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The calculation of Fock-exchange interaction is an important task in the computation of molecules and solids properties. In this
work we describe how we implement in the real-space formalism the Fock Exchange with the KLI approximation for the OEP
equation for 3D periodic systems. The implementation is demonstrated within the PARSEC real-space pseudopotential code that
uses a discrete uniform grid and norm conserving pseudopotentials for the ionic potentials.

1 Introduction

In recent years there is an increasing interest in approaches
that combine Density Functional Theory (DFT)1 and Fock-
exchange, to create methods with higher reliability in pre-
diction of the electronic structure of materials. Such meth-
ods with the general name of Hybrid Functionals, can be im-
plemented either within the Generalized Kohn-Sham method
(GKS)2 where the energy is minimized with respect to the or-
bitals, or strictly within pure DFT by requiring minimization
of the energy with respect to the electronic density. While both
methods have advantages and disadvantages, an advantage of
the latter is that it leads to a local potential that can be used
to solve the Kohn-Sham (KS) equations3 and also serve as an
efficient starting point for more advanced calculations such as
GW4–6. A disadvantage of this method is that the minimiza-
tion with respect to energy leads to a complicated integral-
differential equation, known as the Optimized Effective Poten-
tial (OEP)7,8. While there are methods to solve the OEP equa-
tion, its general solution is usually computationally intensive.
A useful approximation for the OEP solution was suggested
by Krieger, Li and Iafrate (KLI)9 in 1992. In this approxi-
mation one of the terms in the OEP equation is neglected and
so one can get immediately a local potential without having
to solve the full OEP equation. The KLI approximation for
orbital dependent functionals can also be used as a good start-
ing point for iterative methods to solve the OEP equation10.
The implementation of Fock Exchange, also called Exact Ex-
change, within the OEP scheme and KLI approximation has
been shown to be useful for the description of solids5,6,11–17

and is named in the literature xOEP, OEPx, EXX and EXX-
KLI. The solution of the KS differential equations requires a
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representation for the wave functions, this can be implemented
either through the use of basis functions such as planewaves,
gaussians, numerical basis sets or wavelets, or through the
real-space method18–23 that uses a discrete grid to represent
the wave functions. The real-space method can be used to
solve both isolated system and 1D24, 2D and 3D periodic sys-
tems21,25. In this work, we develop the KLI formalism on
a real-space grid with 3D periodic boundary conditions. We
first show how one can get immediately the expression for ex-
change on the Born-von Karman (BvK) super-cell and how
to move from the super-cell to using k-point symmetry on the
lattice unit cell. We then discuss the exchange singularity and
its manifestation in the real-space formalism. The implemen-
tation is done within the PARSEC real-space18–20code and the
results are compared to plane waves calculations.

2 Real-Space pseudopotential method in peri-
odic systems

The real space method is based on sampling the orbitals on
an equally spaced grid and on converting the KS differential
equations into high order finite difference equations. In this
section we discuss briefly the 3D periodic implementation de-
tails within the PARSEC code. We write first the spin polar-
ized KS equations as:

(
−∇2

2
+V̂KS(~r)

)
ϕ jσ (~r) = ε jσ ϕ jσ (~r)

ρσ (~r) =
Nσ

∑
j=1
|ϕ jσ (~r)|2

ρ(~r) = ρ↑(~r)+ρ↓(~r) (1)

where ρ(~r) is the electron density, V̂KS = V̂ps +VH +VXC
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and V̂ps(~r) = ∑
Natoms
a=1 V a

ps(~r) is the pseudopotential ionic poten-
tial18,19, VH is the Hartree scalar electrostatic interaction po-
tential and VXC is the scalar exchange correlation potential. We
use the fornberg26 formulation of high order finite difference
to write:

∂ 2ϕmσ (xi,y j,zk)

∂x2 =
n=N

∑
n=−N

Cn

h2 ϕmσ (xi +nh,y j,zk)+O(h2N) (2)

Doing so to all second derivatives, the Laplacian is replaced
by a finite difference discrete operator. The resulting finite
difference equation is solved as described in18,19. To solve
the equation in a finite domain we restrict the wave func-
tions ϕmσ to be zero outside the domain and solve the KS
equations over that domain. The same method can be used
for 3D periodic calculations by applying the Bloch condition,
ϕn~kσ

(~r) = ei~k·~run~kσ
(~r), where un~kσ

(~r+~R) = un~kσ
(~r) is a peri-

odic function on the lattice, and writing:

