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Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach

is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined

with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage

at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article

we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic

systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control

of quantum systems, simulation of plasmonic systems, and the exact solution of the Schrödinger equation for low-dimensionality

systems.

1 Introduction

The development of theoretical methods for the simulation of

electronic systems is an active area of study. This interest
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has been fueled by the success of theoretical tools like den-

sity functional theory (DFT)1,2 that can predict many proper-

ties with good accuracy at a relatively modest computational

cost. On the other hand, these same tools are not good enough

for many applications3, and more accurate and more efficient

methods are required.

Current research in the area covers a broad range of aspects

of electronic structure simulations: the development of novel

theoretical frameworks, new or improved methods to calculate

properties within existing theories, or even more efficient and

scalable algorithms. In most cases, this theoretical work re-

quires the development of test implementations to assess the

properties and predictive power of the new methods.

The development of methods for the simulations of elec-

trons requires continual feedback and iteration between theory

and results from implementation, so the translation to code of

new theory needs to be easy to implement and to modify. This

is a factor that is usually not considered when comparing the

broad range of methods and codes used by chemists, physi-

cists and material scientists.

The most popular representations for electronic structure

rely on basis sets that usually have a certain physical connec-

tion to the system being simulated. In chemistry, the method

of choice is to use atomic orbitals as a basis to describe the

orbitals of a molecule. When these atomic orbitals are ex-

panded in Gaussian functions, it leads to an efficient method

as many integrals can be calculated from analytic formulae4.
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In condensed-matter physics, the traditional basis is a set of

plane waves, which correspond to the eigenstates of a homo-

geneous electron gas. These physics-inspired basis sets have,

however, some limitations. For example, it is not trivial to

simulate crystalline systems using atomic orbitals5, and, on

the other hand, in plane-wave approaches finite systems must

be approximated as periodic systems using a super-cell ap-

proach.

Several alternatives to atomic-orbital and plane-wave basis

sets exist6–10. One particular approach that does not depend

on a basis set uses a grid to directly represent fields in real-

space. The method was pioneered by Becke11, who used a

combination of radial grids centered around each atom. In

1994 Chelikowsky, Troullier and Saad12 presented a practical

approach for the solution of the Kohn-Sham (KS) equations

using uniform grids combined with pseudo-potentials. What

made the approach competitive was the use of high-order fi-

nite differences to control the error of the Laplacian without

requiring very dense meshes. From that moment, several real-

space implementations have been presented13–33.

Discretizing in real-space grids does not benefit from a di-

rect physical connection to the system being simulated. How-

ever, the method has other advantages. In first place, a real-

space discretization is, in most cases, straight-forward to per-

form starting from the continuum description of the electronic

problem. Operations like integration are directly translated

into sums over the grid and differential operators can be dis-

cretized using finite differences. In fact, most electronic struc-

ture codes must rely on an auxiliary real-space discretization

used, for example, for the calculation of the exchange and cor-

relation (xc) term of DFT.

Grids are flexible enough to directly simulate different

kinds of systems: finite, and fully or partially periodic. It

is also possible to perform simulations with reduced (or in-

creased) dimensionality. Additionally, the discretization error

can be systematically and continuously controlled by adjust-

ing the spacing between mesh points, and the physical exten-

sion of the grid.

The simple discretization and flexibility of the real space

grids makes them an ideal framework to implement, develop

and test new ideas. Modern electronic structure codes are

quite complex, which means that researchers seldom can write

a standalone code from scratch, but instead need to resort to

existing codes to implement their developments.

From the many codes available, in our experience the real-

space code Octopus22,34 provides an ideal framework for

theory-development work. To illustrate this point, in this arti-

cle we will explore some recent advances that have been made

in computational electronic structure and that have been de-

veloped using the Octopus code as a base. We will pay special

attention to the most unusual capabilities of the code, and in

particular to the ones that have not been described in previous

articles22,34,35.

2 The Octopus code

Octopus was started around 2000 in the group of professor

Angel Rubio who, at that moment, was at the University of

Valladolid, Spain. The first article using Octopus was pub-

lished in 200136. Today, the code has grown to 200,000 lines

of code. Octopus receives contributions from many develop-

ers from several countries and its results have been used for

hundreds of scientific publications.

The original purpose of Octopus was to perform real-time

time-dependent density functional theory (TDDFT) calcula-

tions, a method that had been recently proposed at the time for

the calculation of excited-state properties in molecules37. Be-

yond this original feature, over the time the code has become

able to perform many types of calculations of ground-state and

excited-state properties. These include most of the standard

features of a modern electronic-structure package and some

not-so-common capabilities.

Among the current capabilities of Octopus are an efficient

real-time TDDFT implementation for both finite and periodic

systems38,39. Some of the research presented in this article

is based on that feature, such as the simulation of photoe-

mission, quantum optimal control, and plasmonic systems.

The code can also perform molecular-dynamics simulations

in the Born-Oppenheimer and Ehrenfest approximations. It

also implements a modified Ehrenfest approach for adiabatic

molecular dynamics40,41 that has favorable scaling for large

systems. Octopus can perform linear-response TDDFT cal-

culations in different frameworks; these implementations are

discussed in sections 3 and 5. For visualization, analysis and

post-processing, Octopus can export quantities such as the

density, orbitals, the current density, or the time-dependent

electron localization function42 to different formats, including

the required DFT data to perform GW/Bethe-Salpeter calcu-

lations with the BerkeleyGW code43.

Octopus is publicly and freely available under the GPL

free/open-source license, this includes all the releases as well

as the development version. The code is written using the prin-

ciples of object oriented programming. This means that the

code is quite flexible and modular. It provides a full toolkit for

code developers to perform the operations required for the im-

plementation of new approaches for electronic-structure cal-

culations.

In order to control the quality of the package, Octopus uses

continuous integration tools. The code includes a set of tests

that checks most of the functionality by verifying the calcu-

lation results. After a new change is commited to the main

repository, a set of servers with different configurations com-

piles the code and runs a series of short tests. This setup

quickly detects most of the problems in a commit, from syntax
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that a compiler will not accept, to unexpected changes in the

results. Every night a more comprehensive set of tests is exe-

cuted by these same servers. The test-suite framework is quite

general and is also successfully in use for the BerkeleyGW43

and APE44 codes.

3 The Sternheimer formulation of linear-

response

In textbooks, perturbation theory is formulated in terms of

sums over states and response functions. These are useful

theoretical constructions that permit a good description and

understanding of the underlying physics. However, this is not

always a good starting point for numerical applications, since

it involves the calculation of a large number of eigenvectors,

infinite sums over these eigenvectors, and functions that de-

pend on two or more spatial variables.

An interesting approach that avoids the problems mentioned

above is the formulation of perturbation theory in terms of dif-

ferential equations for the variation of the wave-functions. In

the literature, this is usually called the Sternheimer equation45

or density functional perturbation theory (DFPT)46. Although

a perturbative technique, it avoids the use of empty states, and

has a favorable scaling with the number of atoms.

Octopus implements a generalized version of the Stern-

heimer equation that is able to cope with both static and dy-

namic response in and out of resonance47. The method is

suited for linear and non-linear response; higher-order Stern-

heimer equations can be obtained for higher-order variations.

For second-order response, however, we apply the 2n + 1 the-

orem (also known as Wigner’s 2n + 1 rule)48,49 to get the co-

efficients directly from first-order response variations.

In the Sternheimer formalism, we consider the response

to a monochromatic perturbative field λδ v̂(rrr)cos(ωt). This

perturbation induces a variation in the time-dependent KS or-

bitals, which we denote δϕn(rrr,ω). These variations allow us

to calculate response observables, for example, the frequency-

dependent polarizability.

In order to calculate the variations of the orbitals we need

to solve a linear equation that only depends on the occupied

orbitals (atomic units are used throughout)

{
Ĥ − εn ±ω + iη

}
δϕn(rrr,±ω) =−P̂c δ Ĥ(±ω)ϕn(rrr) , (1)

where the variation of the time-dependent density, given by

δn(rrr,ω)=∑
k

fk

{

[ϕn(rrr)]
∗ δϕn(rrr,ω)+[δϕn(rrr,−ω)]∗ ϕn(rrr)

}

,

(2)

needs to be calculated self-consistently. The first-order varia-

tion of the KS Hamiltonian is

δ Ĥ(ω) = δ v̂(rrr)+
∫

drrr′
δn(rrr′,ω)

|rrr− rrr′|

+
∫

drrr′ fxc(rrr,rrr
′,ω)δn(rrr′,ω) . (3)

P̂c is a projection operator, and η a positive infinitesimal, es-

sential to obtain the correct position of the poles of the causal

response function, and consequently to obtain the imaginary

part of the polarizability and remove the divergences of the

equation for resonant frequencies. In the usual implemen-

tation of DFPT, P̂c = 1−∑
occ
n |ϕn〉〈ϕn| which effectively re-

moves the components of δϕn(rrr,±ω) in the subspace of the

occupied ground-state wave-functions. In linear response,

these components do not contribute to the variation of the den-

sity.

We have found that it is not strictly necessary to project out

the occupied subspace, the crucial part is simply to remove the

projection of δϕn on ϕn (and any other states degenerate with

it), which is not physically meaningful and arises from a phase

convention. To fix the phase, it is sufficient to apply a minimal

projector P̂n = 1−∑
εm=εn
m |ϕm〉〈ϕm|. We optionally use this

approach to obtain the entire response wavefunction, not just

the projection in the unoccupied subspace, which is needed

for obtaining effective masses in kkk · ppp theory. While the full

projection can become time-consuming for large systems, it

saves time overall since it increases the condition number of

the matrix for the linear solver, and thus reduces the number

of solver iterations required to attain a given precision.

We also have implemented the Sternheimer formalism

when non-integer occupations are used, as appropriate for

metallic systems. In this case weighted projectors are added

to both sides of eq. (1)50. We have generalized the equations

to the dynamic case51. The modified Sternheimer equation is

{

Ĥ − εn ±ω + iη +∑
m

αm |ϕm〉〈ϕm|
}

δϕn(rrr,±ω) =

−
[

θ̃F,n −∑
m

βn,m |ϕm〉〈ϕm|
]

δ Ĥ(±ω)ϕn(rrr) , (4)

where

αn = max(εF −3σ − εn,0) , (5)

βn,m = θ̃F,nθ̃n,m + θ̃F,mθ̃m,n +αm

θ̃F,n − θ̃n,m

εn − εm ∓ω
θ̃m,n , (6)

σ is the broadening energy, and θ̃i j is the smearing scheme’s

approximation to the Heaviside function θ ((εi − ε j)/σ).
Apart from semiconducting smearing (i.e. the original equa-

tion above, which corresponds to the zero temperature limit),
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the code offers the standard Fermi-Dirac52, Methfessel-

Paxton53, spline54, and cold55 smearing schemes. Addition-

ally, we have developed a scheme for handling arbitrary frac-

tional occupations, which do not have to be defined by a func-

tion of the energy eigenvalues51.

