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Abstract

In the present work, we report an efficient implementation of configuration interaction singles

(CIS) excitation energies and oscillator strengths using the multi-resolution analysis (MRA) frame-

work to address the basis-set convergence of excited state computations. In MRA (ground-state)

orbitals and excited states are constructed adaptively guaranteeing an overall precision. Thus

not only valence but also in particular low-lying Rydberg states can be computed with consistent

quality at the basis set limit a priori, or without special treatments, which is demonstrated using a

small test set of organic molecules, basis sets, and states. We find that the new implementation of

MRA-CIS excitation energy calculations is competitive to conventional LCAO calculations when

the basis-set limit of medium-sized molecules are sought, which requires large, diffuse basis sets.

This becomes particularly important if accurate calculations of molecular electronic absorption

spectra with respect to basis-set incompleteness is required, in which both valence as well as Ry-

dberg excitations can contribute to the molecule’s UV/VIS fingerprint.
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† florian.bischoff@hu-berlin.de

1

Page 1 of 23 Physical Chemistry Chemical Physics



I. INTRODUCTION

Electronically excited states of molecules play an essential role in e.g. photochemistry

and photophysics, which have attracted much attention due to their key role in natu-

ral and artificial photosynthesis. The toolbox of quantum chemistry provides a num-

ber of methods to compute excited states, such as time-dependent DFT (TDDFT), time-

dependent Hartree-Fock (HF), or linear-response (LR) coupled cluster (CC).[1–3] TDDFT

is an efficient formulation and yields accurate results for valence excited states and prop-

erties, but can severely fail for charge-transfer states and Rydberg states. Coupled-cluster

models provide a way to systematically decrease the method error leading to the exact

solution of the Schrödinger equation, but the reduction of the method error leads in-

escapably to an increase in scaling with respect to the system size and thus significantly

longer computation times.

In this article we use the formalism of multi-resolution analysis (MRA) to compute

excitated states of small and medium-sized molecules. Unlike standard quantum chem-

istry, MRA needs to be formulated in the so-called first quantization, i.e. in the real-space

representation of operators and states. In the original formulation by Schrödinger, ob-

servables are represented by operators and states by functions.[4] Since from all mathe-

matical solutions of the Schrödinger equation only particular ones are suited as physical

solutions due to certain constraints such as norm and differentiability, this formulation

was denoted first quantization. The name second quantization was chosen based on

distinct physical observations, for instance the creation or annihilation of photons requir-

ing also a quantization of the electromagnetic field,[5] but for most quantum-chemical

applications and for the present work, second quantization denotes pragmatically the in-

troduction of a basis, whose basis functions are combined and rotated to form (occupied

and unoccupied) molecular orbitals as used to construct approximate solutions of e.g. the

Schrödinger equation.[6]

The fundamental ansatz to virtually all basis set-based methods is the pre-definition

of shape and number of basis functions, leaving the task to find an approximate solu-

tion of an actual problem with a number of adjustable (linear) parameters as small as

possible. In quantum chemistry, a lot of effort has been invested in finding optimal ba-

sis sets. The big advantage of such pre-parameterized basis sets is at the same time the
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biggest drawback: experience is not only helpful, it is rather indispensably needed, and

many basis sets have been developed which are not used anymore because of imbalance

leading to high accuracy in some cases and large errors in other cases. New basis sets

are reported in the literature on a regular basis, each optimized for a particular task, for

instance explicit correlation[7], (new) relativistic Hamiltonians[8], or the need to inves-

tigate advanced properties such as polarizabilities.[9] For excited-state calculations, the

accuracy of the model is often less important than the quality of the basis, because stan-

dard basis sets have been optimized for ground-state energies,[10, 11] and are often too

compact for excited states. The arbitrariness that comes with the use of ground-state

basis sets for excited states makes it hard to compute reliable, reproducible data when

(excited-state) calculations are limited to a certain basis-set size.

Many problems of pre-defined basis sets are avoided by using multi-resolution analy-

sis (MRA).[12–15] MRA functions are represented on an adaptive grid that is constructed

during the solution of the equations. In principle this technique can be used for all meth-

ods and molecules, while guaranteeing that the results are accurate up to a requested

threshold. This technique has been used before for similar purposes, such as for comput-

ing ground state energies,[12, 14] polarizabilities,[16, 17] for solving the time-dependent

Schrödinger equation,[18, 19] or computing TDHF/TDDFT excitation energies.[13] The

increase in accuracy and reliability is paid for by a larger prefactor in computational effi-

ciency compared to traditional LCAO approaches. However, the computational scaling is

significantly lower for MRA than for LCAO, so that for large molecules MRA can become

more efficient.

