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erties are deduced from the joint-density of states.12 Spectral

features correspond to minima, maxima and saddle points of

the joint-density of states. Introducing Many-body effects, and

specifically electron-hole interaction, may give rise to bound

exciton states [Fig. 1 (b)] that strongly modify spectral proper-

ties. In 2D crystals excitonic effects are expected to be partic-

ularly strong due to geometrical confinement and poor screen-

ing.9 Indeed, we have found strong excitonic one- and two-

photon resonances in the SHG of h-BN and MoS2 2D crystals,

affecting the spectral shape and increasing the intensity by a

factor 2 when compared with the IP level of theory.

Here we investigate the SHG in GaN, SiC and ZnO 2D

hexagonal crystals by first-principles numerical simulations.

The stability of those crystals has been predicted theoreti-

cally.13,14 Recently, few layers films of ZnO and SiC have

been as well realized experimentally: ultrathin hexagonal SiC

nanoflakes (0.5-1.5 nm) have been obtained by exofoliation,15

and monolayer and bilayer of ZnO have been prepared by re-

active deposition of Zn on Au(111).16 Because of their non-

centrosymmetric structure GaN, SiC and ZnO 2D crystals are

expected to have non-negligible SHG. In fact, a SHG of the or-

der of pm/V has been measured for ZnO bulk and thin films.17

Interestingly the SHG at about 1.2 eV (Nd:YAG laser fre-

quency) has been observed to vary with thickness and to be

more than 10 times larger than in bulk for very thin films

(about 40 nm).18 Those effects have been attributed to exci-

tonic resonances.19 For SiC, SHG in hexagonal bulk SiC and

thin films have been measured to be of the order of pm/V

at Nd:YAG laser frequency.20,21 Theoretical calculations at

the IP level predicted for the hexagonal monolayer a value

that is at least two order of magnitude larger.22 Finally, bulk

and thin films GaN have also shown a SHG of the order of

few pm/V.23–25 GaN is of particular interest because of its

electronic and thermal charateristics are well-suited for high

power applications and because of the possibility of integrat-

ing it on a silicon substrate. In fact, GaN has been already

integrated on a silicon substrate for SHG.26

The SHG is calculated by a first-principles real-time approach

based on Green’s function theory (Sec. 2). Both local-field,

quasiparticle corrections and excitonic effects are included in

our simulations. Our results predict (Sec. 3) a remarkable

SHG intensity for GaN, SiC and ZnO 2D crystals in the trans-

parency region. Many-body effects are again found to be key

in the quantitative description of SHG: excitonic effects en-

hance the intensity up to about a factor two and redistribute

spectral weight significantly.

2 Computational Methods

Ground-state densities are obtained within the Kohn-Sham

(KS) density functional theory. Density functional theory

also provides the KS band structure that however cannot be

used directly to extract band gaps but it can be considered

a good starting point mean-field Hamiltonian for many-body

perturbation theory. We then use the GW approach—briefly

described here in Sec. 2.1—to obtain the quasiparticle band

structures perturbatively from the KS one (for a review of

methods available to predict electronic energies see e.g. Walsh

and Butler27). The obtained quasiparticle energies are then in-

put to the calculations for optical properties within the Bethe-

Salpeter equation framework (see Sec. 2.1 for the linear re-

sponse and Sec. 2.2 for the real-time approach).

2.1 Quasiparticle band structure and optical absorption

The quasiparticle band structures are obtained within the GW

approach. Specifically, we use non-self consistent GW (de-

noted as G0W0) in which the screened Coulomb potential, W ,

and the Green’s function, G, are built from the KS eigensolu-

tions {εnk; |nk〉} (with k the crystal wave vector and n the band

index) and then the quasiparticle energies obtained from:

εQP
nk = εnk +Znk∆Σnk(εnk). (1)

In Eq. 1

Znk = [1−∂∆Σnk(ω)/∂ω|ω=εnk
]−1,

is the renormalization factor and

∆Σnk ≡ 〈nk|∆Σ|nk〉,

where

∆Σ = Σ−V xc,

is the difference between Σ = GW , the GW self-energy, and

V xc, the exchange-correlation functional used in the KS cal-

culation.28

The optical-spectra are calculated by solving the Bethe-

Salpeter equation (BSE):29

(εQP
ck − εQP

vk )As
vck+

∑
v′c′k′

〈vck|Keh|v
′c′k′〉As

v′c′k′ = ΩsAs
vck. (2)

Here, the electronic excitations are expressed in a basis of

electron-hole pairs |vck〉 corresponding to transitions at a

given k from a state in the valence band (v) with energy εQP
vk

(hole) to a conduction-band (c) state with energy εQP
ck (elec-

tron). As
vck are the expansion coefficients of the excitons in the

electron-hole basis and the Ωs are the excitation energies of

the system.
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2.2 Second-harmonic generation

