ψi
〉
T

∣∣2

−
N

∑
i=1

〈{{
∇ψi

}}
,
[[

ψi
]]〉

S
+α

N

∑
i=1

〈[[
ψi

]]
,
[[

ψi
]]〉

S
.

(1)

Here T is the collection of all elements (in Fig. 1 T =
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{E1,E2,E3,E4,E5}, with the collection of all its surfaces de-
noted by S . The set {ψi}N

i=1 contains the N occupied Kohn-
Sham orbitals represented as the linear combination of ALB
functions. We use Veff to denote the effective one-body po-
tential (including local pseudopotential, Hartree potential and
the exchange-correlation potential) at each SCF iteration. The
terms that contain bI,` and γI,` correspond to the nonlocal pseu-
dopotential. Here 〈·, ·〉T is the sum of the inner product on
each element, and 〈·, ·〉S is the sum of the inner product on
each surface.

{{ ·}} and
[[ · ]] are the average and the jump

operators across surfaces due to the discontinuity of the basis
functions. We refer the readers to Ref.11 for more detailed in-
formation. What distinguishes the DG formulation from the
standard Kohn-Sham formulation of the DFT problem is the
last two terms in Eq. (1), which comes from the integration by
parts of the Laplacian operator, and a penalty term to stabilize
the numerical evaluation of the energy, respectively. The DG
method modifies the Kohn-Sham energy functional so that the
kinetic energy functional is well defined even with discontin-
uous basis functions. The DG solution is also fully consistent
with the solution of standard Kohn-Sham equations in the limit
of a complete basis set, and the error can be measured by a
posteriori error estimators.18 The ALB functions can achieve
high accuracy (less than 1 meV per atom) in the total energy
calculation with a very small number (4−40) of basis func-
tions per atom, compared to fully converged planewave calcu-
lations.

Using a 1D ACPNR (P54) as an example, we show the iso-
surfaces of the first three ALB functions in the second element
in Fig. 1(a)-(c). The global computational domain is parti-
tioned along the Z-direction into 5 elements. Each ALB func-
tion shown is strictly localized inside the second element and
is therefore discontinuous across the boundary of elements.
On the other hand, each ALB function is delocalized across
a few atoms inside the element since they are obtained from
eigenfunctions of local Kohn-Sham Hamiltonian. Although
the basis functions are discontinuous, the electron density is
well-defined and is very close to be a continuous function
in the global domain (Fig. 1(d)) once the local contributions
are assembled. It should be noted that all ALB functions are
by construction mutually orthogonal. Thus the corresponding
overlap matrix is an identity matrix. Hence, this formulation
avoids solving a generalized eigenvalue problem that has a po-
tentially ill-conditioned overlap matrix.

2.2 Two levels parallelization strategy

The DGDFT framework naturally allows two levels of par-
allelization. For each element, the computation of eigen-
functions for the local Kohn-Sham Hamiltonian can be paral-
lelized similar to how a regular Kohn-Sham DFT solver with
planewave basis sets is parallelized. This type of fine-grained

Fig. 1 (Color online) The isosurface of the first three ALB
functions, (a) φ 1, (b) φ 2, (c) φ 3, belonging to the second element
and (d) the electron density ρ across the YZ plane in the global
domain in the example of P54. There are 5 elements and 160 ALB
functions in each element in the P54 system.

parallelization is called intra-element parallelization. On top
of this, the computation of eigenfunctions for different ele-
ments, together with the construction of the DG Hamiltonian
can be naturally parallelized at a coarse grain level. This is
called inter-element parallelization. We optimized the data
communication structure so that different levels of paralleliza-
tion can be seamlessly and efficiently performed. We will
demonstrate the details of the parallelization strategy on mas-
sively parallel computers in a separate publication in prepara-
tion.19

In the intra-element parallelization, the wavefunction and
eigenfunctions of each extended element are distributed
among different processors. The number of eigenfunctions
to be computed for a single element is usually on the order of
100, and intra-element parallelization can scale to several hun-
dred processors. The level of concurrency that can be achieved
in the inter-element parallelization is determined by the num-
ber of elements. In the DGDFT method, each element usu-
ally takes around 10 atoms, and for a system containing 1000
atoms there should be around 100 elements. As a result, the
two-level parallelization strategy can readily scale to 10,000
processors. For the largest ACPNRs system studied in this
work, the number of processors used is 50,000 processors.