In order to solve eq. (1) we use a self-consistent iteration

scheme similar to the one used for ground-state DFT. In each

iteration we need to solve a sparse linear problem where the

operator to invert is the shifted KS Hamiltonian. For real

wavefunctions and a real shift (as for the static case), we can

use conjugate gradients. When the shift is complex, a non-

Hermitian iterative solver is required. We have found that a ro-

bust and efficient solver is the quasi-minimal residual (QMR)

method56.

We can solve for linear response to various different pertur-

bations. The most straight-forward case is the response of a

finite system to an electric field Ei,ω with frequency ω in the

direction i, where the perturbation operator is δ v̂ = r̂i
47. In

this case the polarizability can be calculated as

αi j (ω) =−
occ

∑
n

[

〈ϕn|r̂i|
∂ϕn

∂E j,ω
〉+ 〈 ∂ϕn

∂E j,−ω
|r̂i|ϕn〉

]

. (7)

The calculation of the polarizability yields optical response

properties (that can be extended to nonlinear response)47,57

and, for imaginary frequencies, van der Waals coefficients58.

It is also possible to use the formalism to compute vibra-

tional properties for finite and periodic systems46,59. Cur-

rently Octopus implements the calculations of vibrations for

finite systems. In this case the perturbation operator is an

infinitesimal ionic displacement ∂ Ĥ/∂Riα = ∂ v̂α/∂Riα , for

each direction i and atom α . The quantity to calculate is the

dynamical matrix, or Hessian, given by

Diα, jβ =
∂ 2E

∂Riα ∂R jβ
= Dion−ion

iα, jβ

−
occ

∑
n

[〈

ϕn

∣
∣
∣
∣

∂ v̂α

∂Riα

∣
∣
∣
∣

∂ϕn

∂R jβ

〉

+ cc.+δαβ

〈

ϕn

∣
∣
∣
∣

∂ 2v̂α

∂Riα ∂Rα j

∣
∣
∣
∣
ϕn

〉]

(8)

The contribution from the ion-ion interaction energy is

Dion−ion
iα, jβ =







Zα ∑γ 6=α Zγ

[

δi j

|Rα−Rγ |3
−3

(Riα−Riγ)

|Rα−Rγ |4
]

if α = β

−Zα Zβ

[

δi j

|Rα−Rβ |3
−3

(Riα−Riβ )

|Rα−Rβ |4
]

if α 6= β

(9)

where Zα is the ionic charge of atom α . We have found that

an alternative expression for the perturbation operator yields

more accurate results when discretized. This is discussed in

section 6.

Vibrational frequencies ω are obtained by solving the

eigenvalue equation

1
√

mα mβ
Diα, jβ x jβ =−ω2x jβ , (10)

where mα is the mass for ion α . For a finite system of N

atoms, there should be 3 zero-frequency translational modes

and 3 zero-frequency rotational modes. However, they may

appear at positive or imaginary frequencies, due to the finite

size of the simulation domain, the discretization of the grid,

and finite precision in solution of the ground state and Stern-

heimer equation. Improving convergence brings them closer

to zero.

The Born effective charges can be computed from the re-

sponse of the dipole moment to ionic displacement:

Z∗
i jα =− ∂ 2E

∂Ei∂R jα
=

∂ µi

∂R jα
= Zα δi j −

occ

∑
n

〈

ϕn |r̂i|
∂ϕn

∂R jα

〉

.

(11)

The intensities for each mode for absorption of radiation po-

larized in direction i, which can be used to predict infrared

spectra, are calculated by multiplying by the normal-mode

eigenvector x

Ii = ∑
jα

Z∗
i jα x jα . (12)

The Born charges must obey the acoustic sum rule, from

translational invariance

∑
α

Z∗
i jα = Qtotδi j . (13)

For each i j, we enforce this sum rule by distributing the dis-

crepancy equally among the atoms, and thus obtaining cor-

rected Born charges:

Z̃∗
i jα = Z∗

i jα +
1

N

(

Qtotδi j −∑
α

Z∗
i jα

)

. (14)

The discrepancy arises from the same causes as the non-zero

translational and rotational modes.

By mixing the response to ionic displacements and elec-

tric perturbations it is possible to calculate vibrational Raman

response coefficients60. This feature however, it is still not

implemented in Octopus.

The Sternheimer equation can be used in conjunction with

kkk · ppp perturbation theory61 to obtain band velocities and effec-

tive masses, as well as to apply electric fields via the quantum

theory of polarization. In this case the perturbation is a dis-

placement in the k-point. Using the effective Hamiltonian for

the k-point

Ĥkkk = e−ikkk·rrrĤeikkk·rrr , (15)
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the perturbation is represented by the operator

∂ Ĥkkk

∂kkk
=−i∇+ kkk+[v̂α ,rrr] , (16)

including the effect on the non-local pseudopotentials. The

first-order term gives the band group velocities in a periodic

system,

vnkkk =
∂εnkkk

∂nnn
=

〈

ϕnkkk

∣
∣
∣
∣

∂ Ĥkkk

∂kkk

∣
∣
∣
∣
ϕnkkk

〉

. (17)

Inverse effective mass tensors can be calculated by solving

the Sternheimer equation for the kkk · ppp perturbation. The equa-

tion is not solved self-consistently, since the variation of k-

point is not a physical perturbation to the system; a converged

k-grid should give the same density even if displaced slightly.

The perturbation ∂ Ĥkkk/∂kkk is purely anti-Hermitian. We use

instead −i∂ Ĥkkk/∂kkk to obtain a Hermitian perturbation, which

allows the response to real wavefunctions to remain real. The

effective mass tensors are calculated as follows:

m−1
i jnkkk

=
∂ 2εnkkk

∂ki∂k j

= δi j +

〈

ϕnkkk

∣
∣
∣
∣

∂ Ĥkkk

∂ki

∣
∣
∣
∣

∂ϕnkkk

∂k j

〉

+ cc.

+
〈
ϕnkkk

∣
∣[r̂i, [r̂ j, v̂α ]]

∣
∣ϕnkkk

〉
. (18)

The kkk · ppp wavefunctions can be used to compute the re-

sponse to electric fields in periodic systems. In finite systems,

a homogeneous electric field can be represented simply via

the position operator rrr. However, this operator is not well de-

fined in a periodic system and cannot be used. According to

the quantum theory of polarization, the solution is to replace

rrrϕ with −i∂ϕ/∂k 62, and then use this as the perturbation on

the right hand side in the Sternheimer equation63. While this

is typically done with a finite difference with respect to kkk 49,64,

we use an analytic derivative from a previous kkk · ppp Sternheimer

calculation. Using the results in eq. (7) gives a formula for the

polarization of the crystal:

αi j (ω) = i
occ

∑
n

[〈
∂ϕnkkk

∂ki

∣
∣
∣
∣

∂ϕnkkk

∂E j,ω

〉

+

〈
∂ϕnkkk

∂E j,−ω

∣
∣
∣
∣

∂ϕnkkk

∂k j

〉]

.

(19)

The polarizability is most usefully represented in a periodic

system via the dielectric constant

εi j = δi j +
4π

V
αi j , (20)

where V is the volume of the unit cell. This scheme can also

be extended to non-linear response.

We can compute the Born charges from the electric-field re-

sponse in either finite or periodic systems (as a complementary

approach to using the vibrational response):

Z∗
i jα =− ∂ 2E

∂Ei∂R jα
=

∂Fjα

∂Ei

= Zα δi j −
occ

∑
n

[〈

ϕn

∣
∣
∣
∣

∂ v̂α

∂Riα

∣
∣
∣
∣

∂ϕn

∂E j

〉

+ cc.

]

(21)

This expression can be evaluated with the same approach as

for the dynamical matrix elements, and is easily generalized

to non-zero frequency too. We can also make the previous

expression eq. 11 for Born charges from the vibrational per-

turbation usable in a periodic system with the replacement

rrrϕ →−i∂ϕ/∂k.

Unfortunately, the kkk · ppp perturbation is not usable to calcu-

late the polarization62, and a sum over strings of k-points on a

finer grid is required. We have implemented the special case of

a Γ-point calculation for a large super-cell, where the single-

point Berry phase can be used65. For cell sizes Li in each

direction, the dipole moment is derived from the determinant

of a matrix whose basis is the occupied KS orbitals:

µi =− Li

2π
Im ln det

〈

ϕn

∣
∣
∣e

−2πixi/Li

∣
∣
∣ϕm

〉

. (22)

4 Magnetic response and gauge invariance in

real-space grids

In the presence of a magnetic field BBB(rrr, t), generated by a vec-

tor potential AAA(rrr, t), additional terms describing the coupling

of the electrons to the magnetic field must be included in the

Hamiltonian

Ĥ =
1

2

(

p̂pp− 1

c
AAA

)2

+ v̂+BBB · ŜSS . (23)

The first part describes the orbital interaction with the field,

and the second one is the Zeeman term that represents the cou-

pling of the electronic spin with the magnetic field.

As our main interest is the evaluation of the magnetic sus-

ceptibility, in the following, we consider a perturbative uni-

form static magnetic field BBB applied to a finite system with

zero total spin. In the Coulomb gauge the corresponding vec-

tor potential, AAA, is given as

AAA(rrr) =
1

2
BBB× rrr . (24)

In orders of BBB the perturbing potentials are

δ v̂
mag
i =

1

2c
(rrr× p̂pp)i =

1

2c
L̂i , (25)

with L̂ the angular momentum operator, and

δ 2v̂
mag
i j =

1

8c2
(δi jr

2 − rir j) . (26)
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The induced magnetic moment can be expanded in terms of

the external magnetic field which, to first order, reads

mi = m0
i +∑

j

χi jB
ext
j , (27)

where χχχ is the magnetic susceptibility tensor. For finite sys-

tems the permanent magnetic moment can be calculated di-

rectly from the ground-state wave-functions as

mmm0 = ∑
n

〈ϕn|δ v̂vvmag|ϕn〉 . (28)

For the susceptibility, we need to calculate the first-order re-

sponse functions in the presence of a magnetic field. This

can be done in practice by using the magnetic perturbation,

eq. (25), in the Sternheimer formalism described in section 3.

If the system is time-reversal symmetric, since the perturba-

tion is anti-symmetric under time-reversal, it does not induce

a change in the density and the Sternheimer equation does not

need to be solved self-consistently. From there we find

χi j =∑
n

[

〈ϕn|δ v̂
mag
j |δϕn,i〉+cc.+〈ϕn|δ 2v̂

mag
i j |ϕn〉

]

. (29)

Before applying this formalism in a calculation, however, we

must make sure that our calculation is gauge invariant.