Nonlinear optical properties are obtained within the real-

time approach suggested by Souza et al.30. This approach

was recently implemented by the authors within a first-

principles framework.11 In this approach the time-dependent

Schrödinger equation

ih̄
d

dt
|vmk〉 =

(

H
sys
k + iE · ∂̃k

)

|vmk〉. (3)

is integrated to obtain the time-dependent valence states,

|vmk〉. The latter are the periodic part of the Bloch states that

determines the system polarization.30 In the r.h.s. of Eq. 3,

H
sys
k is the system Hamiltonian—which is discussed later in

this Section; the second term, E · ∂̃k, describes the coupling

with the external field E in the dipole approximation. As we

imposed Born-von Kármán periodic boundary conditions, the

coupling takes the form of a k-derivative operator ∂̃k. The tilde

indicates that the operator is “gauge covariant” and guarantees

that the solutions of Eq. 3 are invariant under unitary rotations

among occupied states at k (see Souza et al.30 for a thorough

discussion of this point).

From |vmk〉, the time-dependent polarization of the system

P‖ along the lattice vector a is calculated as

P‖ =−
e f

2πv

|a|

Nk⊥
∑
k⊥

Im log

Nk‖
−1

∏
k‖

detS
(

k,k+q‖

)

, (4)

where S(k,k + q‖) is the overlap matrix between |vnk〉 and

|vmk+q‖
〉. Furthermore, v is the unit cell volume, f is the spin

degeneracy, Nk‖
and Nk⊥ are respectively the number of k

points along and perpendicular to the polarization direction,

and q‖ = 2π/(Nk‖
a). Finally, the second harmonic coefficient

is extracted from the power series of the polarization in the

laser field E

P = χ(1)
E +χ(2)

E E + ... (5)

as detailed in Attaccalite et al.11.

In Eq. 3, the model Hamiltonian chosen for H
sys
k , deter-

mines the level of approximation in the description of correla-

tion effects in the SHG spectra. In this work we use two dif-

ferent models for the system Hamiltonian: (i) the independent-

particle (IP) model,

HIP
k ≡ HKS

k , (6)

and (ii) the GW+BSE model,

HGW+BSE
k ≡ HKS

k +∆Hk +Vh(r)[∆ρ]+ΣSEX[∆γ], (7)

where

∆ρ ≡ ρ(r; t)−ρ(r; t = 0)

is the variation of the electronic density and

∆γ ≡ γ(r,r′; t)− γ(r,r′; t = 0)

is the variation of the density matrix induced by the external

field E .

In Eqs. (6) and (7), HKS is the unperturbed KS Hamiltonian.

In Eq. 7, the second term, ∆Hk contains the quasiparticle cor-

rections to KS energies as obtained from Eq. 1. The next term,

Vh(r)[∆ρ] is the Hartree10 potential and is responsible for the

local-field effects31 originating from system inhomogeneities.

The last term ΣSEX, is the screened-exchange self-energy that

accounts for the electron-hole interaction,29 and is given by

the convolution between the screened interaction W and ∆γ .

In the linear response limit the GW+BSE model reproduces

the optical absorption calculated as in Eq. 2, as shown both

analytically and numerically in Attaccalite et al.10

2.3 Numerical details

PP Ecut(Ha) k-grids a (Å) d (Å)

SiC Si:(3s)2(3p)2 30 16 (SC) 3.069 3.51

C:(2s)2(2p)2 80 (IP)

type: vBC 21 (BSE)

ZnO Zn:(3d)10(4s)2 40 16 (SC) 3.208 2.60

O:(2s)2(4p)4 40 (IP)

type: TM 21 (BSE)

GaN Ga:(3d)10(4s)2(4p) 40 16 (SC) 3.169 2.59

N:(2s)2(2p)3 40 (IP)

type: TM 21 (BSE)

Table 1 Parameters used in the KS calculations. PP: pseudopotential

components and scheme for each atom. “vBC” and “TM” refer respectively

to the von Barth-Car 32 and Troullier-Martins 33 schemes. Ecut: energy cutoff

for the plane-waves. k-grids: number of k points of the Monkhorst-Pack grid

in each of the two periodic dimensions for the self-consistent (SC)

calculation of the density, and to obtain the KS eigensolutions for the IP and

BSE calculations; a: lattice parameter obtained from the geometry

optimization; d: the effective thickness used to evaluate the second harmonic

response (see text).

Density functional calculations of the ground-state den-

sity, optimized cell geometry and KS electronic structure are

performed using the QUANTUMESPRESSO code.34 The KS

wave functions are expanded in plane-waves and the effects

of core electrons are simulated by norm-conserving pseu-

dopotentials.35 The exchange-correlation functional is treated

within the local density approximation (LDA).36,37 Table 1 re-

ports the relevant parameters for the specific KS calculations.