2.3 Pole expansion and selected inversion method

Once the DG Hamiltonian is constructed, one can solve a stan-
dard eigenvalue problem to obtain physical quantities such as
electron density, total energy and atomic forces. This can
be done by treating the DG Hamiltonian matrix as a dense
matrix and by solving the eigenvalue problem via standard
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parallel linear algebra software packages for dense matrices,
e.g. ScaLAPACK20 (referred to as the ”DIAG” method). The
computational cost of the DIAG method scales as O(N3). This
parallel scalability of ScaLAPACK diagonalization subroutine
is limited to a few thousands of processors. When more than
10,000 processors are available, DIAG can become the com-
putational bottleneck because it cannot take advantage of that
many processors even though other part of the DGDFT calcu-
lation become less time consuming.

The recently developed pole expansion pole expansion and
selected inversion (PEXSI) method12–14 avoids the diagonal-
ization procedure completely. It evaluates physical quantities
such as electron density, energy, atomic force without calcu-
lating any eigenvalue or eigenfunction, and reduces the com-
putational complexity to at most O(N2) without sacrificing
accuracy even for metallic systems. In particular, the com-
putational complexity of the PEXSI method is only O(N) for
1D systems (such as ACPNRs studied here), and is O(N1.5)
for 2D systems. These are much more favorable compared
with the O(N3) complexity of the DIAG method. Therefore,
the PEXSI method is particularly suitable to study the elec-
tronic structure of larges scale low-dimensional (1D and 2D)
systems. The PEXSI method is also highly scalable to more
than 10,000 processors, as recently demonstrated in the mas-
sively parallel SIESTA-PEXSI method14,21 based on numeri-
cal atomic orbitals. Therefore the combined DGDFT-PEXSI
method can scale beyond 10,000 processors and solves elec-
tronic structure problem with more than 10,000 atoms.

3 Theoretical model of ACPNRs

Phosphorene, a new two dimensional (2D) elemental mono-
layer,22–25 has received considerable amount of interest re-
cently after it has been experimentally isolated through me-
chanical exfoliation from bulk black phosphorus. Phospho-
rene exhibits some remarkable electronic properties superior
to graphene, a well known elemental sp2-hybridized carbon
monolayer.26–28 For example, phosphorene is a direct semi-
conductor with a high hole mobility.22 It has the drain current
modulation up to 105 in nanoelectronics.23 These remarkable
properties have already been used for wide applications in
field effect transistors24 and thin-film solar cells.25 Further-
more, up to now, phosphorene is the only stable elemental
2D material which can be mechanically exfoliated in exper-
iments22 besides graphene. Therefore, it can potentially be
used as an alternative to graphene29 in the future and lead to
faster semiconductor electronics.

By cutting 2D phosphorene into finite-sized 1D phospho-
rene nanoribbons (PNRs), a bandgap engineering technique
often used for graphene30–32 to get graphene nanoribbons
(GNRs),33–35 one obtains a new type of material that has been
subject to many theoretical and experimental studies.36–39 The

stability and electronic properties of PNRs depend sensitively
on the ribbon width and how it is cut from the 2D phospho-
rene, which can result in either armchair or zigzag shaped
edges.37 Unlike GNRs,33–35 hydrogen-passivated PNRs with
armchair and zigzag edges are all semiconductors with direct
band gaps.37 For edge-unpassivated PNRs armchair edged
PNRs (ACPNRs) are all semiconducting, but zigzag edged
PNRs (ZZPNRs) all exhibit metallic characteristics. Further-
more, it has been found that edge-unpassivated ZZPNRs ex-
hibit instability at the edge boundary that may easily induce
edge reconstruction and disorder. Using density functional
theory (DFT) calculations, Ramasubramaniam et al.36 have
shown that a 2 × 1 edge reconstruction appears in the edge-
unpassivated ZZPNRs. The reconstruction induces different
stability and electronic structures of ZZPNRs. Edge disorder
is also observed by Guo et al.37 in the edge-unpassivated ZZP-
NRs with ab-initio molecular dynamics calculations.

However, the edge-unpassivated ACPNRs seem to be ther-
modynamically stable at the edge boundary,37 and up to now,
no edge reconstruction or disorder has been predicted theo-
retically in the edge-unpassivated ACPNRs. In the present
work, we focus on the edge-unpassivated ACPNRs because
the hydrogen-passivated PNRs been theoretically proved to
be very thermodynamically stable and the edge reconstruction
has been observed in the edge-unpassivated ZZPNRs.36

Fig. 2 shows the atomic configuration of a 2D phosphorene
monolayer in a 1 × 6 × 4 supercell and some examples of 1D
ACPNRs with a width N = 4 in the unit cell (P18), 1 × 1 ×
3 (P54) and 1 × 1 × 10 (P180) supercells. Other ACPNRs in
very large supercells involving thousand or tens of thousands
of atoms, such as the 1× 1× 120 (P2160), 1× 1× 240 (P4320)
and 1 × 1 × 600 (P10800) supercells, which we adopt in this
work, are not shown here. The vacuum space in the X and Y
directions is about 10 Å to separate the interactions between
neighboring slabs in ACPNRs.

