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Configuration Interaction Singles based on 

Real-Space Numerical Grid Method: Kohn-Sham 

versus Hartree-Fock Orbitals 

Jaewook Kim,†a Kwangwoo Hong,†a Sunghwan Choi,a Sang-Yeon Hwang,a and 
Woo Youn Kim*a  

We developed a program code of configuration interaction singles (CIS) based on a numerical 

grid method. We used Kohn-Sham (KS) as well as Hartree-Fock (HF) orbitals as a reference 

configuration and Lagrange-sinc functions as a basis set. Our calculations show that KS-CIS is 

more cost-effective and more accurate than HF-CIS. The former is due to the fact that the non-

local HF exchange potential greatly reduces the sparsity of Hamiltonian matrix in grid-based 

methods. The latter is because the energy gaps between KS occupied and virtual orbitals are 

already closer to vertical excitation energies and thus KS-CIS needs small corrections, whereas 

HF results in much larger energy gaps and more diffuse virtual orbitals. KS-CIS using the 

Lagrange-sinc basis set also shows better or similar accuracy with smaller orbital space 

compared to the standard HF-CIS using Gaussian basis sets. In particular, KS orbitals from an 

exact exchange potential with the Krieger-Li-Iafrate approximation lead to more accurate 

excitation energies than those from conventional (semi-)local exchange-correlation potentials.  

Introduction 

Rapidly growing interests in computational materials design1–5 

and quantum biology6 encourage to develop innovative 

methods for accurate electronic structure calculations of large 

systems.7–12 Though quantum chemistry using atom-centred 

basis functions such as Gaussian basis sets shows unrivalled 

performance for small and medium size molecules in terms of 

computation costs, they are facing the limit of their capabilities 

in dealing with large systems. Apparently, grid-based methods 

are a promising alternative, because their computational costs 

can be reduced through massive parallelization as well as linear 

scaling algorithms7–10,13–15 and their accuracy can be 

systematically improved by single parameter control without 

efforts to optimize system- or method-dependent parameters. 

Most available codes using numerical grid basis sets adopt 

density functional theory (DFT) for ground state calculations 

and time-dependent DFT for excited state calculations.7–10,16 

Though (time-dependent) DFT offers a cost-effective way to 

describe large systems with reliable accuracy in many cases, it 

fails even qualitatively for strongly-correlated systems,17,18 

since it relies on a single-determinant approach.  

Strong correlation effects of electrons can readily be captured 

by using multiconfiguration (MC) methods. To our best 

knowledge, however, no traditional wave function theory has 

been used in real-space numerical grid methods. The so-called 

post-Hartree-Fock (post-HF) approaches may not be adequate 

for numerical grid basis sets, since the nonlocal HF exchange 

operator greatly reduces the sparsity of Hamiltonian matrix and 

consequently increases computational costs. The optimized 

effective potential (OEP) method which constructs a local 

potential from the nonlocal HF exchange energy can be 

employed to circumvent such numerical burden. Then, one is 

able to use the framework of a conventional Kohn-Sham (KS) 

DFT method but that a local exchange potential is replaced by 

an orbital-dependent exact exchange (EXX) potential. For 

practical purposes, the Krieger-Li-Iafrate (KLI) 

approximation19–23, the localized HF method24–26, and the 

common energy denominator approximation27,28 have been 

developed to implement EXX in a cost-effective manner. 

MC methods require virtual orbitals in addition to occupied 

orbitals. KS orbitals obtained from EXX may show similar or 

better performance for application to MC methods than HF 

orbitals. In our previous work, we investigated the features of 

KLI orbitals through comparison to HF orbitals and 

conventional KS orbitals obtained from local density 

approximation (LDA) and generalized gradient approximation 

(GGA).29 Since the KLI potential has been derived from the HF 

exchange term, occupied orbitals of KLI are similar to those of 

HF in terms of energy and shape. However, their virtual orbitals 

have no such similarity. KLI virtual orbitals are the result of an 
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n-electron system as usual KS orbitals and thus their energies 

are relatively closer to vertical excitation energies.29–31 In 

contrast, HF yields virtual orbitals of an (n+1)-electron system 

and thus their energies are regarded as electron affinities. In 

addition, the KLI potential has the correct -1/r asymptotic 

behaviour, while LDA and GGA potentials exponentially decay 

due to self-interaction errors.29,32 As a result, the KLI potential 

well describes Rydberg-like states with a number of bound 

virtual orbitals, whereas HF or conventional KS orbitals have 

few bound states.29 In fact, KLI orbitals are relatively closer to 

so-called exact KS orbitals.29–31 Therefore, we expect that these 

distinct features of KLI orbitals certainly offer benefits for 

excited state calculations using MC methods.  

There have been preceding researches on MC methods using 

KS orbitals. For instance, the accurate excitation energies of 

atoms and small molecules could be obtained using 

multireference configuration interaction (MRCI) methods.33–38  

Gutlé et al. reported that a coupled-cluster singles and doubles 

method using approximated OEP orbitals produced 

quantitatively similar correlation energies for atoms compared 

to the HF version.39 CI with configurations obtained from 

constrained DFT described various excited state properties of 

molecules in a qualitatively correct manner, where KS theory 

fails.40 

It should be noted that the aforementioned KS-MC methods are 

based on atom-centred basis sets. Yanai et al. devised the linear 

response TD-HF method using multiresolution multiwavelet 

basis sets.41 However, the extension of such an approach to 

double or higher excitations will be an intractable task due to 

the increased dimensionality of response function accordingly. 