The quasiparticle and optical absorption calculations are

carried out using the YAMBO code.38 The screened Coulomb

potential W has been evaluated within the random-phase ap-

proximation (RPA). In the GW approach we used the Godby-

Needs plasmon-pole model to approximate the dynamical be-

havior of W ,39 while in the BSE framework we use the static

1–8 | 3
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approximation.29 The number of unoccupied bands used in

the expansion of the self-energy and Green’s function for SiC,

ZnO and GaN are respectively 100, 150 and 100. We use a

cutoff of 3 Ha for the off-diagonal components of the dielec-

tric matrix εGG′ . Those same parameters are used to calculate

the static dielectric constants.

Finally the SHG spectra are calculated using a development

version of the YAMBO code where Eqs. (3)-(4) have been im-

plemented.11 In the ΣSEX, the W is calculated once (at its

zero-field value) using the same approximations and numer-

ical parameters as in the BSE (Eq. (2)).10 In both the IP and

the GW+BSE we consider 3 valence and 5 conduction bands

for SiC, 8 valence and 5 conduction bands for ZnO and 6 va-

lence and 5 conduction bands for GaN. The quasiparticle cor-

rections in ∆Hk [Eq. (7)] are introduced as a scissor operator

∆vc, and valence (conduction) stretching parameters αv(c) (Ta-

ble 2) fitted from the GW calculations by assuming a linear

relation between the quasiparticles and KS energies.

As we are working with a plane-wave basis set and thus

with periodic boundary conditions, we simulate isolated

monolayers by a slab supercell approach with 30 a.u. inter-

sheet distance along the z−direction. In the calculations of

the screened Coulomb potential W , we cutoff the long-range

interaction between the periodic images by using the scheme

of Rozzi et al.40.

∆vc(eV ) αc αv

SiC 1.32 1.70 1.25

ZnO 1.28 0.90 1.90

GaN 1.76 1.11 1.03

Table 2 Parameters extracted from the GW calculations by a linear fit and

used to account for the quasiparticle corrections in the GW+BSE real-time

simulations. See text.

Equation (3) is integrated numerically for a time-interval of

55 fs using the same numerical approach of Souza et al.30

(originally taken from Koonin et al.41) with a time-step of

∆t = 0.005 fs that guarantees accuracy and stable results. We

use sinusoidal monochromatic laser fields polarized along y,

with an intensity of I = 500 kW/cm2. In Eq. (3) we add a de-

phasing term with τ = 6 fs to simulate a finite broadening of

about 0.2 eV .11 To evaluate the static dielectric constant and

the SHG of the two-dimensional layers we used an effective

thickess equal to the interlayer distance in the corresponding

bulk material for ZnO42 and GaN43 and equal to the one used

by Wu et al.22 for the SiC, as reported in Table 1.

3 Results

In this Section for hexagonal SiC, ZnO and GaN monolay-

ers we discuss the electronic band structure, obtained from

the G0W0 calculations [Eq. (1)], the optical absorption spec-

tra obtained within the IP and GW+BSE approaches [Eq. (2)]

and finally the SHG obtained from real-time simulations again

within both the IP and GW+BSE approaches [Eqs. (3)-(7)].

Sys. EKS
g (eV) E

G0W0
g (eV) ε0 |χ

(2)
0 (0)| |χ(2)(0)|

SiC 2.54 3.96 8.25 122(1) 141(1)

ZnO 1.70 3.01 5.83 10.0(1) 14.7(7)

GaN 2.36 4.27 7.33 18.07(4) 33.6(3)

Table 3 Band gap Eg within the KS-density functional theory and the G0W0

approximation. Static dielectric constant ε0 within the RPA. SHG intensity

(in pm/V) at zero frequency within the IP approximation (χ
(2)
0 ) and within

the GW+BSE framework ( χ(2)).

3.1 SiC monolayer

We found (Table 3) that within the GW approximation the SiC

monolayer has a direct minimum gap at K of 3.96 eV (LDA

gives 2.59 eV). For the K − M indirect gap our GW calcu-

lations gives 4.00 eV (LDA gives 2.54 eV). The values we

found agree within one tenth of eV with previous works of

Lu et al.44 and of Bekaroglu et al.45, though in there GW

predicts an indirect band gap material. On the other hand,

Hsueh et al.46 found by GW calculations that the minimum

band gap is direct at K (though again really close to the indi-

rect at K −M), but reported G0W0 corrections that are 0.5 eV

larger than ours. This quite large disagreement may be the ef-

fect of the different plasmon-pole model used to approximate

the frequency behaviour of the screened Coulomb potential.