(
− (~∇+ i~k)2

2
+VH +Vxc + e−i~k·~rV̂ps(~r)ei~k·~r

)
un~kσ

(~r) = εn~kun~kσ
(~r)

ρσ (~r) = ∑
~k

Nσ (~k)

∑
j=1

f j~kσ
|u j~kσ

(~r)|2

ρ(~r) = ρ↑(~r)+ρ↓(~r) (3)

where f j~kσ
is the electron occupation of the orbital which

for insulators is either 1 or 0. The normalization is over the
BvK cell -

∫
Ω
|un~kσ

(~r)|2dr = Nk
∫

V |un~kσ
(~r)|2dr = 1, where Ω

is the BvK cell volume, V the unit cell volume, and Nk the
number of k-points∗. The electrostatic term is solved with pe-
riodic boundary conditions as described in25. It is also possi-
ble to make the system periodic in one24 or two25 dimensions
and not periodic in the other dimensions. An important de-
tail is the treatment of the non-local part of the ionic potential.
One typically uses the Kleinman-Bylander method27 to de-
scribe the non local part of the pseudopotential and so write
for the ionic potential of a given ion:

V̂ a
psϕnkσ (~r) =V a

loc(ra)ϕnkσ (~r)+∑
l,m

Ga
nkσ ,lmũlm(~ra)∆Vl(ra) (4)

Where~ra =~r−~Ra, ra = |~r−~Ra|, and ũlm(~ra) is the atomic
pseudo wave function corresponding to angular momentum lm
and the projection coefficients are given by:

∗We use this normalization throughout the text. Another common normaliza-
tion is to set

∫
V |un~kσ

(~r)|2dr = 1, with such normalization it is required to
divide by Nk the expression for ρ in Eq.3

Ga
nkσ ,lm =

1
< ∆V a

lm >

∫
ũlm(~ra)∆Vl(ra)ϕnkσ (~r)d

3r

=
1

< ∆V a
lm >

∫
ũlm(~ra)∆Vl(ra)ei~k·~runkσ (~r)d

3r (5)

with:

< ∆V a
lm >=

∫
ũlm(~ra)∆Vl(ra)ũlm(~ra)d3r (6)

The importance of the Kleinman-Bylander form comes
from the fact that outside the pseudopotential core cutoff ra-
dius, rc, we have ∆Vl(ra) = 0, and V a

loc(|~ra|) = −Zps/ra. The
integrals 5 and 6 are performed on the sphere defined by
ra < rc. To get Eq. 3 for the bloch wave functions we multi-
plied on the left the KS equations for ϕnkσ by e−i~k·~r, while the
expontential terms cancel out for the scalar parts of the poten-
tial, they are left for the nonlocal part and we get from Eq. 4
the following expression:

e−i~k·~rV̂ a
ionϕnkσ (~r) = e−i~k·~rV̂ a

ionei~k·~runkσ (~r)

=V a
loc(ra)unkσ (~r)+

e−i~k·~r
∑
l,m

Ga
nkσ ,lmũlm(~ra)∆Vl(ra) (7)

In periodic systems the crystal structure can force the grid
to be non-orthogonal and so there could be mixed derivatives
in the laplacian. In our implementation25 we use auxiliary
directions to have a lapalacian expression with only pure 2nd

derivatives and so we can use directly Eq. 2 for the finite dif-
ference expression.

The group of Stephan Kümmel, in collaboration with Leeor
Kronik, has added to the PARSEC code support for orbital de-
pendent functionals with the KLI and OEP S-iteration meth-
ods10,28,29 for isolated systems. The Kümmel’s group has
also extended this to additional functionals such as general-
ized SIC-KLI and SIC-OEP30 and to real-time propagation
time dependent DFT (RT-TDDFT)31,32. This code, for the
isolated systems, is used as a starting point for our periodic
KLI implementation.