In the present work, we address the basis-set convergence for selected linear-response

properties at the hand of the configuration-interaction singles (CIS) method. In section

II, we review the basic equations for first and second quantization-based CIS response

properties. In section IV, we report our findings concerning the basis-set incompleteness

error for a selection of molecules and basis sets. The article closes with a summary and a

conclusion.
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II. METHODOLOGY

In this section we repeat the linear response formalism for completeness, although it

has been given before. The aim is to have a side-by-side comparison of the CIS working

equations in first and second quantization. Contrary to the conventional CIS derivation

the transition to density functional methods is straight forward within the linear response

framework.

A. Linear response

The response of the molecular system with respect to an external, time-dependent

perturbation f (t) = f eiωt + f †e−iωt can be expressed as a Taylor series,

ρ(t) = ρ(0) + ρ(1)(t) +O(ρ(2)), (1)

where ρ(t) is the time-dependent density, and ρ(0) is the unperturbed ground state den-

sity. The perturbed Fock operator F(t) depends on the perturbed density, and can also be

expressed in a Taylor series,

F(t) = F(0) + f (t) + F(1)(t) +O(F(2)). (2)

The linear response of the density is computed as the functional derivative of the corre-

sponding zeroth-order equation, e.g. Hartree-Fock or Kohn-Sham equations, with respect

to the density:

F(1)(t) =
δF

δρ(0)
◦ ρ(1)(t). (3)

Inserting the expressions into the time-dependent Schrödinger equations and keeping

terms up to first order yields:

i
∂

∂t
ρ(t) = [F(t), ρ(t)]

= [F(0) + F(1)(t) + f (t), ρ(0) + ρ(1)(t)] (4)

Since the external perturbation oscillates with frequency ω, the perturbed density ρ and

the perturbed Fock operator F adopt the same time-dependence:

ρ(1)(t) = ρ̃eiωt + ρ̃†e−iωt. (5)

4
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Factoring out the explicit time dependence eiωt from the perturbed density, and letting

the perturbation go to zero leads to:

[

F(0), ρ̃
]

+

[

δF

δρ(0)
◦ ρ̃, ρ(0)

]

= ωρ̃. (6)

This general equation defines the perturbed density ρ(1) and thus the linear response of

the system. Depending on a formulation in first or second quantization, different work-

ing equations are obtained as discussed in the following.

B. CIS excitation energies in second quantization

In second quantization the perturbed densities are expressed as rotations from the

occupied to the virtual space [20]

ρ
(1)
pq = dpqeiωt + d†

qpe−iωt (7)

ρ̃pq = dpq (8)

with only the occupied/virtual and virtual/occupied blocks of dpq having non-zero en-

tries, which are denoted x and y (”excitation” and ”deexcitation”) vectors

dai ≡ xai, djb ≡ ybj. (9)

The general SCF response equation Eq. (6) becomes

[

F
(0)
pq , dqr

]

+

[

∂Fpq

∂Pst
dst, Pqr

]

= ωdpr . (10)

In the Tamm-Dancoff approximation the de-excitation coefficients y are neglected. Using

the diagonal nature of the Fock and density matrices the following set of linear equations

are obtained:

ǫaxai − xaiǫi +
∂Fai

∂Pbj
xbjP

(0)
ii = ωxai, (11)

where i, j denote (active) occupied and a, b (active) virtual orbitals, and ǫ denote Hartree-

Fock orbital energies. These can be cast into a matrix eigenvalue problem with

Axr = ωrxr, (12)
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where we have introduced an additional index r indicating the r-th excitation corre-

sponding to the r-th eigenpair of the matrix A. The closed-shell expression matrix reads

for singlet excitations:[21]

As
ia,jb = δijδab(ǫi + ǫj − ǫa − ǫb) + 2(ia|r−1

12 |jb)− (ij|r−1
12 |ab), (13)

and for triplet excitations:

At
ia,jb = δijδab(ǫi + ǫj − ǫa − ǫb)− (ij|r−1

12 |ab). (14)

C. CIS excitation energies in first quantization

In first quantization the perturbed densities ρ̃ and ρ̃† are also expressed as projections

from the occupied to the virtual space and vice versa:

ρ̃ = ∑
i

|xi〉〈ϕi|+ |ϕi〉〈yi| (15)

ρ̃† = ∑
i

|ϕi〉〈xi|+ |yi〉〈ϕi| (16)

The first-order responses |xi〉 have the same orthogonality properties as the vector x in

second quantization: [13, 16]

|xr
i 〉 =

(

1 − ρ(0)
)

|xr
i 〉 = 1 −

nocc

∑
j

|ϕj〉〈ϕj|x
r
i 〉, (17)

〈xr|xp〉 =
nocc

∑
i

〈xr
i |x

p
i 〉 = δrp, (18)

where the superscript r (p) again indicates the r-th (p-th) root of the response equation,

i.e. the r-th (p-th) excitation energy, and ρ(0) denotes the ground-state density. While in

second quantization the orthogonality comes with the hermiticity of the matrix A in case

of CIS (but not for other models), in first quantization the orthogonality must be explicitly

enforced even for CIS.