In numerical implementations, the gauge freedom in choos-

ing the vector potential might lead to poor convergence with

the quality of the discretization, and to a dependence of the

magnetic response on the origin of the simulation cell. In other

words, an arbitrary translation of the molecule could introduce

an nonphysical change in the calculated observables. This bro-

ken gauge-invariance is well known in molecular calculations

with all-electron methods that make use of localized basis sets.

In this case, the error can be traced to the finite-basis-set rep-

resentation of the wave-functions66,67. A simple measure of

the error is to check for the fulfillment of the hyper-virial rela-

tion68.

i〈ϕ j| p̂pp|ϕn〉= (εn − ε j)〈ϕ j|r̂rr|ϕn〉 , (30)

where εn is the eigenvalue of the state ϕn.

When working with a real-space mesh, this problem also

appears, though it is milder, because the standard operator rep-

resentation in the grid is not gauge-invariant. In this case the

error can be controlled by reducing the spacing of the mesh.

On the other hand, real-space grids usually require the use

of the pseudo-potential approximation, where the electron-ion

interaction is described by a non-local potential v̂nl. This, or

any other non-local potential, introduces a fundamental prob-

lem when describing the interaction with magnetic fields or

vector potentials in general. To preserve gauge invariance, this

term must be adequately coupled to the external electromag-

netic field, otherwise the results will strongly depend on the

origin of the gauge. For example, an extra term has to be in-

cluded in the hyper-virial expression, eq. (30), resulting in

i〈ϕ j|p̂pp|ϕn〉= (εn − ε j)〈ϕ j|r̂rr|ϕn〉+ 〈ϕ j|[r̂rr, v̂nl]|ϕn〉 . (31)

In general, the gauge-invariant non-local potential is given

by

〈rrr|v̂AAA
nl|rrr′〉= 〈rrr|v̂nl|rrr′〉exp

(
i

c

∫ rrr′

rrr
AAA(xxx, t) ·dxxx

)

. (32)

The integration path can be any one that connects the two

points rrr and rrr′, so an infinite number of choices is possible.

In order to calculate the corrections required to the magnetic

perturbation operators, we use two different integration paths

that have been suggested in the literature. The first was pro-

posed by Ismail-Beigi, Chang, and Louie (ICL)69 who give

the following correction to the first-order magnetic perturba-

tion term

δ v̂vvICL = δ v̂mag − i

2c
r̂× [r̂rr,vnl] , (33)

and a similar term for the second-order perturbation. Using a

different integration path, Pickard and Mauri70 proposed the

GIPAW method, that has the form

δ v̂vvGIPAW = δ v̂vvmag − i

2c
∑
α

RRRα × [r̂rr, v̂α
nl] , (34)

where RRRα and v̂α
nl are, respectively, the position and non-local

potential of atom α . With the inclusion of either one of these

methods, both implemented in Octopus, we recover gauge in-

variance in our formalism when pseudo-potentials are used.

This allows us to predict the magnetic susceptibility and other

properties that depend on magnetic observables, like optical

activity71.

A class of systems with interesting magnetic susceptibilities

are fullerenes. For example, it is known that the C60 fullerene

has a very small magnetic susceptibility due to the cancel-

lation of the paramagnetic and diamagnetic responses72,73.

Botti et al.74 used the real-space implementation of Octopus to

study the magnetic response of the boron fullerenes depicted

in Fig. 1. As shown in table 1, they found that, while most

clusters are diamagnetic, B80 is paramagnetic, with a strong

cancellation of the paramagnetic and diamagnetic terms.

5 Linear response in the electron-hole basis

An alternate approach to linear response is not to solve for

the response function but rather for its poles (the excitation

energies ωk) and residues (e.g. electric dipole matrix elements

dddk)75. The polarizability is given by

αi j (ω) = ∑
k

[(
î ·dddk

)∗ (
ĵ ·dddk

)

ωk −ω − iδ
+

(
î ·dddk

)∗ (
ĵ ·dddk

)

ωk +ω + iδ

]

(35)
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RPA Petersilka TDA Casida CV(2) Exp’t

8.234 9.421 9.343 9.254 9.671 9.309

8.234 9.421 9.343 9.254 10.279 9.309

9.671 9.671 9.671 9.671 10.279 9.921

9.671 10.241 10.237 10.221 10.792 10.270

9.671 10.245 10.241 10.224 10.801 10.270

9.671 11.028 10.931 10.921 11.077 12.199

Table 2 The first 6 excitation energies (in eV) for the N2 molecule

with different approximations to TDDFT in the electron-hole basis:

the random phase approximation (RPA), Petersilka, Tamm-Dancoff

approximation (TDA), Casida and CV(2). The VWN LDA

parametrization84 was used for the exchange-correlation functional,

the bond length is 1.098 Å, the real-space grid was a sphere of

radius 7.4 Å with spacing 0.16 Å, and 16 unoccupied states were

used. The experimental data is from Ref.85.

which are orthogonal to the ground state. In the “second-order

constrained variational” or CV(2) theory82, second-order per-

turbation theory from the ground-state density yields equa-

tions quite similar to the linear-response approach, despite

their different origin:

[
A B

B∗ −A

]

xxx = ωxxx . (44)

We implement the case of real wavefunctions and eigenvec-

tors, in which case (as for Casida’s equation) a Hermitian ma-

trix equation for only the occupied-unoccupied transitions can

be written:

(A+B)xxx = ωxxx . (45)

The Tamm-Dancoff approximation to these equations is iden-

tical to the ordinary TDDFT Tamm-Dancoff approximation.

Note that all the levels of theory we have discussed use the

same Coulomb and f̂xc matrix elements, so the code can cal-

culate the results for multiple levels of theory with a small

extra effort. We can also consider alternative perturbations in

this framework beyond the dipole approximation for proper-

ties such as inelastic X-ray scattering83.

For a non-spin-polarized system, the excitations separate

into a singlet and a triplet subspace, which are superpositions

of singlet and triplet KS transitions:

ϕS =
1√
2

(
ϕc↑ϕv↑+ϕc↓ϕv↓

)
, (46)

ϕT =
1√
2

(
ϕc↑ϕv↑−ϕc↓ϕv↓

)
. (47)

The signs are reversed from the situation for a simple pair

of electrons, since we are instead dealing with an electron

and a hole. There are of course two other triplet excita-

tions (m = ±1) which are degenerate with the m = 0 one

above. Rather than performing spin-polarized ground-state

and linear-response calculations, we can use the symmetry

between the spins in a non-spin-polarized system to derive a

form of the kernel to use in obtaining singlet and triplet exci-

tations76

〈
ϕS
∣
∣ v̂c + f̂xc

∣
∣ϕS
〉
= 〈ϕ| v̂c + f̂ ↑↑xc + f̂ ↑↓xc |ϕ〉= 〈ϕ| v̂c +2 f̂xc |ϕ〉

(48)
〈
ϕT
∣
∣ v̂c + f̂xc

∣
∣ϕT
〉
= 〈ϕ| f̂ ↑↑xc − f̂ ↑↓xc |ϕ〉 .

(49)

These kernels can be used in any of the levels of theory above:

RPA, Petersilka, Tamm-Dancoff, Casida, and CV(2). The cor-

responding electric dipole matrix elements are as in the spin-

polarized case for singlet excitations. For triplet excitations,

they are identically zero, and only higher-order electromag-

netic processes can excite them.

There are three main steps in the calculation: calculation

of the matrix, diagonalization of the matrix, and calculation

of the dipole matrix elements. The first step generally takes

almost all the computation time, and is the most important to

optimize. Within that step, the Coulomb part (since it is non-

local) is much more time-consuming than the f̂xc part. We

calculate it by solving the Poisson equation (as for the Hartree

potential) for each column of the matrix, to obtain a potential P

for the density ϕc (r)
∗ ϕv (r), and then for each row computing

the matrix element as

〈ϕc′ϕv′ |v |ϕcϕv〉=
∫

drrrϕc′ (rrr)ϕv′ (rrr)P [ϕcϕv] . (50)

Our basic parallelization strategy for computation of the

matrix elements is by domains, as discussed in section 15,

but we add an additional level of parallelization here over

occupied-unoccupied pairs. We distribute the columns of the

matrix, and do not distribute the rows, to avoid duplication of

Poisson solves. We can reduce the number of matrix elements

to be computed by almost half using the Hermitian nature of

the matrix, i.e. Mcv,c′v′ = M∗
c′v′,cv

. If there are N occupied-

unoccupied pairs, there are N diagonal matrix elements, and

the N (N −1)/2 remaining off-diagonal matrix elements are

distributed as evenly as possible among the columns. If N −1

is even, there are (N −1)/2 for each column; if N −1 is odd,

half of the columns have N/2 − 1 and half have N/2. See

Fig. 2 for examples of the distribution. The columns then are

assigned to the available processors in a round-robin fashion.

The diagonalization step is performed by direct diagonaliza-

tion with LAPACK86 in serial; since it generally accounts for

only a small part of the computation time, parallelization of

this step is not very important. The final step is calculation of

the dipole matrix elements, which amounts to only a small part

of the computation time, and uses only domain parallelization.

Note that the triplet kernel lacks the Coulomb term, and so is

considerably faster to compute.
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Using the result of a calculation of excited states by one

of these methods, and a previous calculation of vibrational

modes with the Sternheimer equation, we can compute forces

in each excited state, which can be used for excited-state struc-

tural relaxation or molecular dynamics87. Our formulation

allows us to do this without introducing any extra summa-

tions over empty states, unlike previous force implementa-

tions88–90. The energy of a given excited state k is a sum of the

ground-state energy and the excitation energy: Ek = E0 +ωk.

The force is then given by the ground-state force, minus the

derivative of the excitation energy:

Fk
iα =− ∂Ek

∂Riα
= Fiα − ∂ωk

∂Riα
. (51)

Using the Hellman-Feynman Theorem we find the last term

without introducing any additional sums over unoccupied

states. In the particular case of the Tamm-Dancoff approxi-

mation we have

∂ωk

∂Riα
=

〈

xk

∣
∣
∣
∣

∂ Â

∂Riα

∣
∣
∣
∣
xk

〉

, (52)

and

〈

ϕcϕv

∣
∣
∣
∣

∂ Â

∂Riα

∣
∣
∣
∣
ϕc′ϕv′

〉

=

〈

ϕc

∣
∣
∣
∣

∂ Ĥ

∂Riα

∣
∣
∣
∣
ϕc′

〉

δvv′

−
〈

ϕv

∣
∣
∣
∣

∂ Ĥ

∂Riα

∣
∣
∣
∣
ϕv′

〉

δcc′ +

〈

ϕcϕv

∣
∣
∣
∣
K̂xc

∂ρ

∂Riα

∣
∣
∣
∣
ϕc′ϕv′

〉

. (53)

Analogous equations apply for the difference of eigenvalues,

Petersilka, and CV(2) theory levels. (The slightly more com-

plicated Casida case has not yet been implemented.) The

Coulomb term, with no explicit dependence on the atomic

positions, does not appear, leading to a significant savings in

computational time compared to the calculation of the excited

states.