3 KLI implementation in periodic systems

3.1 Exact exchange energy in periodic systems

We examine first the expression for the exchange energy for
isolated systems. This can be given by the general expression:
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EX [ρ] =

− 1
2 ∑

σ

Nocc

∑
j,m=1

∫
V

d3~r1

∫
V

d3~r2
ϕ∗jσ (~r1)ϕ

∗
mσ (~r2)ϕmσ (~r1)ϕ jσ (~r2)

|~r1−~r2|

=−1
2 ∑

σ

Nocc

∑
j,m=1

∫
V

d3~r1ϕ
∗
jσ (~r1)ϕmσ (~r1)Vm j(~r1) (8)

Where V is the finite domain volume and we have defined
Vm j by:

Vm jσ (~r1)≡
∫

V
d3~r2

ϕ∗mσ (~r2)ϕ jσ (~r2)

|~r1−~r2|
(9)

A good insight as to what happens to Eq. 8 when moving
to periodic boundary condition can be gained by looking at
the full crystal cell that is defined by the Born-von Karman
(BvK) condition: ϕn(~r+∑i Ni~ai) = ϕn(~r). In the BvK cell We
calculate exactly the same expression for the exchange energy
as in Eq. 8, only now the intergarls are evaluated over the
BvK cell and the electrostatic interaction is evaluated over all
space:

EX [ρ] =

− 1
2 ∑

σ

Nocc

∑
j,m=1

∫
Ω

d3~r1

∫
R3

d3~r2
ϕ∗jσ (~r1)ϕ

∗
mσ (~r2)ϕmσ (~r1)ϕ jσ (~r2)

|~r1−~r2|

=−1
2 ∑

σ

Nocc

∑
j,m=1

∫
Ω

d3~r1ϕ
∗
jσ (~r1)ϕmσ (~r1)Vm jσ (~r1) (10)

One immediate problem that arises is that the electrostatic
exchange integral diverges. A naı̈ve way of fixing the diver-
gence is to remove the average of ϕ∗mσ ϕ jσ over the BvK cell.
This is in fact equivalent to removing the divergent DC (G= 0)
term in plane waves formalisms33–35. As discussed in33,34 the
removal of the G = 0 term introduces a large error in the ex-
change energy, an error that converges very slowly to zero with
the number of k-points. The error is a constant shift of the en-
ergy and so does not affect the details of electronic structure
but as it depends on the crystal shape, its correction is critical
for finding the correct structure. As pointed out by Spencer
and Alavi36 this divergence or singularity term is a result of
calculating exchange energy between identical copies of elec-
trons in different BvK cells. This error can be remedied by
adding a correction term with an auxiliary function33–35 or by
imposing a screened exchange where the screening length is
of the size of the BvK cell36. It is worth noting that if one has
a code that does EXX-KLI calculation for isolated systems, it
is possible to do the exchange calculation over the BvK cell by
simply putting periodic boundary conditions and removing the
averages of ϕ∗mσ ϕ jσ before solving the periodic Poisson equa-
tion. It is much more efficient to use Bloch k-point symmetry,

and solve the system on the smaller lattice unit cell, but such
a BvK super-cell calculation can be a very good reference for
a k-point implementation.

3.2 k-space representation

Using Bloch theorem, we write ϕn,~k,σ (~r)= ei~k·~run,~k,σ (~r) where
un,~k,σ (~r+~ai) = un,~k,σ (~r) is a periodic function over the lattice
unit cell. It is relatively easy to show that if one uses an equally
spaced grid such as Monkhorst Pack37, the Bloch orbitals, de-
fined with such a k-point grid of Size NK = NKx ×NKy ×NKz ,
are also a solution for the BvK cell (Γ point) with same di-
mensions. We can therefore re-write Eq. 10 with the Bloch
orbitals:

EX [ρ] =

=−1
2 ∑

σ

∑
~k,~q

Nocc

∑
j,m=1

∫
Ω

d3~r1ϕ
∗
j~kσ

(~r1)ϕm~qσ (~r1)Vm~q j~kσ
(~r1) (11)

Where:

Vm~q j~kσ
(~r1) =

∫
R3

d3~r2
ϕ∗m~qσ

(~r2)ϕ j~kσ
(~r2)

|~r1−~r2|

=
∫

R3
d3~r2

ei(~k−~q)·~r2u∗m~qσ
(~r2)u j~kσ

(~r2)

|~r1−~r2|
(12)

The potential, Vm~q j~kσ
(~r1), can be found by solving

the periodic Poisson equation, we define ρm~q j~kσ
(~r) ≡

ϕ∗m~qσ
(~r2)ϕ j~kσ

(~r), next we remove the average of ρm~q j~kσ
(~r)

over the BvK cell (we use Ω = NKV for its volume):

ρ̄m~q j~kσ
≡ 1

Ω

∫
Ω

d~r ρm~q j~kσ
(~r)