4 Results and Discussion

In this section, we present computational results obtained by
applying DGDFT to ACPNRs of different sizes. We demon-
strate the accuracy of the calculation and parallel efficiency of
DGDFT. We also report a 2×1 edge reconstruction observed
in a AIMD study performed to assess the thermodynamic sta-
bility of ACPNRs.

We use the conventional plane wave software pack-
age ABINIT40 as a reference to check the accuracy for
our DGDFT calculations. The same exchange-correlation
functionals, including the local density approximation of
Goedecker, Teter, Hutter (LDA-Teter93)41 and general-
ized gradient approximation of Perdew, Burke, and Ernz-
erhof (GGA-PBE),42 and the Hartwigsen-Goedecker-Hutter
(HGH) norm-conserving pseudopotential43 are adopted in
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Fig. 2 (Color online) Geometric structures of (a) 2D phosphorene in
the 1 × 6 × 4 supercell and different 1D ACPNRs with a width N =
4 in the (b) unit cell (P18), (c) 1 × 1 × 3 (P54) and (d) 1 × 1 × 10
(P180) supercells. The violet balls denote phosphorus atoms. Two
types of edges, armchair and zigzag, are highlighted in the insert.

both ABINIT and DGDFT software packages. All calcula-
tions are performed on the Edison system available at the Na-
tional Energy Research Scientific Computing (NERSC) cen-
ter.

4.1 Computational accuracy

We first check the accuracy of total energy and atomic force
of the DGDFT software package by using P54 shown in Fig-
ure 2(c) as an example. To simplify our discussion, we define
the total energy error per atom ∆E (Hartree/atom) and maxi-
mum atomic force error ∆F (Hartree/Bohr) as

∆E = (EDGDFT−EABINIT)/N

and
∆F = max

I
|FDGDFT

I −FABINIT
I |

respectively, where N and I correspond to the total number
of atoms and an atom index, EDGDFT and EABINIT repre-
sent the total energy computed by DGDFT and ABINIT re-
spectively, and FDGDFT

I and FABINIT
I represent the Hellmann-

Feynman force on the I-th phosphorus atom in P54 computed
by DGDFT and ABINIT, respectively. We find that neglecting
the Pulay force in the atomic force leads to moderate deviation
in the conserved energy in the AIMD simulation. The ABINIT
results are obtained by setting the energy cutoff to 200 Hartree
for the wavefunction to ensure full convergence. The kinetic

Table 1 The accuracy of DGDFT in terms of the total energy error
per atom ∆E (Hartree/atom) and the maximum atomic force error
∆F (Hartree/Bohr) in the DIAG and PEXSI methods with different
energy cutoff Ecut (Hartree) of wavefunction and number of ALB
functions per atom, compared with converged ABINIT calculations.
#ALB means the number of ALB functions per atom.

DGDFT P54 DIAG PEXSI
Ecut #ALB ∆E ∆F ∆E ∆F
10 28 1.94E-02 4.81E-02 1.94E-02 4.81E-02
20 28 6.49E-04 5.12E-03 5.39E-04 1.67E-02
40 10 1.28E-03 1.52E-02 1.21E-03 4.19E-03
40 12 5.54E-04 2.17E-03 6.45E-04 2.17E-03
40 15 1.87E-04 9.54E-04 1.16E-04 9.57E-04
40 19 7.00E-05 4.00E-04 7.12E-05 4.13E-04
40 28 9.64E-06 2.90E-04 4.21E-05 2.84E-04

100 28 8.25E-06 1.24E-04 2.90E-05 1.31E-04
200 28 6.62E-06 9.43E-05 3.66E-05 9.09E-05

energy cutoff (denoted by Ecut) in the DGDFT method is
used to define the grid size for computing the ALBs as is in
standard Kohn-Sham DFT calculations using planewave ba-
sis sets. Ecut is also directly related to the Legendre-Gauss-
Lobatto (LGL) integration grid defined on each element and
used to perform numerical integration as needed to construct
the DG Hamiltonian matrix.