6 Forces and geometry optimization on real-

space grids

A function represented on a real-space grid is not invariant un-

der translations as one would expect from a physical system.

The potential of an atom sitting on top of a grid point might be

slightly different from the potential of the same atom located

between points. This implies that a rigid displacement of the

system produces an artificial variation of the energy and other

properties. If we plot the energy of the atom as a function of

this rigid displacement, the energy shows an oscillation that

gives this phenomenon the name of the “egg-box effect”.

The egg-box effect is particularly problematic for calcula-

tions where the atoms are allowed to move, for example to

study the dynamics of the atoms (molecular dynamics) or to

Fig. 2 Distribution of matrix elements to be calculated (black)

among the columns, and those not calculated but inferred by

Hermiticity of the response matrix (white). The columns are then

distributed among the available MPI groups for electron-hole

parallelization. The number of matrix elements to be calculated per

column is equal for an odd size, and uneven for an even size.

find the minimum energy configuration (geometry optimiza-

tion).

In Octopus we have studied several schemes to control the

egg-box effect91. The first step is to use pseudo-potential fil-

tering to eliminate Fourier components of the potential that

cannot be represented on the grid92.

Additionally, we have found a formulation for the forces

that reduces the spurious effect of the grid on the calculations.

One term in the forces is the expectation value of the derivative

of the ionic potential with respect to the ionic position RRRα ,

which can be evaluated as

FFFα = FFF ion−ion
α −∑

n

〈

ϕn

∣
∣
∣
∣

∂ v̂α

∂RRRα

∣
∣
∣
∣
ϕn

〉

. (54)

(For simplicity, we consider only local potentials here, but the

results are valid for non-local potentials as well.) This term

can be rewritten such that it does not include the derivative

of the ionic potential vα , but the gradient of the orbitals with

respect to the electronic coordinates93:

FFFα = FFF ion−ion
α +∑

n

[〈
∂ϕn

∂ rrrr

|v̂α |ϕn

〉

+ cc.

]

. (55)

The first advantage of this formulation is that it is easier to im-

plement than eq. (54), as it does not require the derivatives of

the potential, which can be quite complex and difficult to code,

especially when relativistic corrections are included. How-

ever, the main benefit of using eq. (55) is that it is more precise

when discretized on a grid, as the orbitals are smoother than

the ionic potential. We illustrate this point in Fig. 3, where the

forces obtained with the two methods are compared. While

taking the derivative of the atomic potential gives forces with
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a considerable oscillation due to the grid, using the derivative

of the orbitals gives a force that is considerably smoother.

2 2.5 3 3.5

Interatomic distance [a.u.]

0

1

2

In
te

ra
to

m
ic

 f
o

rc
e 

[a
.u

]

Derivative of the potential

Derivative of the orbitals

Fig. 3 Calculation of the interatomic force for N2. Solid (red) line:

force calculated from the derivative of the ionic potential with

respect to the atomic position. Segmented (blue) line: force

calculated from spatial derivatives of the molecular orbitals. Grid

spacing of 0.43 Bohr.

This alternative formulation of the forces can be extended to

obtain the second-order derivatives of the energy with respect

to the atomic displacements91, which are required to calculate

vibrational properties as discussed in section 3. In general, the

perturbation operator associated with an ionic displacement

can be written as

∂vα(rrr−RRRα)

∂Riα
=−vα(rrr−RRRα)

∂

∂ ri

− ∂

∂ ri

vα(rrr−RRRα) . (56)

Using this expression, the terms of the dynamical matrix,

eq. (8), are evaluated as

〈

ϕn

∣
∣
∣
∣

∂ v̂α

∂Riα

∣
∣
∣
∣

∂ϕn

∂R jβ

〉

=−
[〈

ϕn |v̂α |
∂ 2ϕn

∂R jβ ∂ ri

〉

+

〈
∂ϕn

∂ ri

|v̂α |
∂ϕn

∂R jβ

〉]

+ c.c. , (57)

and

〈

ϕn

∣
∣
∣
∣

∂ 2v̂α

∂Riα ∂R jα

∣
∣
∣
∣
ϕn

〉

=

[〈
∂ 2ϕn

∂ ri∂ r j

|v̂α |ϕn

〉

+

〈
∂ϕn

∂ ri

|v̂α |
∂ϕn

∂ r j

〉]

+ c.c. . (58)

With our approach, the forces tend to converge faster with

the grid spacing than the energy. This means that to perform

geometry optimizations it would be ideal to have a local min-

imization method that only relies on the forces, without need-

ing to evaluate the energy, as both values will not be entirely

consistent. Such a method is the fast inertial relaxation en-

gine (FIRE) algorithm, put forward by Bitzek et al.94. FIRE

has shown a competitive performance compared with both the

standard conjugate-gradient method, and more sophisticated

variations typically used in ab initio calculations. A recent ar-

ticle shows also the FIRE as one of the most convenient algo-

rithm due to its speed and precision to reach the nearest local

minimum starting from a given initial configuration95.

The FIRE algorithm is based on molecular dynamics with

additional velocity modifications and adaptive time steps

which only requires first derivatives of the target function.

In the FIRE algorithm, the system slides down the potential-

energy surface, gathering “momentum” until the direction of

the gradient changes, at which point it stops, resets the adap-

tive parameters, and resumes sliding. This gain of momentum

is done through the modification of the time step ∆t as adaptive

parameter, and by introducing the following velocity modifi-

cation

vvv(t)→VVV (t) = (1−α)vvv(t)+α |vvv(t)| F̂(t) , (59)

where vvv is the velocity of the atoms, α is an adaptive parame-

ter, and F̂ is a unitary vector in the direction of the force FFF . By

doing this velocity modification, the acceleration of the atoms

is given by

v̇vv(t) =
FFF(t)

m
− α

∆t
|vvv(t)|

[
v̂vv(t)− F̂(t)

]
, (60)

where the second term is an introduced acceleration in a direc-

tion “steeper” than the usual direction of motion. Obviously,

if α = 0 then VVV (t) = vvv(t), meaning the velocity modification

vanishes, and the acceleration v̇vv(t) = FFF(t)/m, as usual.

We illustrate how the algorithm works with a simple case:

the geometry optimization of a methane molecule. The in-

put geometry consists of one carbon atom at the center of a

tetrahedron, and four hydrogen atoms at the vertices, where

the initial C-H distance is 1.2 Å. In Fig. 4 we plot the energy

difference ∆Etot with respect to the equilibrium conformation,

the maximum component of the force acting on the ions Fmax,

and the C-H bond length. On the first iterations, the geometry

approaches the equilibrium position, but moves away on the

3rd. This means a change in the direction of the gradient, so

there is no movement in the 4th iteration, the adaptive param-

eters are reset, and sliding resumes in the 5th iteration.

7 Photoemission

Electron photoemission embraces all the processes where an

atom, a molecule or a surface is ionized under the effect of
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Fig. 4 Geometry optimization of a methane molecule with FIRE.

Top panel (orange squares): energy difference ∆Etot with respect to

the equilibrium geometry. Middle panel (blue circles): maximum

component of the force Fmax acting on the ions. Bottom panel

(green diamonds): C-H bond length. Grid spacing is 0.33 Bohr.

an external electromagnetic field. In experiments, the ejected

electrons are measured with detectors that are capable of char-

acterizing their kinetic properties. Energy-resolved, P(E),
and momentum-resolved, P(kkk), photoemission probabilities

are quite interesting observables since they carry important

information, for instance, on the parent ion96,97 or on the ion-

ization process itself98. The calculation of these quantities is

a difficult task because the process requires the evaluation of

the total wavefunction in an extremely large portion of space

(in principle a macroscopic one) that would be impractical to

represent in real space.

We have developed a scheme to calculate photoemission

based on real-time TDDFT that is currently implemented in

Octopus. We use a mixed real- and momentum-space ap-

proach. Each KS orbital is propagated in real space on a

restricted simulation box, and then matched at the boundary

with a momentum-space representation.

The matching is made with the help of a mask function

M(rrr), like the one shown in Fig. 5, that separates each orbital

into a bounded φ A
i (rrr) and an unbounded component φ B

i (rrr) as

follows:

φi(rrr, t) = M(rrr)φi(rrr, t)
︸ ︷︷ ︸

φA
i (rrr,t)

+[1−M(rrr)]φi(rrr, t)
︸ ︷︷ ︸

φB
i (rrr,t)

. (61)

Starting from a set of orbitals localized in A at t = 0 it is

A B

A B

1
(a)

(b)

e

Fig. 5 Scheme illustrating the mask method for the calculation of

electron photoemission. A mask function (a) is used to effectively

split each Kohn-Sham orbital into bounded and unbounded

components localized in different spatial regions A and B according

to the diagram in (b). In A the states are represented on a real-space

grid while in B they are described in momentum space. A striped

region indicates the volume where the two representations overlap.

The propagation scheme of eqs. (62) and (63) allows seamless

transitions from one representations to the other and is capable to

describe electrons following closed trajectories like the one in (b).

possible to derive a time-propagation scheme with time step

∆t by recursively applying the discrete time-evolution oper-

ator Û(∆t) ≡ Û(t +∆t, t) and splitting the components with

eq. (61). The result can be written in a closed form for φ A
i (rrr, t),

represented in real space, and φ B
i (kkk, t), in momentum space,

with the following structure:

φ A
i (rrr, t +∆t) = ϕA

i (rrr, t +∆t)+ϕB
i (rrr, t +∆t) ,

φ B
i (kkk, t +∆t) = ϑ A

i (kkk, t +∆t)+ϑ B
i (kkk, t +∆t) ,

(62)
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and the additional set of equations,

ϕA
i (rrr, t +∆t) = MÛ(∆t)φ A

i (rrr, t) , (63)

ϕB
i (rrr, t +∆t) =

M

(2π)3/2

∫

dkkkeikkk·rrrÛv(∆t)φ B
i (kkk, t) , (64)

ϑ A
i (kkk, t +∆t) =

1

(2π)3/2

∫

drrre−ikkk·rrr(1−M)Û(∆t)φ A
i (rrr, t) ,

(65)

ϑ B
i (kkk, t +∆t) = Ûv(∆t)φ B

i (kkk, t)

− 1

(2π)3/2

∫

drrre−ikkk·rrrϕB
i (rrr, t +∆t) . (66)

The momentum-resolved photoelectron probability is then ob-

tained directly from the momentum components as99

P(kkk) = lim
t→∞

N

∑
i

|φ B
i (kkk, t)|2 , (67)

while the energy-resolved probability follows by direct inte-

gration, P(E) =
∫

E=|kkk|2/2 dkkkP(kkk).