Starting from Eq. (6), by left-projecting on 1 − ρ(0), right-projecting on ρ(0), using the

orthogonality relations, and dropping the |yi〉 for the CIS approximation, the three terms
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in Eq. (6) become:

(

1 − ρ(0)
) [

F(0), ρ̃
]

ρ(0) = ∑
i

(

F(0) − ǫi

)

|xi〉〈ϕi|, (19)

(

1 − ρ(0)
)

[

δF

δρ(0)
◦ ρ̃, ρ(0)

]

ρ(0) =
(

1 − ρ(0)
)

(

δF

δρ(0)
◦ ρ̃

)

ρ(0), (20)

(

1 − ρ(0)
)

ωρ̃ρ(0) = ω ∑
i

|xi〉〈ϕi|. (21)

Recombination of these terms and dropping the trailing 〈ϕi| yields

(

F(0) − ǫi

)

|xi〉+
(

1 − ρ(0)
)

(

δF

δρ(0)
◦ ρ̃

)

|ϕi〉 = ω|xi〉 (22)

which is reminiscent of the second-quantized formulation of Eq. (12). This can be rear-

ranged to:

(T − ǫi − ω) |xi〉 = −
(

1 − ρ(0)
)

(

δF

δρ(0)
◦ ρ̃

)

|ϕi〉 − (J − K + Vnuc) |xi〉, (23)

|xi〉 = −Gω

[

(

1 − ρ(0)
)

(

δF

δρ(0)
◦ ρ̃

)

|ϕi〉 − (J − K + Vnuc) |xi〉

]

. (24)

These equations need to be solved iteratively since the solution |xi〉 is part of the right

hand side through ρ̃, see Eq. (15). The Green’s operator G is the inverse of the Helmholtz

operator [22]

(T − ǫi − ω)−1 = Gω. (25)

Given the perturbed density ρ̃ in real space,

ρ̃(r) = ∑
i

ϕi(r)xi(r) , (26)

the variation of the Fock operator δF
δρ(0)

can be computed as:

δF

δρ(0)
◦ ρ̃(r) =

δJ

δρ(0)
◦ ρ̃(r)−

δK

δρ(0)
◦ ρ̃(r), (27)

δJ

δρ(0)
◦ ρ̃(r) =

∫

d3r′
ρ̃(r′)

|r − r′|
, (28)

δK

δρ(0)
◦ ρ̃(r)|ϕi〉 = ∑

j

xj(r)
∫

d3r′
ϕi(r

′)ϕj(r
′)

|r − r′|
. (29)
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D. Calculation of MRA excitation energies

1. Initial guess for the excitation vectors

Let f̂ be an excitation operator which generates approximately the excitation orbitals

|xi〉 when acting on ground state orbitals |ϕi〉,

|xi〉 ≈ f̂ |ϕi〉 . (30)

This operator is expanded into polynomials up to n-th order,

f̂ ≈
3

∑
i=1

ciri +
3

∑
i<j=1

cijrirj + · · ·+
3

∑
i<j<...<n=1

cij...nrirj...rn. (31)

For symmetric molecules the polynomials are grouped into irreducible representations

according to their transformational behavior. In case of low-order symmetry groups or

molecules without symmetry, expansion coefficients in Eq. (31) for the initial trial vectors

can be obtained from either an approximate higher order symmetry group, or a guess

based on intuition, experimental or calculated data such as multipole transition moments.