Table 1 shows that the total energy and atomic forces pro-
duced by the DGDFT method are highly accurate compared
to the ABINIT results. In particular, the total energy error
∆E can be as small as 6.6× 10−6 Hartree/atom if the DIAG
method is used to compute the charge density and 3.7×10−5

Hartree/atom if the PEXSI method is used to compute the
charge density respectively. The maximum error of the atomic
force can be as small as 9.4×10−5 Hartree/Bohr when DIAG
is used and 9.1× 10−5 Hartree/Bohr when PEXSI is used.
These results are obtained when only a relatively small num-
ber (28) of ALB functions per atom are used to construct
the global DG Hamiltonian. The energy cutoff for the lo-
cal wavefunctions use to represent the ALB functions is set
to 200 Hartree in this case. Note that the accuracy of total
energy and atomic force in DGDFT depends on both the en-
ergy cutoff for local wavefunctions defined on an extended
element and the number of ALB functions. We can see from
Table 1 that the accuracy in energy and forces both improve
as either the energy cutoff or the number of ALB functions
increases. This clearly demonstrates that the ALB set pro-
duced by the DGDFT methodology is systematically improv-
able. Furthermore, DGDFT can also give accurate energy gaps
of P54, which are calculated to be 0.72927 and 0.72919 eV
with DGDFT and ABINIT respectively when the energy cut-
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off is set to 200 Hartree.
When the PEXSI method12–14 is used to compute the

charge density, the accuracy of the computation is determined
by the number of poles used in the pole expansion.13 We ex-
amined the effect of the number of poles on the accuracy of
total energy and atomic force in DGDFT, and found that suf-
ficiently high accuracy (comparable to that achieved by us-
ing the DIAG method to compute the charge density) can be
achieved when the number of poles is set to 50.

In our parallel efficiency tests and AIMD simulations, we
use a energy cutoff of 40 Hartree for wavefunction and 15
ALB functions per atom to achieve a good compromise be-
tween accuracy and computational efficiency, and also give
a good energy gap of 0.7302 eV for P54. For this par-
ticular choice of energy cutoff and number of ALB func-
tions, we are able to keep the total energy error under 1 ×
10−4 Hartree/atom and atomic force error under 1 × 10−3

Hartree/Bohr for large-scale ACPNRs.

4.2 Parallel efficiency

In the DGDFT method, each SCF iteration performs the fol-
lowing three main steps of computation: (a) the generation of
ALB functions, (b) the construction of DG Hamiltonian ma-
trix via ALB functions and (c) the evaluation of the approxi-
mate charge density, energy and atomic forces by either diag-
onalizing the DG Hamiltonian (DIAG) or by using the PEXSI
technique. Note that there are some additional steps such as
the computation of energy, charge mixing or potential mixing,
and intermediate data communication etc. The cost of these
steps is included in the total wall clock time in Fig. 3 (d).

Fig. 3 shows the strong parallel scaling of these three indi-
vidual steps of computation, as well as the overall computa-
tion, for three large scale ACPNRs (P2160, P4320 and P10800) in
terms of the wall clock time per SCF step.

The wall clock time of the first two steps are independent of
whether PEXSI or DIAG is used to evaluate electron density,
energy and forces. Fig. 3(a) and (b) show that they both scale
nearly perfectly with respect to the number of processors used
in the computation for all test problems we used. Furthermore,
The total wall clock time required to perform each one these
steps is reduced to a few seconds even for P10800 when more
than 10,000 processors are used in the computation.

Fig. 3(c) and (d) show that the evaluation of the approxi-
mate charge density using the DG Hamiltonian matrix domi-
nates the total wall clock time per SCF iteration in the DGDFT
methodology. For large-scale ACPNRs, the PEXSI method
can effectively reduce the wall clock time compared to the
DIAG method in the DGDFT methodology. Furthermore, us-
ing the DIAG method with ScaLAPACK,20 appears to limit
the strong parallel scalability for large-scale ACPNRs to at
most 5,000 processors on the Edison. Increasing the number

Fig. 3 (Color online) The change of wall clock time with respect to
the number of processors used for the computation for three ACPNR
systems of different sizes (P2160, P4320 and P10800). (a) Strong
scaling of the generation of ALB functions step, (b) strong scaling
of the DG Hamiltonian matrix construction step, (c) strong scaling
the evaluation of the approximate charge density, energy and forces
from the constructed DG Hamiltonian matrix, (d) strong scaling of
the overall computation. The reported wall clock time is for one
SCF iteration. The timing and scaling shown in (c) and (d) depend
on whether DIAG (hollow markers) or PEXSI (solid markers) is
used to evaluate physical quantities such as charge density, energy
and forces.
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of processors beyond that can lead to an increase in wall clock
time. In contrast, the PEXSI method exhibits highly scalable
performance. It can make efficient use of more than 20,000-
50,000 processors on Edison for P10800. It should be noted
that the total wall clock time required for performing large-
scale ACPNRs containing thousands or tens of thousands of
atoms is only about 10-25 seconds per SCF iteration.