In eq. (63) we introduced the Volkov propagator Ûv(∆t) for

the wavefunctions in B. It is the time-evolution operator asso-

ciated with the Hamiltonian Ĥv describing free electrons in an

oscillating field. Given a time dependent vector field AAA(t), the

Hamiltonian Ĥv =
1
2

(

−i∇∇∇− AAA(t)
c

)2

expressed in the velocity

gauge is diagonal in momentum and can be naturally applied

to φ B
i (kkk, t).

For all systems that can be described by a Hamiltonian such

that Ĥ(rrr, t) = Ĥv(rrr, t) for rrr ∈ B and all time t, eqs. (62) and

(63) are equivalent to a time propagation in the entire space

A∪B. In particular, it exactly describes situations where the

electrons follow trajectories crossing the boundary separating

A and B as illustrated in Fig. 5(b).

In Octopus we discretize eq. (63) in real and momentum

space and co-propagate the complete set of orbitals φ A
i (rrr, t)

and φ B
i (kkk, t). The propagation has to take care of additional

details since the discretization can introduce numerical in-

stability. In fact, substituting the Fourier integrals in (63)

with Fourier sums (usually evaluated with FFTs) imposes pe-

riodic boundary conditions that spuriously reintroduces charge

that was supposed to disappear. This is illustrated with a

one-dimensional example in Fig. 6(a) where a wavepacket

launched towards the left edge of the simulation box reappears

from the other edge.

An alternative discretization strategy is zero padding. This

is done by embedding the system into a simulation box en-

larged by a factor α > 1, extending the orbitals with zeros in

the outer region as shown in Fig. 6(b). In this way, the periodic

boundaries are pushed away from the simulation box and the

wavepackets have to travel an additional distance 2(α − 1)L

before reappearing from the other side. In doing so, the com-

putational cost is increased by adding (α −1)n points for each

orbital.

This cost can be greatly reduced using a special grid

with only two additional points placed at ±αL as shown in

Fig. 6(c). Since the new grid has non uniform spacing a non-

equispaced FFT (NFFT) is used100,101. With this strategy, a

price is paid in momentum space where the maximum mo-

mentum kmax is reduced by a factor α compared to ordinary

FFT. In Octopus we implemented all three strategies: bare

FFT, zero padding with FFT and zero padding with NFFT.

All these discretization strategies are numerically stable for

a propagation time approximately equivalent to the time that it

takes for a wavepacket with the highest momentum considered

to be reintroduced in the simulation box. For longer times we

can employ a modified set of equations. It can be derived from

(68) under the assumption that the electron flow is only outgo-

ing. In this case we can drop the equation for ϕB
i responsible

for the ingoing flow and obtain the set

ϕA
i (rrr, t +∆t) = MÛ(∆t)φ A

i (rrr, t) ,
ϕB

i (rrr, t +∆t) = 0 ,

ϑ A
i (kkk, t +∆t) = 1

(2π)3/2

∫
drrre−ikkk·rrr(1−M)Û(∆t)φ A

i (rrr, t) ,

ϑ B
i (kkk, t +∆t) = Ûv(∆t)φ B

i (kkk, t) .

(68)

This new set of equations together with (62) lifts the periodic

conditions at the boundaries and secures numerical stability

for arbitrary long time propagations. A consequence of this

approximation is the fact that the removal of charge is per-

formed only in the equation for ϕA
i by means of a multiplica-

tion by M(rrr). This is equivalent to the use of a mask function

boundary absorber that is known to prevent reflections in an

energy range that depends on M(rrr)102. Carefully choosing

the most appropriate mask function thus becomes of key im-

portance in order to obtain accurate results.

We conclude briefly summarizing some of the most impor-

tant features and applications of our approach. The method

allows us to retrieve P(kkk), the most resolved quantity avail-

able in experiments nowadays. In addition, it is very flexible

with respect to the definition of the external field and can oper-

ate in a wide range of situations. In the strong-field regime, it

can handle interesting situations, for instance, when the elec-

trons follow trajectories extending beyond the simulation box,

or when the target system is a large molecule. This constitutes

a step forward compared to the standard theoretical tools em-

ployed in the field which, in the large majority of cases, invoke

the single-active-electron approximation. In Ref.99 the code

was successfully employed to study the photoelectron angular

distributions of nitrogen dimers under a strong infrared laser

field. The method can efficiently describe situations where

more than one laser pulse is involved. This includes, for in-

stance, time-resolved measurements where pump and probe
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setups are employed. In Ref.103 Octopus was used to mon-

itor the time evolution of the π → π∗ transition in ethylene

molecules with photoelectrons. The study was later extended

to include the effect of moving ions at the classical level104.

Finally, we point out that our method is by no means restricted

to the study of light-induced ionization but can be applied to

characterize ionization induced by other processes, for exam-

ple, ionization taking place after a proton collision.

(a)

(b)

(c)

real space momentum space

NFFT - zero padding

FFT - zero padding

FFT

A

A

A

B

B

Fig. 6 Scheme illustrating different discretization strategies for

eq. (63) in one dimension. In all the cases an initial wavepacket

(green) is launched towards the left side of a simulation box of

length L and discretized in n sampling points spaced by ∆x. A and B

indicate the space partitions corresponding to Fig. 5. Owing to the

discretization of the Fourier integrals, periodic conditions are

imposed at the boundaries and the wavepacket wraps around the

edges of the simulation box (red). The time evolution is portrayed

together with a momentum-space representation (yellow), with

spacing ∆k and maximum momentum kmax, in three situations

differing in the strategy used to map real and momentum spaces:(a)

Fast Fourier Transform (FFT), (b) FFT extended with zeros (zero

padding) in a box enlarged by a factor α , and (c) zero padding with

NFFT.

8 Complex scaling and resonances

In this section we discuss the calculation of resonant electronic

states by means of the complex-scaling method, as imple-

mented in Octopus. By “resonant states,” we mean metastable

electronic states of finite systems, such as atoms or molecules,

with a characteristic energy and lifetime.

Mathematically, resonances can be defined as poles of the

scattering matrix or cross-section at complex energies105,106.

If a pole is close to the real energy axis, it will produce a large,

narrow peak in the cross-section of scattered continuum states.

One way resonances can arise is from application of an electric

field strong enough to ionize the system through tunnelling.

Resonant states may temporarily capture incoming electrons

or electrons excited from bound states, making them important

intermediate states in many processes.

The defining characteristic of a resonant state, often called

a Siegert state105, is that it has an outgoing component but not

an incoming one. They can be determined by solving the time-

independent Schrödinger equation with the boundary condi-

tion that the wavefunction must asymptotically have the form

ψ(r)∼ eikr

r
as r → ∞ , (69)

where the momentum k is complex and has a negative imag-

inary part. This causes the state to diverge exponentially in

space as r → ∞. The state can further be ascribed a complex

energy, likewise with a negative imaginary part, causing it to

decay over time at every point in space uniformly.

Resonant states are not eigenstates of any Hermitian oper-

ator and in particular do not reside within the Hilbert space.

This precludes their direct calculation with the standard com-

putational methods from DFT. However, it turns out that a

suitably chosen analytic continuation of a Siegert state is

localized, and this form can be used to derive information

from the state. This is the idea behind the complex-scaling

method 107,108 where states and operators are represented by

means of the transformation

R̂θ ψ(rrr) = eiNθ/2ψ(rrreiθ ) , (70)

where N is the number of spatial dimensions to which the

scaling operation is applied, and θ is a fixed scaling angle

which determines the path in the complex plane along which

the analytic continuation is taken. The transformation maps

the Hamiltonian to a non-Hermitian operator Ĥθ = R̂θ ĤR̂−θ .

The Siegert states ψ(rrr) of the original Hamiltonian are

square-integrable eigenstates ψθ (rrr) of Ĥθ , and their eigenval-

ues ε0 − iΓ/2 define the energy ε0 and width Γ of the reso-

nance109–111.

A typical example of a spectrum of the transformed Hamil-

tonian Ĥθ is shown in Fig. 7, and the corresponding potential

and lowest bound and resonant states in Fig. 8. The bound-

state energies are unchanged while the continuum rotates by

−2θ around the origin. Finally, resonances appear as isolated

eigenvalues in the fourth quadrant once θ is sufficiently large

to “uncover” them from the continuum. Importantly, matrix

elements (and in particular energies) of states are independent

of θ as long as the states are localized and well represented

numerically — this ensures that all physical bound-state char-

acteristics of the untransformed Hamiltonian are retained.

Our implementation supports calculations with complex

scaling for independent particles or in combination with DFT
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standard schemes, such as the family of conjugate-gradient al-

gorithms, or the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

quasi-Newton scheme – we use the implementation of these

algorithms included in the GSL mathematical library124.

Some ad hoc algorithms, developed explicitly for QOCT, ex-

ist. These may in some circumstances be faster than the gen-

eral purpose ones. Some of those are implemented in Octopus

as well125–127.

In order to compute the gradient, one must implement a

backwards-propagation scheme for the costate, which does

not differ from the ones used for the normal forwards prop-

agation128. Note, however, that in some cases the backwards

propagation does not have the exact same simple linear form

than the forwards propagation, and may include inhomoge-

neous or non-linear terms. The final step is the computation

of the gradient from the integral given in eq. (79).

The formulation of QOCT we have just sketched out is quite

generic; in our case the quantum systems are those that can be

modeled with Octopus (periodic systems are not supported at

the moment), and the handle that is used to control the system

is a time-dependent electric field, such as the ones that can be

used to model a laser pulse. The set of parameters {u}i define

the shape of this electric field; for example, they can be the

Fourier coefficients of the field amplitude.

The usual formulation of QOCT assumes the linearity of

quantum mechanics. However, the time-dependent KS equa-

tions are not linear, making both the theory and the numerics

more complicated. We have extended the basic theory previ-

ously described to handle the TDDFT equations, and imple-

mented the resulting equations in Octopus129.

We conclude this section by briefly describing some of the

applications of the QOCT machinery included in Octopus,

which can give an idea of the range of possibilities that can be

attempted. The study presented in Ref.130 demonstrates the

control of single-electron states in a two-dimensional semi-

conductor quantum-ring model. The states whose transitions

are manipulated are the current-carrying states, which can be

populated or de-populated with the help of circularly polarized

light.

Reference131 studies double quantum dots, and shows how

the electron state of these systems can be manipulated with the

help of electric fields tailored by QOCT.

Another interesting application is how to tailor the shape of

femtosecond laser pulses in order to obtain maximal ioniza-

tion of atoms and molecules132. The system chosen to demon-

strate this possibility is the H+
2 molecule, irradiated with short

(≈ 5 fs) high-intensity laser pulses.

The feasibility of using the electronic current to define the

target functional of the QOCT formalism is considered in

Ref.133.

Finally, a series of works has studied the use of optimal con-

trol for photo-chemical control: the tailoring of laser pulses

to create or break selected bonds in molecules. The under-

lying physical model should be based on TDDFT, and on a

mixed quantum/classical scheme (within Octopus, Ehrenfest

molecular dynamics). Some first attempts in this area were

reported in Refs134,135. However, these works did not con-

sider a fully consistent optimal control theory encompassing

TDDFT and Ehrenfest dynamics. This theory has been re-

cently presented136, and the first computations demonstrating

its feasibility will be reported soon.