2. Iterative procedure and orthogonalization

Eq. (23) has to be solved for each target excitation vectors |xr〉 while the individual

vectors are orthonormalized in each iteration. A simple Gram-Schmidt orthogonalization

fails to converge quickly when trial vectors are containing contributions to several excited

states. A way to disentangle these excitations is to compute the Fock matrix elements

of the excitation vectors Fpr by projecting the working equations from the left on the

excitations 〈xp|,

Fpr = ∑
i

〈x
p
i |F

(0)|xr
i 〉+ ∑

i

〈x
p
i |(1 − ρ(0))

(

δF

δρ(0)
◦ ρ̃

)

|ϕi〉 . (32)

The amplitudes are finally determined by solving the generalized eigenvalue problem of

the Fock matrix:

|x
p
i 〉 = ∑

r

|xr
i 〉Urp, (33)

where U are the eigenvectors of the perturbed Fock matrix.
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The excitation energies ωr of the r-th root can be extracted from the diagonal matrix

elements through:

ωr =
Frr − ∑i ǫi〈xr

i |x
r
i 〉

∑i〈xr
i |x

r
i 〉

, (34)

or through an updating scheme: [12]

∆ωr =
〈xr|GωVxr〉

||GωV|xr〉||2
. (35)

Here GωV|x〉 is a short-hand notation for the right hand side of Eq. (24). The updating

procedure is correct to second order with respect to the error in the excitation functions

|xr〉 and thus provides accurate excitation energies. Furthermore, this scheme tends to

be more accurate numerically because no derivative operator is involved. In contrast, the

perturbed Fock matrix scheme is more stable if the current excitation vectors and energies

are far from convergence.

The complete iterative procedure for obtaining MRA excitation vectors at CIS level of

theory reads:

1. Guess initial trial vectors according to Sec. II D 1.

2. Iterate Eq. (23) once for all vectors |xr〉.

3. Orthogonalize the excitations and compute the excitation energies ωr for each vector

|xr〉 either by the updating scheme in Eq. (35) or through Eq. (34).

4. If not converged, return to 2.

5. Calculate oscillator strengths.

In CIS, oscillator strengths are obtained as contractions of the ground-state and excita-

tion vectors with an appropriate operator. Explicit expressions for the oscillator strengths

read for the length gauge (superscript l) and velocity gauge (superscript v) [23]:

f l =
4

3
ωr|〈xr|µ|0〉|2=

4

3
ωr|∑

i

〈xr
i |µ|ϕi〉|

2, (36)

f v =
4

3ωr
|〈xr|p|0〉|2=

4

3ωr
|∑

i

〈xr
i |p|ϕi〉|

2. (37)

The MRA formalism grants gauge invariance with respect to basis set incompleteness,

but the gauge dependence inherent in the CIS model still persists.
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III. COMPUTATIONAL DETAILS

All LCAO-based calculations were performed with the ricc2 (CCS and CCSD) and

escf (CIS) modules of the Turbomole program package version 6.5.[24] Standard basis

sets were taken from the Turbomole basis set library. [25–27] The Rydberg basis used

was ”CM2” taken from Ref. 28, consisting of 2s2p2d with exponents 0.01 and 0.0033,

respectively, which are placed in the center of mass of the molecules.[29]

The MRA treatment has been implemented in a local version of the MADNESS library.

[30] The precision threshold of all functions (orbitals, excitation vectors) was set to 10−5

in the response equation and 10−6 in the ground state calculation. The polynomial order

was chosen to be k = 8. Calculations were considered converged when the norm of the

excitation vectors would not change more than 10−3.

IV. RESULTS AND DISCUSSION

This section is organized as follows. We first analyze the use of different initial trial

vectors and convergence behavior for MRA CIS excitation energies. Using the new MRA

implementation, we review basis-set based results using different basis sets and aug-

mentation strategies in terms of basis-set incompleteness error and convergence to the

basis-set limit. Excitation energies are treated for singlet and triplet excitations, while os-

cillator strengths are only discussed for singlet excited states because triplet excitations

are spin-forbidden in non-relativistic treatments thus lacking a physical meaning. Finally,

we discuss the performance of the new implementation of MRA CIS excitation energies.

A. Initial trial vectors and convergence in MRA CIS

Similar to LCAO calculations the quality of the initial trial vectors is crucial for recov-

ering the lowest excited states if not all roots are to be determined. In LCAO methods

this problem arises mainly in symmetric systems such as benzene and is not dominant

in asymmetric molecules. However, in MRA the configuration space is much larger and

thus the problem is present in virtually all calculations. While in LCAO methods the

guess is based on orbital energy differences, such an approach is not available in MRA

methods, because no virtual orbitals exist and therefore no orbital energies as well.

10
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FIG. 1. Convergence behavior for s- and p-type excited states of the helium atom with different or-

thonormalization procedures: perturbed Fock matrix orthogonalization (left) and Gram-Schmidt

orthogonalization (right). For the perturbed Fock matrix orthogonalization (left) all components

converge smoothly within less than 10 iterations, while in the Gram-Schmidt orthogonalization

(right) no convergence is achieved after 20 iterations.