In this work, we, for the first time, developed a CI method 

based on real-space numerical grids using the traditional matrix 

approach, which can be straightforwardly extended to higher 

levels.  For comparison, we used KLI, GGA, and HF orbitals to 

build a reference configuration. Specifically, the CI code 

includes only single excitations as a prototype and was 

implemented in our KS-DFT code that uses Lagrange-sinc 

functions (LSFs) as a basis set. We already reported the details 

of our KS-DFT code and its accuracy for ground state 

calculations of molecules with comparison to the results of 

widely-used Gaussian basis sets.29,42 Here, we briefly explain 

the features of the LSFs as a basis set and the KLI 

approximation, and then describe details of the CIS 

implementation using LSFs. We compare between KLI-, GGA-, 

and HF-CIS results for excited state calculations of molecules 

and finally draw conclusions with future outlook on the 

extension of the present CI method to double and higher 

excitations. 

Method 

Lagrange-sinc functions as a basis set 

A sinc function localized on a grid point xi (e.g., the red curve 

in Figure 1) is given by 

sinc sin[ ( ) / ]1
( ) ,

( ) /
i

i

i

x x h
x

x x
L

hh

π
π

−
=

−
 

where h is called a scaling factor. The roots of a sinc function 

form a set of grid points with uniform spacing h. Sinc functions 

localized on those grid points have the following intriguing 

attributes: cardinality and orthonormality written as 

sinc sinc sinc( ) and ( ) ( ) ,i j ij i j ijx L x L xL dxδ δ= =∫  

respectively. In fact, there is a family of functions, namely the 

Lagrange functions that share the above two attributes. 

Therefore, sinc functions localized on grid points with uniform 

spacing h are called the Lagrange-sinc functions (LSFs), while 

the grid is named the Lagrange-sinc mesh. For more details of 

the Lagrange functions, we refer to Ref. 43 and 44. 

 
Figure 1. Lagrange-sinc functions 

The LSFs can be used as a basis set to represent HF or KS 

orbitals; 

, ,

sinc( ) ( , , ),n

n ijk

i j k

ijkc L x y zφ =∑r  

where 
n

ijk
c is the expansion coefficient of a three dimensional 

LSF defined by 

sinc sinc sinc sinc( , , ) ( ) ( ) ( ).
ijk i j k

x y z L x L y L zL ≡  

Then, a matrix element of any one-electron operator can be 

obtained as  
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Due to the cardinality of LSFs, the matrix of any local potential 

v(r) has non-zero values only in its diagonal elements;  
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Since LSFs are analytically differentiable, the matrix elements 

of the kinetic energy operator can also be obtained analytically;  

sinc 2 sinc1
| |

2

,

ijki j k

ii jj kk ii jj kk ii jj kk

ijk i j k
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δ δ δ δ δ δ
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where for the x-direction as an example,  

2

2 2 2
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It should be noted that the overlap matrix between LSFs is an 

identity matrix due to the orthonormality of LSFs.  

LSFs apparently have beneficial features for application to 

electronic structure calculations. Compared to the finite 

difference method which shares the same uniform grid, LSFs 

guarantee more accurate kinetic energy thanks to the analytic 

expression for derivatives. However, use of pseudopotentials is 

essential for cost-effective calculations. We have implemented 

a KS-DFT code using LSFs as a basis set with norm-conserving 

pseudopotentials.42 Our previous work showed that accuracy of 

the Lagrange-sinc basis set can be systematically improved for 

atomization energies, ionization energies, electron affinities, 

and polarizabilities of atoms and molecules. In particular, we 

demonstrated that it is suitable to describe highly diffuse and 

polarized orbitals. For more details of implementation and its 

accuracy, we refer to Ref. 42. 

Krieger-Li-Iafrate approximation 

The KLI approximation has been regarded as a practical 

approach to obtain a local EXX potential. We implemented this 

method in our code and addressed the distinct features of KLI 

orbitals compared to HF or conventional LDA/GGA orbitals.29 

Here, we provide a brief review on the KLI approximation but 

more details are referred to Ref. 23 and 29. 

The HF exchange energy, 
HF
x
E , can be written as 

HF HF
,

1
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       (1) 

where Nσ  and { }iσφ  are the number of electrons with spin σ  

and HF or KS orbitals, respectively. 
HF
,

ˆ
x iv σ  is the HF exchange 

potential operator, which can be formulated by rearranging Eq. 

(1) as follows: 
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      (2) 

Using the HF exchange potential given in Eq. (2), the KLI 

potential can be represented as 

( )KLI 2 HF HF KLI
, , , ,) | )

1
| ) ( ,

( )
( ( ( )

N

x i x i x i x i

i

v v v v
σ

σ σ σ σ σ
σ

φ
ρ

= − −∑r r r
r

 

where 
HF HF
, ,ˆ| |x i i x i iv vσ σ σ σφ φ≡  and 

KLI KLI
, ,ˆ| |x i i x i iv vσ σ σ σφ φ≡ . It 

should be noted that unlike the original OEP integral equation, 

the KLI potential can be obtained using simple linear algebra 

with only occupied orbitals.19,20  

CIS based on Lagrange-sinc functions 

We implemented a CIS method using KS orbitals in our code. 