10 Plasmonics

The scope of real-space real-time approaches is not confined

to the atomistic description of matter. For instance, finite-

difference time-domain137 (FDTD) is a standard numerical

tool of computational electromagnetism, while lattice Boltz-

mann methods138 (LBM) are widely used in computational

fluid dynamics. Indeed, real-space real-time approaches can

be used to model physical processes on rather different space

and time scales. This observation also bears an important sug-

gestion: numerical methods based on real-space grids can be

used to bridge between these different space and time scales.

Numerical nanoplasmonics is a paradigmatic case for multi-

scale electronic-structure calculations. A nanoplasmonic sys-

tem – e.g., made up of metal nanoparticles (MNPs) – can be

a few tens of nanometers across, while the region of strong

field enhancement – e.g., in the gap between two MNPs – can

be less than 1 nm across139. The field enhancement, h(r), is

essentially a classical observable, defined as

h(r) =

√〈
E2

tot (r)
〉

〈
E2

ext (r)
〉 , (82)

where Etot is the total electric field, Eext is the external (or driv-

ing) electric field, and 〈· · · 〉 indicates a time average. Large

field enhancements are the key to single molecule surface-

enhanced Raman spectroscopy (SERS) and values as large as

h > 100 (the intensity of the SERS signal scales as h4) are

predicted by classical electromagnetic calculations140.

In classical calculations, the electronic response is modeled

by the macroscopic permittivity of the material. The classical

Drude model gives the following simple and robust approxi-

mation of the metal (complex) permittivity:

εr (ω) = ε∞ −
ω2

p

ω (ω + iγ)
. (83)

For gold, typical values of the high-frequency permittivity

ε∞, the plasma frequency ωp, and the relaxation rate γ , are:

ε∞ = 9.5, h̄ω = 8.95 eV and h̄γ = 69.1 meV141. A non-local

correction to the Drude model can also be included by con-

sidering the plasmon dispersion142,143. The metal (complex)
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permittivity then reads

εr (k,ω) = ε∞ −
ω2

p

ω (ω + iγ)−β 2k2
. (84)

The parameter β can be fitted to model the experimental data,

although the value β =
√

3
5
vF , where vF is the Fermi velocity,

is suggested by the Thomas-Fermi approximation.144

Regardless of the level of sophistication of the permittiv-

ity model, all classical calculations assume that electrons are

strictly confined inside the metal surfaces. This is a safe

approximation for microscopic plasmonic structures. How-

ever, at the nanoscale the electronic delocalization (or spill-

out) outside the metal surfaces becomes comparable to the

smallest features of the plasmonic nanostructure, e.g., to the

gap between two MNPs. In this scale, the very definition of

a macroscopic permittivity is inappropriate and the electronic

response must be obtained directly from the quantum dynam-

ics of the electrons.

TDDFT is currently the method of choice to model the plas-

monic response of MNPs145–151, via the simplified jellium

model, in which the nuclei and core electrons are described

as a uniform positive charge density, and only the valence

electrons are described explicitly. Early calculations – espe-

cially nanospheres146,152 – have suggested the existence of

new charge-transfer plasmonic modes, which have been also

demonstrated by pioneering experiments139. In the future, as

the field of quantum plasmonics153 – i.e., the investigation and

control of the quantum properties of plasmons – will further

develop, the demand for accurate, yet scalable, numerical sim-

ulations to complement the experimental findings is expected

to grow. This demand represents both a challenge and an op-

portunity for computational physics.

Scaling up the TDDFT@jellium method to model larger

and more complex plasmonic nanostructures is a challenge

which can be addressed by high-performance real-space real-

time codes, like Octopus. The code has been initially ap-

plied to investigate the plasmonic response of single gold

nanospheres (Wigner-Seitz radius, rs = 3.0 bohr) 147. A clear

plasmonic resonance appears in the absorption cross section

– computed by real-time propagation – for spheres contain-

ing a large enough number of electrons (Ne > 100). A new

plasmonic mode, deemed the “quantum core plasmon”, has

been also suggested from the analysis of the absorption cross-

section. This new mode has been further characterized by

probing the sphere at its resonance frequency. Within a real-

time propagation scheme, this is simply done by including an

external electric field, the “laser pulse”, oscillating at a given

frequency.

As versatility is a major strength of real-space real-time ap-

proaches, other jellium geometries can be easily modeled by

Octopus, including periodic structures. For instance, a pair

of interacting sodium nanowires (with periodicity along their

longitudinal direction) has been investigated to assess the ac-

curacy of classical methods based on the model permittivity

in eq. (83) and eq. (84). Compared to pairs of nanospheres,

nanowires display a stronger inductive interaction due to their

extended geometry148,149. This is manifest in the absorption

cross-section which already shows a large split of the plas-

monic peak for a small gap between the wires (see Fig. 10(a)).

Due to the electronic spillout and the symmetry of the sys-

tem, it also turns out that the largest field enhancement is

reached at the center of the gap, not on the opposing surfaces

of the nanowires as predicted by the classical methods (see

Fig. 10(b)). The maximum field enhancement estimated by

the TDDFT@jellium method is also smaller than the classical

estimates. Once again, the quantum delocalization ignored by

the classical methods plays a crucial role in “smearing” the

singularities of the induced field, effectively curbing the local

field enhancement.

Simple jellium geometries have been implemented in Octo-

pus and they can be used as effective “superatomic pseudopo-

tentials”. The similarity between the jellium potential and

atomic pseudopotentials can be further exploited to develop an

external “jellium pseudopotential” generator to be used with

Octopus. In this way, a larger selection of jellium geometries

will be made available along with refined, yet scalable, jellium

approaches to include d electron screening in noble metals154.

Efforts in this direction are being currently made.

Finally, a word of caution about the domain of applica-

bility of the TDDFT@jellium method is in order. The non-

uniformity of the atomic lattice is expected to affect the ab-

sorption cross-section of small MNPs. A careful assessment

of the lattice contributions – including the lattice symme-

try – on the main plasmon modes of a pair of nanosphere

is available151. This last investigation further demonstrates

the possibility to bridge between atomistic and coarse-grained

electronic calculations by means of a real-space real-time ap-

proach.

11 Development of exchange and correlation

functionals

The central quantity of the KS scheme of DFT is the xc en-

ergy Exc[n], which describes all non-trivial many-body effects.

Clearly, the exact form of this quantity is unknown and it

must be approximated in any practical application of DFT.

We emphasize that the accuracy of any DFT calculation de-

pends solely on the form of this quantity, as this is the only

real approximation in DFT (neglecting numerical approxima-

tions that are normally controllable).

During the past 50 years, hundreds of different forms

have appeared155. They are usually arranged in families,
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Fig. 10 Panel (a): Absorption cross section of a pair of sodium

nanowires. The driving electric field is polarized as shown in the

inset. Curves are for different values of gap, d, between the

nanowires, From top to bottom: d = 5, 2, 1, 0.5, 0.2, 0.1, 0 nm.

Panel (b): Field enhancement, h, for the case d = 0.5 nm. The black

lines indicate the nanowire surfaces. (Adapted from Ref.148)

which have names such as generalized-gradient approxima-

tions (GGAs), meta-GGAs, hybrid functionals, etc. In 2001,

John Perdew came up with a beautiful idea on how to illus-

trate these families and their relationship156. He ordered the

families as rungs in a ladder that leads to the heaven of “chem-

ical accuracy”, which he christened the “Jacob’s ladder” of

density-functional approximations for the xc energy. Every

rung adds a dependency on another quantity, thereby increas-

ing the precision of the functional but also increasing the nu-

merical complexity and the computational cost.

The first three rungs of this ladder are : (i) the local-density

approximation (LDA), where the functional has a local depen-

dence on the density only; (ii) the generalized-gradient ap-

proximation (GGA), which includes also a local dependence

on the gradient of the density ∇n(rrr); and (iii) the meta-GGA,

which adds a local dependence on the Laplacian of the density

and on the kinetic-energy density. In the fourth rung we have

functionals that depend on the occupied KS orbitals, such as

exact exchange or hybrid functionals. Finally, the fifth rung

adds a dependence on the virtual KS orbitals.

Support for the first three rungs and for the local part of the

hybrid functionals in Octopus is provided through the Libxc

library157. Libxc started as a spin-off project during the initial

development of Octopus. At that point, it became clear that the

task of evaluating the xc functional was completely indepen-

dent of the main structure of the code, and could therefore be

transformed into a stand-alone library. Over the years, Libxc

became more and more independent of Octopus, and is now

used in a variety of DFT codes. There are currently more than

150 xc functionals implemented in Libxc that are available in

Octopus, a number that has been increasing steadily over the

years. All of the standard functionals are included and many

of the less common ones. There is also support for LDAs

and GGAs of systems of reduced dimensionality (1D and 2D),

which allow for direct comparisons with the direct solution of

the many-body Schrödinger equation for model systems de-

scribed in section 13.

Octopus also includes support for other functionals of the

fourth rung, such as exact exchange or the self-interaction cor-

rection of Perdew and Zunger158, through the solution of the

optimized effective potential equation. This can be done ex-

actly159, or within the Slater160 or Krieger-Li-Iafrate approx-

imations161.

Besides the functionals that are supported by Octopus, the

code has served as a platform for the testing and development

of new functionals. For example, the method described in sec-

tion 13 can be used in a straightforward way to obtain refer-

ence data against which to benchmark the performance of a

given xc functional, for example a one-dimensional LDA162.

In that case, both calculations, exact and approximate, make

use of the same real-space grid approach, which makes the

comparison of the results obtained with both straightforward.

Despite the obvious advantage of using exact solutions of the

many-body problem as reference data, this is often not possi-

ble and one usually needs to resort to the more commonly used

experimental or highly-accurate quantum-chemistry data. In

this case, the flexibility of the real-space method, allowing for

the calculation of many different properties of a wide variety

of systems, is again an advantage. Octopus has therefore been

used to benchmark the performance of xc functionals whose

potential has a correct asymptotic behavior163 when calculat-

ing ionization potentials and static polarizabilities of atoms,

molecules, and hydrogen chains.

In this vein, Andrade and Aspuru-Guzik164 proposed a

method to obtain an asymptotically correct xc potential start-

ing from any approximation. Their method is based on consid-

ering the xc potential as an electrostatic potential generated by

a fictitious xc charge. In terms of this charge, the asymptotic

condition is given as a simple formula that is local in real space
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and can be enforced by a simple procedure. The method, im-

plemented in Octopus, was used to perform test calculations

in molecules. Additionally, with this correction procedure it is

possible to find accurate predictions for the derivative discon-

tinuity and, hence, predict the fundamental gap165.