Physically motivated initial trial vectors are obtained by multiplying the ground-state

orbitals with a dipole operator, leading to a fast convergence for bright states, i.e. states

with large oscillator strengths, but typically misses dark states, i.e. states with small os-

cillator strengths. Initial trial vectors for molecules with high symmetry can be obtained

from symmetry-adapted guess functions, which converge quickly in all cases to the cor-

responding excited states. While the actual MRA calculations are carried out without

applying point-group symmetry, the initial trial vectors may exhibit a particular symme-

try. Trial vectors can also be based on a LCAO calculation in a small basis, mapping the

ground-state orbitals using a Procrustes rotation.

In Fig. 1 the convergence of the MRA-CIS excitation energies of the helium atom is

shown. The guess excitation vectors |x〉 are excitations to the hybrid sp3 orbitals. De-

pending the orthonormalization procedure these excitations can be quickly disentangled

(perturbed Fock matrix diagonalization) or not (Gram-Schmidt orthogonalization). In

addition, we used a Krylov subspace method[31] to accelerate the convergence of the
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excitation vectors.

B. CIS model error and basis set incompleteness

In Tab. I, two low-lying excitation energies of the ethylene molecule are listed, with

11B3u being a valence excitation, and 21B3u a Rydberg excitation. The reference MRA

values were obtained with our new implementation. The basis set convergence for the

valence excitation (11B3u) is quite rapid, and already the smallest basis set, aug-cc-pVDZ,

exhibits a basis-set incompleteness error of only about 25 meV, while the standard devi-

ation concerning the method error of CCS can be assumed to be about 1.2 eV. [32] The

Rydberg excitation (21B3u), on the other hand, shows no rapid convergence with respect

to the basis set, and the smallest basis, aug-cc-pVDZ, shows a basis-set incompleteness

error of about 1.5 eV, which is about the same order of magnitude as the method error.

Increasing the basis set with respect to the cardinal number, as done for ground-state

energy calculations, decreases the error only slowly and leads to errors of about 1.1 eV

and 0.8 eV for aug-cc-pVTZ and aug-cc-pVQZ, respectively, indicating that no higher

l-quantum numbers are missing in the basis set. A severe problem is that such a behav-

ior can easily be misinterpreted as ”proper” convergence if only ground-state basis sets

are employed, although it is only a pseudo convergence because the missing (diffuse)

functions are not taken into account. A fairly rapid convergence with respect to the ba-

sis set is obtained if additional diffuse functions are added, which are less important in

ground-state calculations. This illustrates how computing certain properties can change

the basis-set requirements drastically, which requires ”experience-based” development

and application of basis sets.

In the present example the computation of excitation energies with balanced quality

is only possible if the basis-set incompleteness error can be controlled. However, even

with quite large basis sets there is no guarantee to achieve basis-set convergence, and, in

addition very large basis sets often lead to linear dependencies, convergence problems,

and decreased computational efficiency (vide infra).

12
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TABLE I. 1B3u excitation energies of C2H4 in eV calculated using different basis sets and coupled-

cluster methods. For excitation energies configuration-interation singles (CIS) and coupled-

cluster singles (CCS) yield identical results. (RCC = 2.5187 bohr, RCH = 2.0422 bohr, ΘHCH =

121.35o)

11B3u 21B3u

(valence) (Rydberg)

CCS CCSD CCS CCSD

aug-cc-pVDZ 7.745 8.042 10.620 10.430

aug-cc-pVTZ 7.730 8.027 10.135 10.372

aug-cc-pVQZ 7.726 8.030 9.834 10.183

d-aug-cc-pVDZ 7.725 8.014 9.043 9.349

d-aug-cc-pVTZ 7.718 8.016 9.046 9.449

d-aug-cc-pVQZ 7.719 n.c.a 9.045 n.c.a

MRA 7.718 — 9.033 —
a Calculation did not converge.

C. Basis-set convergence

We computed singlet and triplet CIS excitation energies of a small test set of molecules

with different basis sets and compared to the basis-set limit calculations from MRA, as

obtained with our new implementation. The test set consists of the six lowest singlet and

six lowest triplet excitations of water, ammonia, ethylene, benzene, norbornane, cyclo-

propane, and formaldehyde, totaling 84 states. The basis sets were selected to represent

different cardinal numbers (X=D, T, Q) of commonly used basis set families, as well as

a benchmarking basis set (d-aug-cc-pVQZ). The aim of this section is not to provide an

extensive assessment of basis sets, but to put the MRA results into context.