We use a Slater determinant composed of ground state KS 

orbitals, 
0Φ , as a reference configuration. Then, we perform 

CIS calculations almost in the same manner with the traditional 

HF-CIS method. For instance, a single excitation configuration 
a

iΦ  can be generated by promoting one electron from an 

occupied orbital iφ  to a virtual orbital aφ . Because we use 

numerical grid methods and pseudopotentials, the generation of 

single excitation configurations should be carried out within an 

active orbital space which includes only valence orbitals in the 

occupied space and a finite number of virtual orbitals truncated 

by an energy threshold. It should also be noted that KS orbitals 

are not the eigenfunctions of Fock operator and thus unlike the 

HF-CI method, the Brillouin’s theorem does not hold for 

namely the KS-CI method as shown in Eq. (3). 

0

KS HF KS

HF KS

ˆˆ| | | | ||

ˆ ˆ ˆ| | ||

ˆ ˆ| |

0.

a

i

k

x

x

x

x

a

H i h a ik ak

i H i v v a

i v v a

〈Φ Φ 〉 = 〈 〉 + 〈 〉

= 〈 〉 + 〈 〉

= −〈 〉

≠

−

∑

            (3) 

To consider the spin state of each excitation, we used a 

configuration state function 2 1S a

i

+ Φ , where 2S+1 indicates 

the spin multiplicity. A KS-CIS matrix element for a singlet 

excitation can be written as 

 

1 1
0

ˆ| | )

2( | ) ( | )

ˆ

(

|

|

ˆ

ˆ ,

|

ˆ |

a b

i j a i ab ij

HF KS

x x ij

HF KS

x x ab

H E

ai jb ab ji

va v b

v ij v

ε ε δ δ

δ

δ

Φ − Φ −

−

+ −

−

=

+

−

     (4) 

where Ĥ , 0E , and /i aε  denote a molecular Hamiltonian under 

the Born-Oppenheimer approximation, the corresponding 

ground state total energy, and the i/a-th orbital energy, 

respectively. In the process of constructing the KS-CIS matrix, 

the evaluation of the following two-centre integral is the most 

time-consuming part. 

2
* *

1 1

1

1 2

2

2(
( ) ( ) ( ) )

)
(

|
|

|
i j k l

ij dk dl
φ φ φ φ

−
= ∫ ∫

r r r r
r r

r r
            (5) 
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To efficiently evaluate the integral in Eq. (5), we employed the 

interpolating scaling function method which has been originally 

used to compute Hartree potentials.45–50 First, Eq. (5) can be 

rewritten as 

*
1 1 1 1( )( | ) ( ) ( ),i j kli d Kj kl φ φ= ∫ r r r r                     (6) 

where we define 

2 2
1 2

2
*

2

1 2

( )
20

2
1

2

( ) ( )
( )

| |

2
( ),

k l
kl

t r r

kl

K

e

d

dt d

φ φ

ρ
π

∞ − −

≡
−

=

∫

∫ ∫

r r
r r

r r

r r

            (7) 

and *( ( () ) )kl k lρ φ φ≡r r r . In Eq. (7), 1
1 2| |−−r r  was replaced by 

the integration of a Gaussian function. Then, we expand ( )klρ r  

with LSFs as 

 sinc( ) ( , , ),kl

kl abc abc

abc

c x y zLρ ≈∑r                    (8) 

and insert it into Eq. (7). Using the fact that both Gaussian 

function and LSFs can be written as the products of three 

functions, Eq. (7) can be re-expressed as 

 

2 2
1 2

2 2 2 2
1 2 1 2

( ) sinc
2 2

( ) ( )sinc sinc
2 2 2 2
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2
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( ) ( )
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s

s s
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t
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−∞ −∞

= 






×

+

∑ ∑ ∫

∫ ∫

r

r

   (9) 

which just requires to perform three one-dimensional integrals. 

The integral along ts can be evaluated using a Gaussian 

quadrature method with 51 grid points { }st  and corresponding 

weight factors { }sw , and 
ft  is the largest value in { }st . Since 

we eventually need to compute Eq. (6) on a given Lagrange-

mesh, Eq. (9) can be transformed into a matrix form as 

, , ,

2

2
( ) ( ),x s y s z s kl

kl s a a b b c c abc kl

s a b c f

K w F F F c
t

π
ρ

π
′ ′ ′ +′ ′= ∑ ∑ ∑ ∑r r  (10) 

where a so-called F matrix is given by 

 
2 2

2( ), sinc
2 2( ) .s at x xx s

a a aF e L x dx′
∞ − −

′ −∞
= ∫                  (11) 

Eq. (11) is independent on orbitals and therefore calculated 

once at the beginning of calculations. The computational cost of 

the summation in Eq. (10) is proportional to 
4/3
gridN  where gridN  

is the total number of grid points on the Lagrange-mesh.48 

Consequently the cost of calculating { }klK  for all orbital pairs 

of CIS is scaled as
4/3 2
grid occ vir( )N NN ⋅ +  where occN  and virN  

are the numbers of occupied and virtual orbitals in an active 

space, respectively. Finally, Eq. (6) is computed using a 

Gaussian quadrature method on the Lagrange-mesh. 