=
1
Ω

∫
Ω

d~r ei(~k−~q)·~ru∗m~qσ
(~r)u j~kσ

(~r)

=
δ~k,~qδm, j

V

∫
V

d~r u∗m~qσ
(~r)u j~kσ

(~r) (13)

Since ρm~q j~k(~r)− ρ̄m~q j~k is periodic over the BvK cell and
has zero average by construction, we can solve the Poisson
equation over the BvK cell:

∇
2Vm~q j~kσ

(~r) =−4π

(
ρm~q j~kσ

(~r)− ρ̄m~q j~kσ

)
(14)

To solve on the smaller unit cell we define Ṽm~q j~kσ
(~r) =

ei(~q−~k)·~rVm~q j~kσ
(~r) and ρ̃m~q j~kσ

(~r) = ei(~q−~k)·~rρm~q j~kσ
(~r), since

both Ṽ and ρ̃ are periodic over the unit cell, we can reshape
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Eq. 14 to the following equation, that is solved in the smaller
lattice unit cell with periodic boundary conditions:

(
~∇+ i(~k−~q)

)2
Ṽm~q j~kσ

(~r) =−4π

(
ρ̃m~q j~kσ

(~r)− ρ̄m~q j~kσ

)
(15)

We use the conjugate gradient method to iteratively solve
Eq. 15.

3.3 KLI implementation

We follow the method and symbols of reference8 to define the
OEP and KLI potential, the only difference is that at some
point we add the~k index and use the periodic boundary condi-
tions.

The OEP approach minimizes the energy of orbital depen-
dent functionals38, such as the EXX, with respect to the spin
density:

V OEP
xcσ ≡

δE[{ϕmσ}]
δρσ

(16)

While it is easy to write Eq. 16, it is not easy to solve it
as the orbitals depend only implicitly on the density. After
applying the chain rule and several mathematical derivations8

it is possible to arrive for an integral-differential equation for
V OEP

Xσ
. After neglecting some of the terms, it is possible to

write the KLI approximation for the potential. We now follow
Grabo et al.8 but add the~k index and write:

V KLI
Xσ (~r) =

1
ρσ (~r)

∑
~k

Nσ

∑
i=1
|ϕi~kσ

(~r)|2×

(
UXi~kσ

(~r)+
(

V̄ KLI
Xi~kσ
−ŪXi~kσ

))
+C.C. (17)

Where we have assumed that the system is insulating so
there are no partial occupations. And we have defined:

UXi~kσ
(~r) =

1
ϕ∗

i~kσ
(~r)

δEX [{ϕ j~q}]
δϕi~kσ

=− 1
ϕ∗

i~kσ
(~r) ∑

j~q
f j~qϕ

∗
j~qσ

(~r)Vi~k j~qσ
(~r) (18)

ŪXi~kσ
=
∫

Ω

d~rϕ
∗
i~kσ

(~r)UXi~kσ
(~r)ϕi~kσ

(~r)

= Nk

∫
V

d~rϕ
∗
i~kσ

(~r)UXi~kσ
(~r)ϕi~kσ

(~r) (19)

Where f j~q are the occupation that in the insulator state can
be 0 or 1. Also, we have used the fact that UXi~kσ

(~r) can be
shown to be periodic over the lattice unit cell. We also define:

V̄ KLI
Xi~kσ

= V̄ S
Xi~kσ

+∑
~q

Nσ−1

∑
j=1

Mi~k j~qσ

(
V̄ KLI

X j~qσ
− 1

2

(
ŪX j~qσ +Ū∗X j~qσ

))
(20)

Where in the last summation we omit the highest occupied
orbital. In addition we define:

V̄ S
Xi~kσ

=∫
Ω

d~r
|ϕi~kσ

(~r)|2

ρσ (~r)
∑
~q

Nσ

∑
j=1
|ϕ j~qσ (~r)|2

1
2

(
UX j~qσ (~r)+U∗X j~qσ

(~r)
)

(21)

And:

Mi~k j~qσ
=
∫

Ω

d~r
|ϕi~kσ

(~r)|2|ϕ j~qσ (~r)|2

ρσ (~r)
(22)

The integrand in Eq. 21 and 22 is periodic and so the inte-
gration can be carried out on the lattice unit cell instead of the
BvK cell by

∫
Ω
→ Nk

∫
V .