In fact it has been recently shown47 that the Hybertsen-Louie

plasmon-pole model (used by Hsueh et al.46) tends to over-

estimate the band gap when compared with “full frequency”

calculations (that means without any plasmon-pole approxi-

mation) or with the Godby-Needs plasmon-pole model, used

in this work. The static dielectric constant calculated within

the RPA is 8.25, smaller than 9.66 found (experimentally) for

the bulk48.

At the IP level the absorption spectrum [Fig. 2(b)] presents

two main features in the 0-6 eV laser-frequency range: a

shoulder at 2.59 eV and a peak at 3.24 eV. They correspond

to transitions from the top-valence to the bottom conduc-

tion band predominantely along the K −M direction. In the

SHG intensity [Fig. 2(a)] one recognizes the corresponding

two-photon and one-photon resonances respectively at about

1.3 eV, 1.6 eV and 2.6 eV. The shoulder at 3.2 eV results

from the interference of one-photon resonance at 3.24 eV and

two-photon resonances with higher energy transitions. Near

4 eV is also visible a two-photon resonance with transitions

involving higher lying conduction bands. The shape and the

magnitude of the SHG intensity spectrum agree well with the

calculations (at the same level of theory) by Wu et al.22.
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for the gap are close to those reported by Chen et al.53, but

smaller than those reported by Ismail-Beigi54. As previously

discussed for the SiC the difference can be ascribed to the

plasmon-pole model used to approximate the frequency de-

pendence of the screening. The static dielectric constant from

RPA is 7.33, smaller than the value of 8.9 measured in the

bulk55. In Fig. 5 the IP optical absorption spectrum [panel

(b)] shows a shoulder at 2.6 eV (from Γ) and a peak at about

5.1 eV (from M and K). The SHG [(a) panel] then has a weak

two-photon resonance peak around 1.3 eV, a strong peak at

2.55 eV (that corresponds to the interference of one-photon

and two-photon resonances with the transitions at about 2.4 eV

and at 5.0 eV) and a one-photon resonance with the transitions

at about 5.1 eV. At the GW+BSE level the optical absorption

spectrum [panel (d)] is again strongly modified. The onset for

the absorption is shifted towards higher energies due to the

quasiparticle corrections and the spectrum shows two exciton

strong peaks at 3.1 eV and 4.8 eV. The position and relative

intensity of the peaks are in fair agreement with the calcula-

tions of Ismail-Beigi.54 For the SHG spectrum [Fig. 5(c) and

Fig. 3(c)], excitonic effects enhance the intensity at the two-

photon resonances (1.55 eV and 2.1 eV), by a factor of about

2 and 1.5 respectively. In the static limit the intensity is as

well increased by a factor 2. To note that the onset of the

absorption spectrum is blue shifted by 0.5 eV with respect to

the IP spectrum as quasiparticle shifts are larger than the en-

ergy red-shift from the electron-hole interaction for the first

exciton. On the other hand in the SHG the strongest feature

corresponding to the two-photon resonance with the exciton

at 4.8 eV (at the GW+BSE level) is red-shifted with respect to

the strongest feature in the IP spectrum. As a consequence,

within the GW+BSE approach the strongest SHG is in the

trasparency region. Conversely at the IP level the strongest

SHG is in a region in which the system absorbs.

4 Conclusions

We have performed first-principles calculations of SHG of 2D

hexagonal crystals with broken inversion symmetry both at the

IP level and GW+BSE level of approximation. At the IP level,

the SHG intensity spectra reflect closely the electronic struc-

ture of the particular material showing two- and one-photon

resonances in correspondence of singular points of the joint

density of states. On the other hand, the comparison with the

more accurate GW+BSE approach shows clearly the impor-

tance of including correlation effects. In fact we observed an

enhancement up to 2 times of the SHG intensity at excitonic

resonances at the GW+BSE level. Furthermore the example

of GaN is emblematic: the IP approach predicts that the light-

absorption is significant at the frequencies for which the SHG

is the strongest; the GW+BSE approach instead predicts that

the most intense SHG is in the trasparency region of the mate-

rial.

Remarkably (also considering the subnanometric effective

thickness) for the studied 2D hexagonal crystals we obtain a

SHG intensity of the order of tenths of nm/V for SiC and 40-

80 pm/V for ZnO and GaN, smaller than what we predicted

for 2D MoS2
9 and to what has been observed experimen-

tally for MoS2
2 and WS2

6, but still large. For comparison

conventional nonlinear crystal used in frequency doubling of

Nd:YAG and Ti:Sapphire lasers are of the order of 10 pm/V.

Furthemore all the system under study are transparent below

1.5 eV (above 825 nm) and the SHG has peaks at 0.93-1.16

eV (1068-1333 nm) for ZnO—thus in the region of Nd:YAG

laser emission lines—1.55 eV (800 nm) for GaN and 1.36 eV-

1.60 eV (775-911 nm) for SiC—in the emission range of the

Ti:Sapphire laser.
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