Considering all orbital pairs in the active space, the cost of 

computing Eq. (6) using pre-determined klK  is proportional to 
2 2

grid occ virN N N⋅ . As a result, the total computational cost of the 

two-centre integrals for CIS is scaled as 
4/3 2 2 2
grid occ vir grid occ vir( ) .N N N N NN ⋅ + + ⋅  If we use KLI orbitals as a 

reference configuration, the part of { }klK  corresponding to 

occupied orbitals is already computed during ground state 

calculations [Eq. (2)] and thus additional costs for CIS 

calculations will be 
4/3 2 2 2
grid vir occ vir grid occ vir( )N N N NN N N⋅+⋅ + . 

Calculation detail 

We performed a series of CIS calculations to obtain the 

excitation energies of H2, formaldehyde, formamide, and 

benzene. The bond length of H2 was set to 1.5 Bohr, while the 

geometries of the other molecules were obtained from Ref. 51 

and 52. For comparison, we used both KS-CIS and HF-CIS 

methods with various basis sets. KS orbitals for CIS 

calculations have been calculated using the KLI exchange-only 

potential and the PBE53 exchange-correlation potential. 

Because virtual orbitals are more diffuse than occupied orbitals, 

their energies and shapes would be more sensitive to the choice 

of basis set than those of occupied orbitals. Therefore, we 

studied the effects of simulation box size and grid spacing on 

CIS results. Also, we investigated the dependence of the CIS 

results on active space size that is denoted by the notation, (n-

electrons, m-orbitals), used in conventional post-HF methods. 

We used our KS-DFT code to obtain KLI and PBE orbitals. To 

perform HF-CIS calculations using a numerical grid basis set, 

we first obtained HF orbitals from the Octopus program7, which 

uses the finite difference method, and then put them in our code 

for the remaining calculations. We applied an identical grid 

setting with a sphere-shape simulation box and identical norm-

conserving pseudopotentials at the PBE level54 to obtaining 

KLI, PBE, and HF orbitals. We also carried out HF-CIS 

calculations using (aug)-cc-pVNZ (N=D,Q) basis sets as 

implemented in the Gaussian 09 package55 and compared the 

results with those of the grid basis sets. All orbital figures were 

drawn with the isovalue of 0.014. 

Result 

Energy convergence 

We first investigated the convergence of CIS excitation 

energies as a function of the radius of a spherical simulation 

box and the scaling factor h. As a test set, we used the three 

valence excitation energies of formaldehyde (11A2, 11B2, and 

11B1) obtained from KLI-CIS with the active space (12, 24). 

 

SIMULATION BOX SIZE The CIS calculations were carried out 

using a spherical simulation box with a fixed scaling factor (h = 

0.3 Bohr), as shown in Figure 2(a). The reference values for 

each excitation energy were obtained using the radius of 21.0 

Bohr. The energies of 11A2 and 11B1 readily converge with a 

small deviation (< 0.02 eV) over all the range, but the energy of  
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Figure 2. (a) The convergence of the three valence excitation energies of 

formaldehyde obtained from KLI-CIS with the active space (12, 24) as a function 

of the radius of a spherical simulation box. The reference values were obtained 

using radius = 21.0 Bohr and h = 0.3 Bohr. (b) The convergence of the difference 

between PBE-CIS and KLI-CIS excitation energies (EPBE-CIS - EKLI-CIS) as a function of 

the scaling factor h. The reference values were obtained using h = 0.231 Bohr. All 

values in (b) were calculated using radius = 15.0 Bohr. 

11B2 converges as the radius is larger than 13.5 Bohr. 11A2 and 

11B1 correspond to the excitations from 2b2 and 5a1, 

respectively, to the π* orbital (2b1), while 11B2 is due to the 

excitation from 2b2 to the σ* orbital (6a1). The σ* orbital is 

more diffuse than the π* orbital, and thus the former needs a 

relatively large simulation box to be converged (Figure S1). 

(For the detailed assignments of each excitation, see Figure S3.) 

In such a way, excitation energies involving diffuse orbitals 

strongly depend on the simulation box size, so that it must be 

carefully determined.  

 

SCALING FACTOR The scaling factor is also an important 

parameter for energy convergence. Figure 2(b) shows the 

convergence of excitation energy differences between PBE-CIS 

and KLI-CIS as a function of the scaling factor with a fixed 

radius of simulation box (15.0 Bohr). The reference values of 

each excitation were obtained using a fine grid (h = 0.231 Bohr). 

The energy differences rapidly converge as h decreases and 

when h = 0.3 Bohr, the maximum energy difference is about 

0.007 eV. It should be noted that despite such rapid 

convergence of the energy differences, individual excitation 

energies themselves converge slowly because of the accuracy 

of the Gaussian quadrature integration for pseudopotentials on 

coarse grids (Figure S2).   

Hereafter, all calculations were done with a spherical 

simulation box with the radius of 15.0 Bohr and the scaling 

factor of 0.3 Bohr.  

Excitation energies from KLI-, PBE-, and HF-CIS 

We compared the excitation energies of formaldehyde, benzene, 

formamide, and hydrogen molecules obtained from KLI-, PBE-, 

and HF-CIS methods.  