In Tab. II we compare MRA CIS to widely-used basis set families, namely Dunning-

type and Karlsruhe-type. The correlation-consistent basis sets pioneered by Dunning,

[11] abbreviated cc-pVXZ, are primarily constructed to provide accurate ground-state

energies for correlated methods. Additional diffuse functions are provided through aug-

mentation functions, leading to aug-cc-pVXZ basis sets. Furche and Rappoport [9] con-

structed optimized basis sets for response properties for density-functional theory (DFT)
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TABLE II. The first 7 singlet and triplet CIS excitation energies of the ethylene molecule in eV, as

well as excitation 21B3u.

State Γ def2-SVPD SVPD+d def2-TZVPD def2-TZVPD+CM2 aug-cc-pVQZ d-aug-cc-pVQZ MRA

T1
3B3u 3.621 3.614 3.619 3.617 3.617 3.617 3.616

T2
3B1u 7.580 7.009 7.194 6.942 6.927 6.922 6.922

T3
3B3g 8.565 7.700 8.452 7.759 7.652 7.638 7.639

T4
3Ag 10.930 7.838 10.114 7.974 7.912 7.771 7.770

T5
3B2g 8.599 7.860 8.128 7.792 7.788 7.771 7.772

T6 23B3g 9.157 8.536 8.565 8.505 8.496 8.495 8.495

T7 23B1u 9.912 8.612 9.285 8.611 8.824 8.506 8.478

S1
1B1u 7.904 7.218 7.489 7.156 7.149 7.140 7.141

S2
1B3u 8.064 7.781 7.896 7.818 7.726 7.719 7.718

S3
1B3g 9.238 7.782 8.666 7.836 7.742 7.724 7.723

S4
1B2g 8.823 7.955 8.310 7.897 7.901 7.878 7.877

S5
1Ag 11.890 8.156 11.105 8.192 8.403 8.101 8.101

S6 21B1u 10.536 8.666 9.881 8.679 8.903 8.587 8.570

S7
1Au 11.347 8.846 10.328 8.824 8.894 8.788 8.742

... ... ... ... ... ... ... ... ...

S12 21B3u 13.116 9.111 12.248 9.021 9.834 9.045 9.033

applications based on static polarizability calculations. These basis sets have at most one

additional spd set of diffuse basis functions and thus correspond approximately to the

aug-cc-pVXZ basis sets, while being more compact and consisting of a reduced number

of basis functions. Consequently all of these sets are sufficient for describing valence

excited states, but fail to describe Rydberg states accurately.

Up to doubly augmented triple zeta basis sets are needed to converge excitation en-

ergies (or excited-state properties) to the basis set limit. Alternatively, the atom-centered

basis sets are supplemented with diffuse center-of-mass (CM) basis sets to describe the

Rydberg states. This procedure works very well, but still the ordering of the states

might be incorrect, e.g. the 3B1g and the 3Ag states of ethylene in case of the basis def2-
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TZVPD+CM2, see Tab. II. Furthermore, the excitation energies might still exhibit large

errors if the CM basis functions are combined with small valence basis set.

Some statistical measures of the lowest excitations of the test set molecules are given in

Fig. 2, all with respect to MRA calculations which have been considered the basis set limit.

No standard deviation or variance are given because the distributions are not Gaussian

shaped. It can be seen that the doubly augmented d-aug-cc-pVQZ basis set exhibits only

small errors and are in good agreement with the MRA calculations. However, this basis is

very large and contains diffuse functions, which leads to a low computational efficiency.

The singly augmented aug-cc-pVQZ can yield significant deviations > 0.5eV for 15 of the

84 states, but can be considered to be in reasonable agreement with the basis-set limit. In

contrast, the CM-augmented def2-TZVPD basis set seems more balanced, since only few

states exhibit large deviations. For medium-sized basis sets such as def2-TZVPD little

can be said about the quality of the individual states due to the almost equal distribution

of errors, although the basis set has already been optimized for response properties.

An alternative ad-hoc correction of the singly augmented basis sets can be the addition

of a second set of diffuse functions, taken from the Dunning family, resulting in ”doubly

augmented” basis sets and in significantly improved behavior, "def2-SVPD+d" and "def2-

TZVPD+d", which are obtained by adding the second set of diffuse functions from the

d-aug-cc-pVDZ and d-aug-cc-pVTZ, respectively. This additional set of diffuse functions

are essential for the description of Rydberg states, for both Karlsruhe-type or Dunning-

type. In addition it is quite problematic that neglecting the second set of diffuse basis

functions might lead to pseudo-convergence.