12 Real-space reduced density-matrix func-

tional theory

An alternative approach to DFT that can model electrons using

a single-particle framework is reduced density matrix func-

tional theory (RDMFT)166. Here, we present the current re-

sults of an ongoing effort to develop a real-space version of

RDMFT and to implement it in the Octopus code.

Within RDMFT, the total energy of a system is given as a

functional of the one-body reduced density-matrix (1-RDM)

γ(rrr,rrr′) = N

∫

· · ·
∫

drrr2 . . .dddrrrN Ψ∗(rrr′,rrr2...rrrN)Ψ(rrr,rrr2...rrrN)

(85)

which can be written in its spectral representation as

γ(rrr,rrr′) =
∞

∑
i=1

niφ
∗
i (rrr

′)φi(rrr), (86)

where the natural orbitals φi(rrr) and their occupation numbers

ni are the eigenfunctions and eigenvalues of the 1-RDM, re-

spectively.

In RDMFT the total energy is given by

E =−
∞

∑
i=1

ni

∫

drrrφ ∗
i (rrr)

∇2

2
φi(rrr)+

∞

∑
i=1

ni

∫

drrr vext(rrr)|φi(rrr)|2

+
1

2

∞

∑
i, j=1

nin j

∫

drrrdrrr′
|φi(rrr)|2|φ j(rrr)|2

|rrr− rrr′| +Exc [{n j},{φ j}] .

(87)

The third term is the Hartree energy, EH, and the fourth the

xc energy, Exc. As in DFT, the exact functional of RDMFT

is unknown. However, the part that needs to be approxi-

mated, Exc[γ], comes, contrary to DFT, only from the electron-

electron interaction, as the interacting kinetic energy can be

explicitly expressed in terms of γ . Different approximate func-

tionals are employed and minimized with respect to the 1-

RDM in order to find the ground state energy167–169. A com-

mon approximation for Exc is the Müller functional170, which

has the form

Exc [{n j},{φ j}] =

− 1

2

∞

∑
i, j=1

√
nin j

∫∫

drrrdrrr′
φ ∗

i (rrr)φi(rrr
′)φ ∗

j (rrr
′)φ j(rrr)

|rrr− rrr′| (88)

and is the only Exc implemented in Octopus for the moment.

For closed-shell systems, the necessary and sufficient con-

ditions for the 1-RDM to be N-representable171, i.e. to corre-

spond to a N-electron wavefunction, is that 0 ≤ ni ≤ 2 and

∞

∑
i=1

ni = N. (89)

Minimization of the energy functional of eq. (87) is performed

under the N-representability constraints and the orthonormal-

ity requirements of the natural orbitals,

〈φi|φ j〉= δi j. (90)

The bounds on the occupation numbers are automatically sat-

isfied by setting ni = 2sin2(2πϑi) and varying ϑi without con-

straints. The conditions (89) and (90) are taken into account

via Lagrange multipliers µ and λi j, respectively. Then, one

can define the following functional

Ω [N,{ϑi},{φi(rrr)}] = E −µ

(
∞

∑
i=1

2sin2(2πϑi)−N

)

−
∞

∑
i, j=1

λ ji (〈φi|φ j〉−δi j) (91)

which has to be stationary with respect to variations in {ϑi},

{φi(rrr)} and {φ ∗
i (rrr)}. In any practical calculation the infinite

sums have to be truncated including only a finite number of

occupation numbers and natural orbitals. However, since the

occupation numbers n j decay very quickly for j > N, this is

not problematic.

The variation of Ω is done in two steps: for a fixed set of

orbitals, the energy functional is minimized with respect to

occupation numbers and, accordingly, for a fixed set of oc-

cupations the energy functional is minimized with respect to

variations of the orbitals until overall convergence is achieved.

As a starting point we use results from a Hartree-Fock calcu-

lation and first optimize the occupation numbers. Since the

correct µ is not known, it is determined via bisection: for ev-

ery µ the objective functional is minimized with respect to ϑi

until the condition (89) is satisfied.

Due to the dependence on the occupation numbers, the

natural-orbital minimization does not lead to an eigenvalue

equation like in DFT or Hartree-Fock. The implementation

of the natural orbital minimization follows the method by Piris

and Ugalde172. Varying Ω with respect to the orbitals for fixed

occupation numbers one obtains

λ ji = ni

〈

φ j

∣
∣
∣
∣
−∇2

2
+ vext

∣
∣
∣
∣
φi

〉

+
∫

drrr
δEHxc

δφ ∗
i (rrr)

φ ∗
j (rrr). (92)

At the extremum, the matrix of the Lagrange multipliers must

be Hermitian, i.e.

λ ji −λ ∗
i j = 0 . (93)
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Then one can define the off-diagonal elements of a Hermitian

matrix F as:

Fji = θ(i− j)(λ ji −λ ∗
i j)+θ( j− i)(λ ∗

i j −λ ji), (94)

where θ is the unit-step Heaviside function. We initialize the

whole matrix as Fji = (λ ji+λ ∗
i j)/2. In every iteration we diag-

onalize F, keeping the diagonal elements for the next iteration,

while changing the off-diagonal ones to (94). At the solution

all off-diagonal elements of this matrix vanish, hence, the ma-

trices F and γ can be brought simultaneously to a diagonal

form. Thus, the {φi} which are the solutions of eq. (93) can

be found by diagonalization of F in an iterative manner172.

The criterion to exit the natural-orbital optimization is that the

difference in the total energies calculated in two successive F

diagonalizations is smaller than a threshold. Overall conver-

gence is achieved when the difference in the total energies in

two successive occupation-number optimizations and the non-

diagonal matrix elements of F are close to zero.

As mentioned above, one needs an initial guess for the

natural orbitals both for the first step of occupation-number

optimization but also for the optimization of the natural or-

bitals. A rather obvious choice would be the occupied and

a few unoccupied orbitals resulting from a DFT or HF cal-

culation. Unfortunately, there are unbound states among the

HF/DFT unoccupied states which are a bad starting point for

the weakly occupied natural orbitals. When calculated in a

finite grid these orbitals are essentially the eigenstates of a

particle in a box. Using the exact-exchange approximation

(EXX) in an optimized-effective-potential framework results

in a larger number of bound states than HF or the local density

approximation (LDA) due to the EXX functional being self-

interaction-free for both occupied and unoccupied orbitals.

Using HF or LDA orbitals to start a RDMFT calculation, the

natural orbitals do not converge to any reasonable shape, but

even when starting from EXX one needs to further localize

the unoccupied states. Thus, we have found that in order to

improve the starting point for our calculation we can multiply

each unoccupied orbital by a set of Gaussian functions cen-

tered at the positions of the atoms. As the unbound states are

initially more delocalized than the bound ones, we choose a

larger exponent for them.

In Fig. 11 we show the dissociation curve of H2 obtained

with RDMFT in Octopus and compare it with results ob-

tained by the Gaussian-basis-set RDMFT code HIPPO173. For

the Octopus calculation, we kept 13 natural orbitals with the

smallest occupation number being of the order of 10−5 after

the RDMFT calculation had converged. The HIPPO calcula-

tion was performed using 30 natural orbitals. The RDMFT

curve obtained with Octopus looks similar to the one from

HIPPO and other Gaussian implementations of RDMFT167,

keeping the nice feature of not diverging strongly in the dis-

sociation limit. However, for internuclear distances R bigger

than 1 a.u., the real-space energy lies above the HIPPO one.

We believe that the remaining difference can be removed by

further improving the initial guess for the orbitals that we use

in Octopus, because a trial calculation using HF orbitals from

a Gaussian implementation showed a curve almost identical to

the one from the HIPPO code (not shown in the figure). In the

future, we plan to include support for open-shell systems and

additional xc functionals.

0 1 2 3 4 5 6
R (a.u.)

-1

-0.5

E
 (

a.
u

.)

RHF cc-pVTZ
RDMFT cc-pVTZ

RHF real-space

RDMFT real space

Fig. 11 Dissociation curve of the hydrogen molecule. Restricted

Hartree-Fock (black dotted and red dash-dotted lines) does not

dissociate into two neutral atoms while the closed-shell RDMFT

gives almost the correct energy of -1 Ha at the dissociation limit in a

Gaussian implementation. For the grid implementation in Octopus,

a deviation from the constant energy at large R remains.

13 Exact solution of the many-body

Schrödinger equation for few electrons

In one-dimensional systems, the fully interacting Hamiltonian

for N electrons has the form

Ĥ =
N

∑
j=1

(

− d2

dx2
j

+ vext(x j)

)

+
N

∑
j<k

vint(x j,xk), (95)

where the interaction potential vint(x j,xk) is usually Coulom-

bic, though the following discussion also applies for

other types of interaction, including more than two-body

ones. In 1D one often uses the soft Coulomb interaction

1/
√

(x j − xk)2 +1, where a softening parameter (usually set

to one) is introduced in order to avoid the divergence at x j =
xk, which is non-integrable in 1D.

Mathematically, the Hamiltonian (eq. (95)) is equivalent to

that of a single (and hence truly independent) electron in N

dimensions, with the external potential

vNd
ext(x1...xN) =

N

∑
j=1

vext(x j)+
N

∑
j<k

vint(x j,xk). (96)

20 | 1–30

Page 20 of 30Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



For small N it is numerically feasible to solve the N-

dimensional Schrödinger equation

ĤΨ j(x1...xN) = E jΨ j(x1...xN) (97)

which provides a spatial wave function for a single particle

in N dimensions. This equivalence is not restricted to one-

dimensional problems. One can generally map a problem of N

electrons in d dimensions onto the problem of a single particle

in Nd dimensions, or indeed a problem with multiple types of

particles (e.g. electrons and protons) in d dimensions, in the

same way.

What we exploit in Octopus is the basic machinery for solv-

ing the Schrödinger equation in an arbitrary dimension, the

spatial/grid bookkeeping, the ability to represent an arbitrary

external potential, and the intrinsic parallelization. In order

to keep our notation relatively simple, we will continue to dis-

cuss the case of an originally one-dimensional problem with N

electrons. Grid-based solutions of the full Schrödinger equa-

tion are not new, and have been performed for many problems

with either few electrons (in particular H2, D2 and H+
2 )174,175)

or model interactions176, including time-dependent cases177.

The time-dependent propagation of the Schrödinger equa-

tion can be carried out in the same spirit, since the Hamiltonian

is given explicitly and each “single-particle orbital” represents

a full state of the system. A laser or electric-field perturbation

can also be applied, depending on the charge of each particle

(given in the input), and taking care to apply the same effec-

tive field to each particle along the polarization direction of

the field (in 1D, the diagonal of the hyper-cube).