 

DETERMINATION OF ACTIVE SPACE We first need to determine 

an active space for CIS calculations. Apparently, the size of 

active space itself is a convergence parameter for excitation 

energies. The standard HF-CIS method uses whole orbital 

space as an active space, since computational costs of CIS are 

not significantly affected by the active space size. In the case of 

grid-based methods, the diagonalization of Hamiltonian matrix 

 
Figure 3. (a) The convergence of the excitation energies of formaldehyde 

obtained from PBE-, KLI- and HF-CIS as a function of the number of virtual 

orbitals in the active space. (b) The convergence of the mean absolute deviation 

(MAD) of the three valence excitation energies for four molecules (see Table 2). 

The reference values were obtained from Ref. 51 and 52 (see the caption of 

Table 2). All values were calculated using radius = 15.0 Bohr and scaling factor h 

= 0.3 Bohr. 

typically produces millions of virtual orbitals. In practice, we 

need a proper threshold to restrict the virtual orbital space. The 

larger the active space, the more accurate the excitation 

energies. However, obtaining virtual orbitals from grid-based 

methods entails additional computational costs, because the 

matrix diagonalization is solved using iterative methods. 

Therefore, the active space size should be determined as a 

trade-off between accuracy and computational costs. 

Figure 3 shows the convergence of CIS excitation energies as a 

function of active space size with respect to the best known 

values computed by multireference methods (see the caption of 

Table 2). Figure 3(a) shows that the absolute deviations of 

PBE- and KLI-CIS excitation energies for formaldehyde 

readily converge to certain values with small deviations (< 0.05 

eV) as more than 30 virtual orbitals are included in the active 

space, whereas the HF-CIS results converge slowly (see Tables 

S1 and S2 for the complete data). We extended the convergence 

test of active space size for formaldehyde, benzene, formamide, 

and hydrogen molecule. In Figure 3(b), the mean absolute 

deviation (MAD) values of PBE- and KLI-CIS converge 

rapidly, while that of HF-CIS converges slowly, implying that 

KS-CIS requires a smaller active space than HF-CIS for same 

accuracy.  

More intriguingly, the results of each method converge to 

different values. It is understandable by considering that the 

ground state determinants from each method are not orthogonal 

with each other and hence their CIS spaces span different 

subspaces of a given Hilbert space. Therefore, the accuracy of 

truncated CI methods should depend on the reference 

configuration obtained from ground state calculations. Figure 

3(b) demonstrates that KLI provides better reference 

configurations than PBE and HF.  

From the convergence test in Figure 3, we chose the active 

spaces shown in Table 1 for more detailed study on the 

individual excited states of each molecule in the following 

sections. In Table 1, the active space names, “45”, “6”, and “3”, 

denote the number of virtual orbitals in the given active space. 

In the case of “45”, the conventional expressions for the active 

spaces of formaldehyde, benzene, formamide, and hydrogen 

molecule correspond to (12, 51), (30, 60), (18, 54), and (2, 46), 

respectively. For comparison, the active spaces for Gaussian 

basis sets are also given in Table 1.  
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Table 1. The active space of “45”, “6”, “3”, and Gaussian basis sets for 
various molecules. 

 45 6  3 
aug-cc-
pVQZ 

aug-cc-
pVDZ 

cc-
pVQZ 

cc-
pVDZ 

Form-
aldehyde 

(12,51) (12,12) (12,9) (16,252) (16,64) (16,170) (16,38) 

Benzene (30,60) (30,21) (30,18) (42,752) (42,192) (42,510) (42,114) 

Form-
amide 

(18,54) (18,15) (18,12) (24,378) (24,96) (24,255) (24,57) 

Hydrogen 
molecule 

(2,46) (2,7) (2,4) (2,92) (2,18) (2,60) (2,10) 

The active space sizes are denoted by (n-electrons, m-orbitals). 

EXCITATION ENERGIES Table 2 summarizes the results of 

various CIS calculations. The second column indicates three 

valence excited states of each molecule and corresponding 

transition characters. The best estimation values in the third 

column were obtained from multireference methods (see the 

table caption for details). The following columns subsequently 

show the excitation energies to each state computed using HF-

CIS (grid and Gaussian basis sets), KLI-, and PBE-CIS with 

various  active spaces for the grid basis set or with various basis 

set sizes for the Gaussian case. Finally, the bottom row shows 

the MADs of each column with respect to the best estimation 

values. First, we compare the results from grid-based methods. 

The KLI-CIS results with the active space “45” have the 

smallest MAD (0.44 eV). For the same active space, PBE-CIS 

gives slightly larger MAD (0.55 eV), but HF-CIS results in 

significantly larger MAD (0.91 eV).  

To understand such differences, we invoke the features of KLI, 

PBE, and HF orbitals. As learned from our previous work29, the 

energy gaps between occupied and virtual orbitals from KLI are 

relatively closer to vertical excitations. PBE orbital energies are 

overall upshifted compared to those of KLI, but their energy 

gaps are similar to those of KLI. However, HF has substantially 

large energy gaps. Furthermore, HF virtual orbitals are much 

more diffuse than KLI and PBE counterparts. As shown in Eq. 