We are now equipped to solve the KLI potential in real-
space. The solution of Eq. 15 is done via the conjugate gra-
dient method and the calculation of all integrals is done by a
real-space summation over the grid. The solution of Eq. 20 is
done by matrix inversion.

4 Results

To check our implementation we have compared our results
to the plane-waves calculations shown in Carrier et al.34. We
first checked the behavior of Exchange energy per unit cell,
Ex/Nk, as a function of the k-points grid for the system of
carbon diamond with lattice constant of 3.55Å, we have used
EXX self consistent norm conserving pseudopotentials39 and
grid spacing of 0.3a.u. The results of those calculations and
comparison to plane-waves results are shown in Fig. 1. The
slow convergence of the not corrected exchange energy with
the number of k-points is evident. In addition to the compari-
son to plane-waves we have performed also a self consistency
check where we checked our k-point implementation of ex-
change in Eq. 11 against the calculation at Γ point for the
appropriate BvK cell as in Eq. 10, this comparison showed an
error of less than 1meV .

The next system that we have examined is the trans poly-
acetylene, described by Carrier et al.34. Fig. 2 shows this
system with and without their singularity correction. It is ev-
ident that the singularity correction leads to a stable result for
the exchange energy. of this system.

To further demonstrate our approach we have calculated
the band structure of silicon with the implemented EXX-KLI
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Fig. 1 EXX energy for carbon diamond structure as a function of
k-grid density, comparison is done to plane waves data of Carrier et
al. 34, blue asterisks are PARSEC EXX-KLI calculations, red
squares are plane waves results. The quantity shown is the Exchange
energy per unit cell - EX/Nk

Fig. 2 Polyacetylene EXX-KLI Exchange energy per unit cell,
Ex/Nk, at different k-point grids. Red circles are plane waves
calculations by Carrier et al.34, blue diamond are the PARSEC
EXX-KLI results, squares are the singularity corrected PARSEC
results.

method. Here we have used LDA norm conserving pseu-
dopotentials40 with s/p Cutoff radii of 2.5/2.5. The results
are shown in Fig. 3. The band gap from this calculation is
∼ 0.9eV .

Fig. 3 Silicon band structure with EXX-KLI implementation. Red
dashed line shows LDA results, solid blue line shows EXX-KLI
results.

5 Summary and outlook

We have shown a real-space implementation of the EXX-KLI
approach for periodic systems. We have compared our results
to plane-wave calculations and showed that we get similar re-
sults for several cases. An important advantage of the im-
plementation is that the memory requirements are linear with
the number of k-points or electrons in the system - this is ex-
plained further in appendix A. The current implementation is
for 3D periodic systems. The real-space formalism allows also
calculations of 1D and 2D systems with partial periodicity.
The implementation of 1D and 2D would require some mod-
ifications in the EXX equations but can follow the approach
that was used for the Hartree term in25. This can be very
interesting for slabs and surfaces as was demonstrated by a
recent implementation of EXX for slabs in plane waves for-
malism41. While we have not implemented the OEP iterative
scheme10, we have included in Appendix B a description of
the formalism with k-symmetry. The concept of using first
the BvK super-cell can be useful also for the implementation
of non-local Hartree-Fock and in fact any orbital dependent
functional (e.g. SIC functionals) in periodic systems.
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6 Appendix A - Symmetry and memory consid-
erations

The calculation time of exchange depends quadratically on
the number of electrons in the system. with Nbands occupied
bands and Nk k-points we would get O(N2

bandsN
2
K) calcula-

tions. Naively, the memory requirements are also quadratic
but we can note that it is enough to keep in memory the
UX j~k(~r) functions and so the memory requirements become
reasonable. In addition it is possible to use some of the
symmetry properties of Vm~q j~kσ

(~r1) to reduce calculation time.
First - we note that from the definition of the potential we get:

Vm~q j~kσ
(~r) =V ∗

j~km~qσ
(~r) (23)

In addition, it is possible to show, that if inversion symmetry
exists, we would get:

Uxi−kσ (~r) =U∗xikσ (~r) (24)

Combining the two properties, the amount of calculations
is reduced by a factor of 4. It is possible to use a more gen-
eral symmetry and reduce the summation to the irreducible
brilouin zone but we did not implement that.