Solving eq. (97) leaves the problem of constructing a wave

function which satisfies the anti-symmetry properties of N

electrons in one dimension. For fermions one needs to ensure

that those spatial wave functions Ψ j which are not the spatial

part of a properly anti-symmetric wave function are removed

as allowed solutions for the N-electron problem. A graphical

representation of which wave functions are allowed is given

by the Young diagrams (or tableaux) for permutation symme-

tries, where each electron is assigned a box, and the boxes are

then stacked in columns and rows (for details see, for exam-

ple, Ref.178). Each box is labeled with a number from 1 to N

such that the numbers increase from top to bottom and left to

right.

All possible decorated Young diagrams for three and four

electrons are shown in Fig. 12. Since there are two different

spin states for electrons, our Young diagrams for the allowed

spatial wave functions contain at most two columns. The dia-

gram d) is not allowed for the wave function of three particles

with spin 1/2, and diagrams k) to n) are not allowed for four

particles. To connect a given wave function Ψ j with a diagram

one has to symmetrize the wave function according to the di-

agram. For example, for diagram b) one would perform the

following operations on a function Ψ(x1,x2,x3)

[Ψ(x1,x2,x3)+Ψ(x2,x1,x3)]− [Ψ(x3,x2,x1)+Ψ(x3,x1,x2)] .
(98)

Hence, one symmetrizes with respect to an interchange of the

first two variables, because they appear in the same row of the

Young diagram, and anti-symmetrizes with respect to the first

and third variable, as they appear on the same column. We

note that we are referring to the position of the variable in the

list, not the index, and that symmetrization always comes be-

fore anti-symmetrization. At the end of these operations one

calculates the norm of the resulting wave function. If it passes

a certain threshold, by default set to 10−5, one keeps the ob-

tained function as a proper fermionic spatial part. If the norm

is below the threshold, one continues with the next allowed

diagram until either a norm larger than the threshold is found

or all diagrams are used up. If a solution Ψ j does not yield a

norm above the threshold for any diagram it is removed since

it corresponds to a wave function with only bosonic or other

non-fermionic character. Generally, as the number of forbid-

den diagrams increases with N, the number of wave functions

that need to be removed also increases quickly with N, in par-

ticular in the lowest part of the spectrum. The case of two

electrons is specific, as all solutions of eq. (97) correspond to

allowed fermionic wave functions: the symmetric ones to the

singlet states and the anti-symmetric ones to the triplet states.

1

2

3

1 2

3

1

2

3 1 2 3

1 2

3 4

1

2

3

4

1 2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1 2 3

4

1 2

3

4 1

2

3 4 1 2 3 4

b)a) c) d)

e) f) g) h)

i) j) k)

l) m) n)

Fig. 12 Young diagrams for three [a)-d)] and four [e)-n)] electrons.

For three electrons, only diagrams a)-c) are allowed for spin-1/2

particles, while only diagrams e)-j) are allowed for four electrons.

For example, for a one-dimensional Li atom with an exter-
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State Energy Young diagram Norm

1 -4.721 bosonic < 10−13

2 -4.211 b) 0.2

3 -4.211 c) 0.6

4 -4.086 bosonic < 10−11

5 -4.052 b) 0.4

6 -4.052 c) 0.7

Table 3 Eigenstates for a one-dimensional lithium atom. The first

and the fourth eigenstates show norms that are smaller than 10−13

and 10−11, respectively, for all diagrams. Hence, these states are

bosonic and removed from any further calculations. The second and

third states are energetically degenerate and correspond to diagrams

b) and c) in Fig. 12. The same is true for the fifth and sixth states.

nal potential

vext(x) =− 3√
x2 +1

(99)

and the soft Coulomb interaction, we obtain the states and en-

ergy eigenvalues given in table 3.

If certain state energies are degenerate, the Young diagram

“projection” contains an additional loop, ensuring that the

same diagram is not used to symmetrize successive states: this

would yield the same spatial part for each wave function in the

degenerate sub-space. A given diagram is only used once in

the sub-space, on the first state whose projection has signifi-

cant weight.

The implementation also allows for the treatment of bosons,

in which case the total wave function has to be symmetric

under exchange of two particles. Here one will use a spin

part symmetrized with the same Young diagram (instead of

the mirror one for fermions), such that the total wave function

becomes symmetric.

In order for the (anti-)symmetrization to work properly

one needs to declare each particle in the calculation to be a

fermion, a boson, or an anyon. In the latter case, the corre-

sponding spatial variables are not considered at all in the (anti-

)symmetrization procedure. One can also have more than one

type of fermion or boson, in which case the symmetric require-

ments are only enforced for particles belonging to the same

type.

There are also numerical constraints on the wave-functions:

space must be represented in a homogeneous hyper-cube,

eventually allowing for different particle masses by modify-

ing the kinetic-energy operator for the corresponding direc-

tions. All of the grid-partitioning algorithms intrinsic to octo-

pus carry over to arbitrary dimensions, which allows for im-

mediate parallelization of the calculations of the ground and

excited states. The code can run with an arbitrary number of

dimensions, however, the complexity and memory size grow

exponentially with the number of particles simulated, as ex-

pected. Production runs have been executed up to 6 or 7 di-

mensions.

Most of the additional treatment for many-body quantities

is actually post-processing of the wave-functions. For each

state, the determination of the fermionic or bosonic nature by

Young-tableau symmetrization is followed by the calculation

and output of the density for each given particle type, if several

are present. Other properties of the many-body wave-function

can also be calculated. For example, Octopus can also output

the one-body density matrix, provided in terms of its occupa-

tion numbers and natural orbitals.

This type of studies, even when they are limited to model

systems of a few electrons, allows us to produce results that

can be compared to lower levels of theory like approximate

DFT or RDMFT, and to develop better approximations for the

exchange and correlation term. Exact results obtained from

such calculations have been used to assess the quality of a 1D

LDA functional162 and adiabatic 1D LDA and exact exchange

in a TDDFT calculation calculation of photoemission spec-

tra162,179.

14 Compressed sensing and atomistic simula-

tions

In order to obtain frequency-resolved quantities from real-time

methods like molecular dynamics or electron dynamics, it is

necessary to perform a spectral representation of the time-

resolved signal. This is a standard operation that is usually

performed using a discrete Fourier transform. Since the reso-

lution of the spectrum is given by the length of the time signal,

it is interesting to look for more methods that can provide us a

spectrum of similar quality with shorter time series, as this is

directly reflected in shorter computation times. Several such

methods exist, but a particular one that has been explored in

Octopus, due to its general applicability and efficiency, is com-

pressed sensing.

Compressed sensing180 is a general theory aimed at opti-

mizing the amount of sampling required to reconstruct a sig-

nal. It is based on the idea of sparsity, a measure of how many

zero coefficients a signal has when represented in a certain ba-

sis. Compressed sensing has been applied to many problems

in experimental sciences181–183 and technology184,185 in order

to perform more accurate measurements. Its ideas, however,

can also be applied to computational work.

In order to calculate a spectrum in compressed sensing, we

need to solve the so-called basis-pursuit optimization problem

min
σσσ

|σσσ |1 subject to Fσσσ = τττ , (100)

where |σ |1 = ∑k |σk| is the standard 1-norm, τττ is the dis-

cretized time series, σσσ is the frequency-resolved function (the
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spectrum that we want to calculate) and F is the Fourier-

transform matrix.

Since τττ is a short signal, its dimension is smaller than the

one of σσσ . This implies that the linear equation Fσσσ = τττ is

under-determined and has many solutions, in this particular

case, all the spectra that are compatible with our short time

propagation. From all of these possible solutions, eq. (100)

takes the one that has the smallest 1-norm, that corresponds to

the solution that has the most zero coefficients. For spectra,

this means we are choosing the one with the fewest frequen-

cies, which will tend to be the physical one, as for many cases

we know that the spectra is composed of a discrete number of

frequencies.

To solve eq. (100) numerically, we have implemented in

Octopus the SPGL1 algorithm186. The solution typically takes

a few minutes, which is two orders of magnitude more expen-

sive than the standard Fourier transform, but this is negligible

in comparison with the cost of the time propagation.

By applying compressed sensing to the determination of

absorptional or vibrational spectra, it was found that a time

signal a fifth of the length can be used in comparison with

the standard Fourier transform35. This is translated into an

impressive factor-of-five reduction in the computational time.

This is illustrated in Fig. 13 where we show a spectrum cal-

culated with compressed sensing from a 10 fs propagation,

which has a resolution similar to a Fourier transform spectrum

obtained with 50 fs of propagation time.

Moreover, the general conclusion that can be obtained from

this work is that in the application of compressed sensing to

simulations the reduction in the number of samples that com-

pressed sensing produces in an experimental setup is trans-

lated into a reduction of the computational time. This concept

inspired studies on how to carry the ideas of compressed sens-

ing into the core of electronic-structure simulations. The first

result of this effort is a method to use compressed sensing to

reconstruct sparse matrices, that has direct application in the

calculation of the Hessian matrix and vibrational frequencies

from linear response (as discussed in section 3). For this case,

our method results in the reduction of the computational time

by a factor of three187.

15 Parallelization, optimizations and graphics

processing units

Computational cost has been and still is a fundamental fac-

tor in the development of electronic structure methods, as the

small spatial dimensions and the fast movement of electrons

severely limit the size of systems that can be simulated. In or-

der to study systems of interest as realistically and accurately

as possible, electronic-structure codes must execute efficiently

in modern computational platforms. This implies support for
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Fourier transform, 50 fs

Compressed sensing, 10 fs

Fig. 13 Optical absorption spectrum from a methane molecule

from real-time TDDFT. Comparison of the calculation using a

Fourier transform and a propagation time of 50 fs (top, black curve)

with compressed sensing and a propagation time of 10 fs (bottom,

blue curve). Compressed sensing produces a similar resolution, with

a propagation 5 times shorter.

massively parallel platforms and modern parallel processors,

including graphics processing units (GPUs).

Octopus has been shown to perform efficiently on par-

allel supercomputers, scaling to hundreds of thousands of

cores35,188. The code also has an implementation of GPU

acceleration35,189 that has shown to be competitive in perfor-

mance with Gaussian DFT running on GPUs190.

Performance is not only important for established methods,

but also for the implementation of new ideas. The simplicity

of real-space grids allows us to provide Octopus developers

with building blocks that they can use to produce highly effi-

cient code without needing to know the details of the imple-

mentation, isolating them as much as possible from the op-

timization and parallelization requirements. In most cases,

these building blocks allow developers to write code that is au-

tomatically parallel, efficient, and that can transparently run on

GPUs. The type of operations available run from simple ones,

like integration, linear algebra, and differential operators, to

more sophisticated ones, like the application of a Hamiltonian

or solvers for differential equations.

However, it is critical to expose an interface with the ade-

quate level that hides the performance details, while still giv-

ing enough flexibility to the developers. For example, we have

found that the traditional picture of a state as the basic object

is not adequate for optimal performance, as it does not expose

enough data parallelism189. In Octopus we use a higher-level

interface where the basic object is a group of several states.

In the case of functions represented on the grid, the devel-

opers work with a linear array that contains the values of the
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