(4), CIS adds the energy correction from the two-centre 

integrals between single excitation configurations to the 

corresponding orbital energy gap. Therefore, KLI-CIS readily 

gives accurate excitation energies even with small correction 

from the two-centre integral, while HF-CIS needs large 

corrections. As a result, as long as we use the same size of 

active space, KLI-CIS will give us more accurate results than 

HF-CIS.  

The comparison between aug-cc-pVDZ and cc-pVQZ manifests 

the importance of diffuse basis functions to obtain accurate 

excitation energies. For grid basis sets, the accuracy for diffuse 

states can be systematically tuned by controlling the size of 

simulation box.42 If a sufficiently large simulation box is used, 

grid basis sets may perform better for diffuse states than 

Gaussian basis sets. In Table 2, however, the MADs of the grid-

based HF-CIS are larger than those from aug-cc-pVNZ. This 

can be understood from the fact that the active space in the 

grid-based HF-CIS is much smaller than that in the Gaussian 

basis sets. [cf. Figure 3(b)] 

We also found that the excitation energies from KS-CIS are 

relatively insensitive to the size of active space compared to 

HF-CIS. For example, the MAD of HF-CIS reduces by 1.60 eV 

as the active space size increases from “6” to “45”, whereas that 

of KS-CIS reduces by 0.05 eV for the same change. This is 

another important aspect for practical applications. 

In order to further uncover the difference between KS-CIS and 

HF-CIS, we closely examine individual excitations of each 

molecule especially with focus on their CIS coefficients and 

corresponding orbital shapes in the following section. 

Table 2. CIS excitation energies of formaldehyde, benzene, formamide, and hydrogen molecule. (Unit: eV) 

 
Excited state 

Best 
estimation 

HF-CIS (grid) HF-CIS (Gaussian) KLI-CIS PBE-CIS 

45 6 3 
aug-cc-
pVQZ 

aug-cc-
pVDZ 

cc-
pVQZ 

cc-
pVDZ 

45 6 3 45 6 3 

Form-
aldehyde 

11A2 n→π* 3.88 5.91 9.23 9.50 4.51 4.49 4.52 4.48 4.37 4.38 4.38 4.62 4.62 4.61 

11B1 σ→π* 9.10 10.78 11.75 11.77 9.64 9.69 9.65 9.66 9.58 9.59 9.59 9.73 9.74 9.74 

21A1 π→π* 9.30 9.68 10.05 10.05 9.43 9.49 9.62 9.95 9.36 9.59 11.89 9.59 9.69 9.69 

Benzene 

11B1u π→π* 6.54 6.79 11.53 11.59 6.15 6.16 6.20 6.35 6.71 6.89 6.93 6.82 6.98 7.02 

11B2u π→π* 5.08 6.29 11.78 11.81 5.99 6.00 6.04 6.18 6.17 6.14 6.14 6.18 6.14 6.14 

11E1u π→π* 7.13 7.35 7.59 11.69 7.51 7.78 8.08 8.36 7.40 7.45 9.49 7.14 7.15 9.57 

Form-
amide 

11A" n→π* 5.63 7.98 8.51 8.52 6.45 6.44 6.49 6.48 6.40 6.42 6.42 6.79 6.81 6.81 

21A' π→π* 7.39 8.90 9.33 9.40 8.43 8.46 8.74 9.09 8.47 8.64 8.94 8.82 8.91 9.17 

31A' π→π* - 9.26 9.59 9.62 8.87 8.89 10.04 11.07 8.90 9.23 9.61 9.28 9.39 11.15 

Hydrogen 
molecule 

B1Σu
+ σg→σu 12.32 12.52 13.31 13.31 12.28 12.25 12.89 13.56 12.27 12.36 12.65 12.33 12.37 12.38 

EF1Σg
+ σg→σg 12.79 12.66 13.06 13.06 12.65 12.72 15.76 21.43 12.58 12.66 12.66 12.62 12.69 12.69 

C1Πu σg→πu 12.85 12.91 13.51 - 13.62 15.39 20.56 39.89 12.64 12.70 12.70 12.63 12.86 12.86 

Mean absolute deviation 0.91 2.51 - 0.53 0.72 1.56 3.98 0.44 0.49 0.94 0.55 0.56 0.81 

The “Best estimation” means the best known values computed by multireference methods which were obtained from Ref. 51 and 52 for benzene, 
formaldehyde, and formamide, and from Ref. 56–58 for hydrogen molecule. “45”, “6”, and “3” denote the size of active space used for each molecule (Table 
1). For details, see the text. HF-CIS (Gaussian) means the HF-CIS results with Dunning basis sets obtained using the Gaussian 09 package. We note that all 
occupied and virtual orbitals of each molecule were used for CIS calculations using the Gaussian 09 package. Mean absolute deviations were calculated with 
respect to the “Best estimation” values.

Dfdfdfdf df dfdfdf dffd  
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CIS coefficients of individual excitations 

A singlet excited state wavefunction from CIS can be written as 

1
ex 0 0

,

| | | ,a

i

a

i

i a

c cΨ 〉 = Φ 〉 + Φ 〉∑  

where ��  is zero in the case of HF-CIS by virtue of the 

Brillouin’s theorem (for the Brillouin’s theorem of KS-CIS, we 

refer to Ref. 29). Due to the normalization condition of 

wavefunction, the coefficients satisfy the following relation. 