Assuming that CIS exhibits a standard deviation of about 1.2 eV and maximum errors

as large as 2.4 eV, [32], the number of states inside an error bar of 1.0 eV count as follows:

47 for SVPD (56 %), 81 for SVPD+d (96 %), 69 for TZVPD (82 %), 83 for TZVPD+CM2

(99 %), 81 for aug-cc-pVQZ (96 %), d-aug-cc-pVQZ (100 %). This means, for instance,

that for the smallest basis set, def2-SVPD, 37 states (about 50 %) exhibit errors larger

than the method error. However, when for this basis set additional diffuse functions are

included, leading to the basis denoted SVPD+d here, 35 (out of 37) states drop below

1.0 eV error and only two states remain beyond 1.0 eV error. We thus estimate that 35

states have significant Rydberg character, while the accuracy of the two remaining states

can be increased by using TZVPD indicating significant valence character. Leaving out
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TABLE III. CIS excitation energies in eV and oscillator strengths for selected excitations of the

water molecule.

Γ def2-TZVPD TZVPD+CM d-aug-cc-pVQZ MRA (k=8,ǫ=1.e-4)

Excitation energy 8.908 8.806 8.778 8.778

11B2 –length 5.0 × 10−2 4.9 × 10−2 4.8 × 10−2 4.8 × 10−2

–velocity 7.2 × 10−2 7.0 × 10−2 7.1 × 10−2 7.1 × 10−2

Excitation energy 10.627 10.503 10.443 10.443

11A2 –length 0 0 0 0

–velocity 0 0 0 0

Excitation energy 11.165 11.010 10.966 10.967

11A1 –length 1.0 × 10−1 8.1 × 10−2 7.1 × 10−2 7.0 × 10−2

–velocity 8.7 × 10−2 7.6 × 10−2 6.5 × 10−2 6.4 × 10−2

Excitation energy 11.791 11.274 11.190 11.187

21B2 –length 1.3 × 10−2 8.2 × 10−3 1.1 × 10−2 1.1 × 10−2

–velocity 1.6 × 10−2 7.4 × 10−3 1.0 × 10−2 1.0 × 10−2

Excitation energy 12.182 11.577 11.505 11.495

21A1 –length 1.6 × 10−2 2.4 × 10−2 3.4 × 10−2 3.6 × 10−2

–velocity 9.3 × 10−3 1.6 × 10−2 2.4 × 10−2 2.6 × 10−2

Excitation energy 13.742 11.954 11.937 11.922

31B2 –length 2.4 × 10−3 4.2 × 10−4 1.3 × 10−4 2.0 × 10−5

–velocity 3.0 × 10−3 2.5 × 10−3 1.7 × 10−3 1.3 × 10−3

Rydberg-type excitations, it means that the SVPD basis set is able to obtain 47 out of 49

valence excitations below 1.2 eV accuracy, i.e. the estimated method error.

Within the limited test set the SVPD basis thus seems to yield an acceptable accuracy

for the lowest excitations in the CIS approximation. For more accurate methods such

as CCSD this is not true any more, since the method error is significantly lowered. In

the TDDFT framework the situation is inversed, since the small basis set is not able to

describe Rydberg or charge-transfer states, but neither is TDDFT, so that the errors might

be balanced again, albeit on a low level.

The oscillator strengths show a similar behavior compared to the excitation energies.
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Exemplary results are presented for the water molecule in Tab. III. All oscillator strengths

as obtained with the best basis set, d-aug-cc-pVQZ, yield only small differences com-

pared to the reference MRA results. One exception is the oscillator strength in the ve-

locity representation belonging to the 31B2 excitation with an excitation energy of 11.921

eV, which has an error of one order of magnitude. The error is again found in the LCAO

calculations, where the oscillator strengths converge slower than the corresponding ex-

citation energy. For properties of the excited states an accurate description of the excited

wave functions is even more important than for the excitation energies by themselves.

D. Spatial extent of excited states

In Fig. 3, we have plotted the MRA solution vectors |xHOMO〉 corresponding to the

highest occupied molecular orbital (HOMO) of the ethylene molecule for excitations S1

and S12 from Tab. II, where excitation S1 corresponds to a valence state and S12 to a Ryd-

berg state. It can be clearly seen that the Rydberg state extends significantly beyond the

ethylene molecule, which illustrates why basis sets suited for ground-state calculations

are not suited in general for describing such a state. The shape of the solution vectors

|x〉 reveals that no simple mapping to the molecular geometry is observed, which sup-

ports the qualitative observation that center-of-mass (CM) basis sets lead to significantly

improved accuracy for Rydberg states, while increasing the cardinal number of a given

basis set often hardly yields improvements (vide supra).