7 Appendix B - Equations for full OEP in the
periodic case

Finally, although we did not implement the full OEP, it is pos-
sible to write also the equation for the full OEP case in the
S-iteration10 method. For completeness we give below the
formulation for the periodic case. Following equation 5 in10

we write the equation for the non-periodic case:

(ĥKSσ − εiσ )ψ
∗
iσ

=−[Vxcσ −Uxciσ − (V̄xciσ −Ūxciσ )]ϕ
∗
iσ (25)

Where ψ∗iσ is the orbital shift8,10, and we define:

V̄xciσ ≡
∫

ϕ
∗
iσ (~r)Vxciσ (~r)ϕ∗iσ (~r)d

3r (26)

and Ūxciσ is defined as before. It is known8,10 that when
V OEP

xcσ is the correct OEP potential the following equation
should be fulfilled:

Sσ (~r)≡
Nσ

∑
i=1

ψ
∗
iσ (~r)ϕiσ (~r)+C.C.= 0 (27)

The S-iteration approach, suggested by Kümmel and
Perdew10 to solve the OEP equation, is using this property to
build an iterative scheme for convergence to the correct OEP
V OEP

xcσ . In this approach one starts from a guess, typically the
KLI solution, for V OEP

xcσ , and iteratively update the potential
according to:

V new
xcσ (~r) =V old

xcσ (~r)+ c ·Sσ (~r) (28)

This procedure is repeated till self consistency is achieved
and so Sσ becomes zero. This approach has been used for both
Fock Exchange and also other orbital dependent functionals
such as generalized SIC-OEP30. Folowing the arguments of
the BvK cell in the main text - we can easily expand the ap-
proach described in equations 25-28 to the periodic case. Fol-
lowing10 we can define the orbital shift in the periodic case by
the perturbation expression:

ψ
∗
ikσ (~r) =−

∞

∑
jq, jq6=ik

∫
Ω

ϕ∗ikσ
(~r1)[Vxcσ (~r1)−Uxcikσ (~r1)]ϕ jqσ (~r1)

εikσ − ε jqσ

×ϕ jqσ (~r) (29)

It is easy to show that the integral in 29 is non-zero only
for ~q =~k and so the orbital shift ψ∗ikσ

(~r) retains the k space
symmetry of the orbital ϕ∗ikσ

. With this we can now write the
periodic analog of equation 25:

(ĥKSσ − εikσ )ψ
∗
ikσ =

− [Vxcσ −Uxcikσ − (V̄xcikσ −Ūxcikσ )]ϕ
∗
ikσ (30)

It is easier to solve Eq. 30 than to calculate according to
Eq. 29 because in Eq. 30 we do not need to calculate empty
states. Like the usual Bloch representation we can write
ψ∗ikσ

= e−i~k·~rψ̃∗ikσ
where ψ̃∗ikσ

is periodic over the unit cell.
We can then write after taking the complex conjugate:

(
− (~∇+ i~k)2

2
+ e−i~k·~rV̂ps,ionei~k·~r +VH +Vxc− εi~kσ

)
ψi~kσ

=−[Vxcσ (~r)−Uxci~kσ
(~r)∗− (V̄xci~kσ

−Ū∗
xci~kσ

)]ui~kσ
(31)

Where ui~kσ
(~r) is simply the lattice periodic Bloch wave

function defined earlier by: ϕi~kσ
(~r) = ei~k·~rui~kσ

(~r). we write,
in a similar fashion to equation 27, the expression for Sσ :
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Sσ (~r)≡∑
i,~k

ψ
∗
i~kσ

(~r)ϕi~kσ
(~r)+C.C.

= ∑
i,~k

ψ̃
∗
i~kσ

(~r)ui~kσ
(~r)+C.C. (32)

With this expression for Sσ (~r) we now repeat the iterative
approach outlined in Eq. 28 till self consistency is achieved.
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31 M. Mundt and S. Kümmel, Physical Review B, 2007, 76, 035413.
32 M. Mundt, Journal of Theoretical and Computational Chemistry, 2009,

08, 561–574.
33 F. Gygi and A. Baldereschi, Physical Review B, 1986, 34, 4405–4408.
34 P. Carrier, S. Rohra and A. Görling, Physical Review B, 2007, 75, 205126.
35 B. Wenzien, G. Cappellini and F. Bechstedt, Physical Review B, 1995, 51,

14701–14704.
36 J. Spencer and A. Alavi, Physical Review B, 2008, 77, 193110.
37 H. J. Monkhorst and J. D. Pack, Physical Review B, 1976, 13, 5188–5192.
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