2 2
0

,

1 | | | |a

i

i a

c c= +∑  

Thus, without loss of generality, we investigated the absolute 

squared values of CIS coefficients to analyse individual 

excitations instead of the coefficients themselves.  

 

FORMALDEHYDE Though HF-CIS is generally inaccurate 

compared to KS-CIS, the HF-CIS excitation energy of 

formaldehyde to the first excited state, 11A2, is particularly 

worse; for the active space “45”, the excitation energy of HF-

CIS is ~1.5 eV larger than that of KLI-CIS as shown in Table 2. 

Figure 4 shows the CIS coefficients of the 11A2 state obtained 

from various methods with different active spaces or basis sets. 

In the case of KS-CIS, the 2b2→2b1 excitation is dominant and 

thus their excitation energies are not only accurate, but also 

insensitive to the active space size, since both small and large 

active spaces include the 2b2 and 2b1 orbitals. In contrast, HF-

CIS for both grid and Gaussian basis sets needs more 

configurations in addition to the 2b2→2b1 excitation. In fact, as 

the active space or basis set size increases, the coefficient 

corresponding to the 2b2→2b1 excitation becomes considerably 

small, while the contribution from 2b2→3b1 or 2b2→4b1 become 

more dominant. 

Table 3 shows those orbitals involved in the excitation to the 

11A2 state. The highest occupied molecular orbitals (HOMOs) 

denoted as 2b2 from KLI and HF have very similar shapes at 

least to the naked eye. In contrast, as stressed above, their 

virtual orbitals are substantially different in shape and size. In 

 
Figure 4. CIS coefficients for the 1

1
A2 state of formaldehyde. 

particular, the 2b1 orbital from KLI is more compact than those 

from HF. Moreover, the energy gap (4.19 eV) between 2b2 and 

2b1 from KLI is much smaller, that is closer to the best 

estimation value (3.88 eV), than those from HF (13.17 or 13.64 

eV). As a result, HF-CIS needs to add more virtual orbitals with 

the same symmetry to improve accuracy (Figure 4). In general, 

KLI gives a number of bound virtual orbitals with negative 

energies and compact shapes, whereas HF produces unbound 

virtual orbitals with positive energies and diffuse shapes.29 

Thus, the excitation to the 11B1 and 21A1 states also shows 

similar trends as depicted in Figure S3. 

 

Table 3. Orbitals of formaldehyde calculated using KLI and HF. 

 

2b2  

(HOMO) 
2b1 3b1 4b1 

KLI 

 

(h=0.3 

Bohr)  

  

-11.83 -7.64 -2.89 -1.44 

HF 

 

(h=0.3 

Bohr) 
 

 

  

-12.03 1.14 1.19 2.76 

HF 

 

(aug-

cc-

pVQZ) 

 

 

 

 

-12.13 1.51 3.12 4.82 

The values below each orbital figure indicate corresponding orbital energies. 
(unit: eV) 

 

BENZENE Unlike formaldehyde, MCs are vital to properly 

express the excited states of benzene that involve various π→π* 

excitations. In Table 2, the 11B1u and 11B2u states correspond to 

the excitations from two degenerate π bonding orbitals to two 

degenerate π antibonding orbitals as schematically depicted in 

Figure 5. Because degenerate orbitals have the same symmetry 

representation, (e.g., 1e1g for π bonding orbitals of benzene), 

MC nature of such excited states is unavoidable. For notations, 

we denote π orbitals formed by the 2p and 3p carbon atomic 

orbitals as nπ and n’π, respectively (cf. Figures 5, 6, and 7). 
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Figure 5. π orbital diagram of benzene. The red and blue dashed arrows indicate 

the excitations to the 1
1
B2u and 1

1
B2u states, respectively (see also Figure S4).  

In the case of KS-CIS, the 11B1u state is represented by mainly 

two π→π* excitations as shown in Figure 6: 2π→5π and 

3π→4π. In constrast, HF-CIS (grid) has no such excitation 

characters within the small active spaces (“3” and  “6”), leading 

to the large deviations in the excitation energies (Table 2). For 

the active space “45”, more configurations especially involving 

nπ→n’π excitations in addition to the two π→π* excitations 

contribute to the corresponding excitation energy, and then the 

excitation energy of HF-CIS (grid) is comparable to that of KS-

CIS. This indicates that for HF-CIS (grid) the two 

configurations are not sufficient to achieve similar accuracy 

with KLI-CIS and thus more configurations should be added. A 

similar trend is observed for the Gaussian basis sets. 

Figure 7 shows the orbitals involved in the excitation to the 

11B1u state. Like the case of formaldehyde, KLI and HF have 

similar occupied π orbitals (2π, 3π), but considerably different 

virtual orbitals with strong dependence on basis set size. The 

relatively small Gaussian basis set (cc-pVDZ) gives compact 4π 

and 5π orbitals that are similar to those from KLI. However, HF 

with a larger basis set such as aug-cc-pVQZ or numerical grid 

yields much more diffuse orbitals. KLI (5.23 eV) has smaller 

energy gaps between (2π, 3π) and (4π, 5π) than HF (grid: 11.74 

eV and aug-cc-pVQZ: 11.8 eV). Therefore, HF-CIS (“45” and 

aug-cc-pVQZ) compensates the large energy gap by adding the 

 
Figure 6. CIS coefficients for the 1

1
B1u state of benzene. 

contribution from the 2π→5’π and 3π→4’π excitations to the 

2π→5π and 3π→4π excitations. 