4.3 AIMD simulation

Ab-initio molecular dynamics (AIMD) simulation capabil-
ity has been implemented in the DGDFT method.44 We use
DGDFT AIMD simulation to study the thermodynamic sta-
bility of ACPNRs. Using P180 as an example, we perform an
AIMD simulation to obtain a 2.5 picosecond (ps) trajectory
of ACPNR dynamics with a time step of 2.0 femtosecond (fs)
under canonical ensemble with the temperature fixed at 300 K
controlled by a single level Nose-Hoover thermostat.45,46 The
mass of the Nose-Hoover thermostat is chosen to be 85000 au.
We use the GGA-PBE42 exchange-correlation functional for
this particular simulation.

In Fig. 4, we plot the temperature (computed by
3/2NkBT = EK where EK is the kinetic energy) and total free
energy of P180 along the simulated trajectory. The temper-
ature of the system reaches around 300 K after 1.5 ps. Al-
though DGDFT only uses the Hellmann-Feynman force, we
have observed that the drift of the conserved Hamiltonian in
the Nose-Hoover thermostat is relatively small at 2.6× 10−4

Hartree per atom per ps.
We examine the electronic structures of P180 during 2.5 ps

at 300 K as shown in Fig. 5. Geometric structures and density
of states (DOS) of three AIMD snapshots at t = 0.0, 0.6 and
2.0 ps are plotted in Fig. 5(b) and (c). In the initial configu-
ration (t = 0.0 ps), the geometry of ACPNR is optimized first
by using a gradient descent method with the Barzilai-Borwein
line search technique47 implemented in DGDFT. After t = 0.6
ps, the ACPNR exhibits some local deformations due to the
thermal perturbation introduced by the temperature. After t =
2.0 ps, 2 × 1 edge reconstruction can be observed. We find
that the electronic structures of ACPNRs are also affected by
thermal perturbation and edge reconstruction. Fig. 5 (a) indi-
cates that the highest occupied molecular orbital (HOMO) en-
ergy is shifted by around −0.3 eV, and the lowest unoccupied
molecular orbital (LUMO) energy is shifted by around −0.2
eV along the MD trajectory. The HOMO-LUMO energy gaps
of P180 are calculated to be 0.63, 0.44 and 0.38 eV at t = 0.0,
0.6 and 2.0 ps, respectively, showing that the shift of the en-
ergy level is more pronounced for the HOMO than the LUMO
as shown in Fig. 5 (c). Therefore, the edge-unpassivated ACP-
NRs are also thermodynamically unstable just like the edge-
unpassivated ZZPNRs.36,37 This behavior is quite different
from that of edge-unpassivated graphene nanoribbons.33–35

Fig. 4 (Color online) (a) kinetic temperature and (b) total free
energy along the AIMD trajectory for the ACPNR (P180). The
simulation is performed for 2.5 ps at 300 K.
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The reconstruction of edges in PNRs can modify their elec-
tronic36,37 and transport38 properties and make them potential
candidate materials for phosphorene-based electronic devices,
such as field effect transistors.24

5 Conclusions

In summary, we developed a massively parallel DGDFT (Dis-
continuous Galerkin Density Functional Theory) methodol-
ogy for efficient large-scale Kohn-Sham density functional
theory (DFT) calculations based on the combination of the
adaptive local basis (ALB) set and the pole expansion and se-
lected inversion (PEXSI) technique. The DGDFT methodol-
ogy can achieve a high basis set accuracy comparable to that
provided by conventional plane wave calculations but with a
small number of ALB basis functions per atom for large-scale
electronic structure calculations that involve thousand or tens
of thousands of atoms. Furthermore, the DGDFT methodol-
ogy is highly scalable based on two levels of parallelization
(intra- and inter-element parallelization), which can make effi-
cient use of more than 50,000 processors on high performance
machines for the systems studied here. Using ab-initio molec-
ular dynamics calculations on armchair phosphorene nanorib-
bons (ACPNRs), we find that a 2 × 1 edge reconstruction ap-
pears in ACPNRs at room temperature to modify their elec-
tronic structures for phosphorene-based nanoelectronics in the
future.
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