E. Computation times

In MRA-CIS the most time consuming step for each iteration step is the calculation of

the exchange operator applied on the response vector |x〉, scaling quadratically with the

number of occupied orbitals Nocc and linear with the number of excitations. CPU times

for one iteration of one excitation vector |x〉 are plotted for 6 different organic molecules

in Fig. 4. The computational time grows approximately quadratically with the number

of occupied orbitals. Conventional CIS calculations scale with N2 to N4, where the ac-

tual measured scaling depends on applied approximations and the size of the calculation

leading to ”in-core” or ”out-of-core” algorithms. [1] A quadratic scaling is reached only
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FIG. 2. Graphical representation of errors obtained using different basis sets compared to the

MRA limit. Included are singlet and triplet states of the test set of 7 molecules. The total number

of states is 84. Conventional basis sets are not able to account for Rydberg states and additional

diffuse functions have to be used. MRA, on the other hand, is able to achieve accurate results for

all states without special considerations.
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FIG. 3. Excited-state solution vectors corresponding to the HOMO for 1B1u (top) and 21B3u (bot-

tom) of the ethylene singlet excitations of Tab. II (left: view along y axis, right: view along x axis),

respectively. The ethylene molecule is oriented along the x axis and the hydrogens are located

in the xy plane. The graphical representation illustrates that the spatial extension of the valence

excitation is significantly smaller compared to the Rydberg excitation. In the bottom plot the most

diffuse s-functions from different basis sets are plotted. The exponents of the Gaussians are 0.067

(def2-SVPD, black), 0.047 (aug-cc-pVDZ, red) and 0.014 (d-aug-cc-pVDZ, blue).
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FIG. 4. Averaged CPU times for one iteration of one excitation vector in seconds, reveling a

quadratic scaling of the MRA method as implemented. The molecules employed are water (10

electrons), formaldehyde (16 electrons), cyclopropane (24 electrons), acetone (32 electrons), ben-

zene (42 electrons), norbornane (54 electrons), thymine (66 electrons), camphor (84 electrons) and

phenantrene (94 electrons).

in calculations with small basis sets, while it usually cannot be achieved for diffuse basis

sets.

While LCAO calculations have a fast initial convergence and take only seconds for

small molecules and basis sets, MRA calculations have relatively large overhead due to

the increased accuracy. This is shown in Fig. 5, where total CPU times for the calculation

of the lowest 10 excitation energies of toluene are given.

V. CONCLUSIONS

In the present work, we report an efficient implementation of CIS excitation energies

using multi-resolution analysis (MRA). This method allows for an unbiased calculation

of excitation energies guaranteeing the same accuracy for valence as well as Rydberg

excited states a priori, i.e. without special treatment. While Gaussian basis sets are hard
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FIG. 5. Total CPU times in days for the calculation of the 10 lowest CIS singlet excitation energies

of toluene (50 electrons) in C1 symmetry with basis sets aug-cc-pVXZ (abbreviated aXZ) and d-

aug-cc-pVXZ (abbreviated daXZ), as well as MRA.

to beat for lower accuracy, MRA enables the systematic exploration of the basis set limit.

The new MRA implementation was used to investigate the accuracy of excitation ener-

gies of selected compounds and basis sets. The analysis revealed a rather moderate per-

formance for conventional basis sets when molecular absorption spectra are to be studied,

because they are not able to yield accurate excitation energies for Rydberg states, which

also occur among the lowest excitations. We found that only a very large and diffuse

basis, d-aug-cc-pVQZ, can yield reliable excitation energies for both valence and Ryd-

berg excitations. However, the (almost saturated) augmentation of larger basis sets does

not seem desirable due to linear dependencies and resulting numerical instabilities. For

instance, even for the simple ethylene molecule the CCSD calculation did not converge.

This leads to the severe problem of pseudo convergence when, based on numerical issues,

additional diffuse functions have to be excluded from further considerations in excited-

state calculations of extended systems.

Based on the current implementation, the calculation of CIS excitation energies using

MRA is comparably cheap and guarantees a numerically accurate treatment of excited

states. The approach can be used as a benchmark for constructing or analyzing new

basis sets. Due to the favorable scaling MRA CIS calculations can also be used directly

to compute the UV/VIS spectra of small and medium-sized molecules without basis set

artifacts.
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The future prospects are twofold: First, the current implementation is massively par-

allel and can be used to compute the CIS excitation energies of large molecules, taking

advantage of the quadratic scaling algorithm. Second, correlated wave-function models

beyond CIS, such as CC2 or CCSD, will be developed for MRA to balance the error in the

model. For these, the main obstacle is the higher dimensionality of the wave function, i.e.

six dimensional (6D) for CC2 and CCSD instead of three dimensional (3D) in case of CIS,

that needs to be overcome.[14] Work along these lines is in progress.
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