 
Figure 7. Selected π molecular orbitals and corresponding energies of benzene 

calculated using KLI and HF.  

FORMAMIDE As observed from the above two examples, KLI-

CIS needs a single configuration for non-degenerate excitations 

and MCs for degenerate excitations, whereas HF-CIS mostly 

requires MCs for any excitation. PBE-CIS shows similar trends 

with KLI-CIS. For the excitation of formamide to the 11A” 

state, a single configuration involving (10a’→3a”) is dominant 

for KLI-CIS (Figure S5). However, the 21A’ and 31A’ states 

demand MCs even for KLI-CIS, though the two states are not 

due to degenerate excitations as shown in Figure 8 (also see 

Figure S5). Moreover, the excitation energies of formamide 

computed from all methods have relatively larger deviations 

from the best estimation values compared to the other 

molecules. For instance, the excitation energy of 11A" from 

KLI-CIS converged within 0.02 eV with respect to the active 

space size but yet has large deviation (0.83 eV). This may  

 
Figure 8. CIS coefficients for the 3

1
A’ state of formamide. 
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attribute to its intrinsic multiple-excitation characters. In this 

case, we expect that the large deviation can be reduced by 

including multiple excitations in the CI expansion. Nonetheless, 

KLI-CIS still gives better excitation energies with respect to the 

best estimation values than PBE- and HF-CIS. 

 

HYDROGEN MOLECULE A hydrogen molecule is the simplest 

neutral molecule. It has a well-defined symmetry and only two 

electrons. Therefore, as expected, all methods show similar 

good accuracy (Figure S6). For example, the excitation energies 

of HF-CIS (grid) with the active space “45” are comparable to 

the KLI- or PBE-CIS results, although they are still sensitive to 

the size of active space (Table 2). Through the expansion of the 

active space from “6” to “45”, the excitation energies of HF-

CIS (grid) were lowered by 0.4~0.79 eV, while those of KLI-

CIS were varied within 0.06~0.09 eV. 

Conclusions 

Real-space numerical grid methods are promising for accurate 

electronic structure calculations of large molecules, because 

their computational costs can be reduced through massive 

parallelization as well as linear scaling algorithms and their 

accuracy can be systematically improved toward complete basis 

set limits. In particular, those methods are inherently good for 

excited state calculations where large basis sets including 

diffuse functions are essential. We developed a CIS method 

using Lagrange-sinc functions localized on a uniform grid. The 

nonlocal HF exchange operator reduces the sparsity of 

Hamiltonian matrix, giving rise to high computational costs. 

Therefore, the traditional HF-based CIS seems impractical for 

grid-based methods. Instead, we proposed a KS-based CIS in 

particular with an exact exchange potential. KLI and PBE 

orbitals as well as HF orbitals were used to build a reference 

configuration and their relative accuracy for excitation energies 

of molecules has been assessed.  

Since the grid-based method uses an iterative diagonalization 

scheme, the size of active space should be determined in a way 

to comprise between computational costs and accuracy. For our 

test molecules with the active space using all occupied orbitals 

and 45 virtual orbitals, KLI-CIS shows smallest deviations 

(MAD = 0.44 eV) in excitation energy calculations with respect 

to the known best estimation values, followed by PBE-CIS 

(MAD = 0.55 eV), while HF-CIS (MAD = 0.91 eV) causes 

significantly large deviations. We also found that excitation 

energies from KLI-CIS are less sensitive to the size of active 

space, whereas the results from HF-CIS are very sensitive. 

Such differences are originated from the unique features of KLI 

orbitals; HF-like occupied orbitals, but KS-like virtual orbitals. 

Compared to HF, KLI yields many bound virtual orbitals with 

more compact shapes and smaller energy gaps between 

occupied and virtual orbitals. As a result, for H2, benzene, and 

formaldehyde, KLI-CIS needs mostly a specific single 

configuration for non-degenerate excitations and 

multiconfigurations for degenerate excitations, whereas HF-CIS 

demands multiconfigurations for any excitation. However, for 

formamide, both KLI-CIS and HF-CIS require 

multiconfigurations to obtain accurate excitation energies 

which may be due to its multiple-excitation character. 

Consequently, the size of active space should be cautiously 

determined as a convergence parameter especially for HF-CIS.  

The size of active space is directly related to computational 

costs of multiconfiguration methods. For CI singles and 

doubles (CISD) calculations, the number of configurations is 

approximately proportional to 2 2
occ virN N . Based on the CIS 

results in this work, we expect that KLI-CISD should be more 

cost-effective because it needs smaller active space to achieve 

similar accuracy than HF-CISD. For benzene as an example, 

KLI-CISD with the active space “45” and “6” have 315 and 

2644 times smaller number of configurations than HF-CISD 

with aug-cc-pVQZ, respectively (cf. Table 1). Hence, we 

believe that KLI-based multiconfiguration methods combined 

with numerical grid basis sets will be a new promising way for 

accurate electronic structure calculations of large systems.  
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