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Abstract

The primary motivation for systematic bases in first principles electronic structure simulations is
to derive physical and chemical properties of molecules and solids with predetermined accuracy.
This requires a detailed understanding of the asymptotic behaviour of many-particle Coulomb
systems near coalescence points of particles. Singular analysis provides a convenient framework to
study the asymptotic behaviour of wavefunctions near these singularities. In the present work, we
want to introduce the mathematical framework of singular analysis and discuss a novel asymptotic
parametrix construction for Hamiltonians of many-particle Coulomb systems. This corresponds
to the construction of an approximate inverse of a Hamiltonian operator with remainder given
by a so-called Green operator. The Green operator encodes essential asymptotic information and
we present as our main result an explicit asymptotic formula for this operator.

First applications to many-particle models in quantum chemistry are presented in order to
demonstrate the feasibility of our approach. The focus is on the asymptotic behaviour of ladder
diagrams, which provide the dominant contribution to short-range correlation in coupled cluster
theory. Furthermore, we discuss possible consequences of our asymptotic analysis with respect
to adaptive wavelet approximation.

1 Introduction

Schrödinger’s equation for many-particle systems interacting via Coulomb potentials provides a
common starting point for computational models within the realm of ab initio electronic structure
theory. Recently, this field attracted considerable interest from applied mathematics, in particular
numerical analysis. Let us just mention in this field, the work of Yserentant and coworkers on the
mixed Sobolev regularity of Schrödinger’s equation [1, 2, 3, 4, 5] and related work by others [6, 7, 8].
Despite their tremendous significance for numerical simulations, ab initio post Hartree-Fock models,
like coupled cluster (CC) theory, cf. [9, 10] and references therein. are rarely considered in the
mathematical literature. Only recently, a first rigorous mathematical analysis of CC models has
been undertaken by Schneider and Rohwedder [11, 12, 13].

It is obvious from the point of view of numerical analysis, that apparent singularities of Coulomb
potentials at coalescence points of particles limit any appropriate notion of regularity and represent
a major bottleneck for ab initio computer simulations. Therefore it is of great interest to get a de-
tailed picture of the asymptotic behaviour of solutions to Schrödinger’s equation and related ab initio
models, near coalescence points of particles. Following the pioneering work by Kato [14], M. and T.
Hoffmann-Ostenhof and coworkers provided a fairly deep mathematical analysis for Schrödinger’s
equation [15, 16, 17, 18, 19]. To the best of our knowledge, however, no rigorous attempt has been
devoted to study the asymptotic behaviour of approximate ab initio models, like coupled (indepen-
dent) electron pair approximations (C(I)EPA) or truncated models like coupled cluster singles and
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doubles (CCSD) in CC theory. It is the purpose of our work to develop mathematical techniques
which enable a rather detailed insight into the asymptotic behaviour of these models and to derive
actual consequences for computer simulations. For this, we first explored possible connections of our
problem with the abstract mathematical framework of singular analysis, a branch of mathematics
which studies the properties of functions, operators etc. in the presence of singularities. A particular
pseudo-differential operator calculus, cf. the monographs [20, 21, 22], drew our attention because
it provides the desired asymptotic information and reflects the hierarchical structure of our singu-
larities in a natural manner. In the following we want to present a highly informal discussion of
some basic concepts and essential features of this calculus, avoiding intricate notation, sophisticated
mathematical arguments as well as lengthy calculations. Instead we discuss some first concrete
applications which demonstrate the capabilities of our approach. There are other approaches in
singular analysis which have been applied to electronic structure theory as well, here we have to
mention e.g. the work of Mazzeo, Nistor and collaborators [23, 24, 25].

2 First encounter with singular analysis

The mathematical notion of a singularity of a function refers to a point where the function is not
defined or in a particular sense not well-behaved. Its meaning is therefore more general as in physics
where it usually refers to points where the function becomes infinite. Vice versa one can specify
singularities of a geometrical object by means of appropriate characteristic functions. Examples are
metric or curvature tensors defined on a manifold, which might become degenerate or divergent at
singularities. Another example is the dimensionality of tangent space considered as a function on
an algebraic variety. Singularities may appear as isolated points or accumulate to lower dimensional
subspaces, imposing a characteristic geometrical structure on the space which contains the domain
of the function. Beyond that, singular analysis deals with function spaces defined on geometrical
objects, like manifolds, with singularities and operators acting on them. Here again, the singular
structure is represented by special weights in the definition of function spaces or by operators which
become degenerate in the neighbourhood of a singularity.

In order to illustrate these concepts let us consider the wavefunction of a single electron defined
on its configuration space R3. In Cartesian coordinates, the quadratic differential form of the metric
tensor

ds2 = dx2 + dy2 + dz2 (2.1)

is everywhere non degenerate. Instead taking spherical coordinates, the quadratic differential form
of the metric tensor

ds2 = dr2 + r2
[

d2θ + sin2θdφ2
]

(2.2)

becomes degenerate along the z-axes and in particular at the origin. Obviously it is an artifact of this
particular coordinate system without any physical relevance. However, if we consider the electron
in a singular Coulomb potential of a point charge centered at the origin, i.e., a hydrogen atom, the
degeneracy of the metric tensor perfectly reflects the singular behaviour of the wavefunction, which
is smooth except at the origin.

This approach can be generalized to many-electron systems, interacting with each other and
fixed nuclei via singular Coulomb potentials. It is well known, that many-electron wavefunctions
are smooth except at coalescence points of electrons [14] or where electrons approach a nucleus.
The basic idea is to find an appropriate coordinate system whose metric tensor reflects the singular
structure of configuration space. The number of electrons which join at a coalescence point imposes
a natural hierarchy on these singularities. Two electrons approaching each other or an electron
approaching a nucleus will be considered as an edge singularity in configuration space as long as the
pair stays away from the other particles. A corner singularity in the configuration space appears
if such a colliding pair approaches another electron or nucleus. Along these lines it is possible to
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Figure 1: Schematic illustration of the embedding scheme for a system consisting of two electrons
and a nucleus. Once folding a sheet of paper represents the coalescence points of two electrons.
Two more wrinkles correspond to coalescence points of electrons and the nucleus. All three wrinkles
merge in a single point where both electrons are located at the nucleus.

define a sequence of higher order singularities which pervade configuration space. We refer to this
construction as an embedding scheme for coalescence points of particles into configuration space.
By simply folding a sheet of paper, we give in Fig. 1 an illustration of this embedding scheme for a
system consisting of two electrons and a nucleus. This simple picture exemplifies our notion of edge
and corner singularities in configuration space.

2.1 Stratified spaces and degenerate operators

In mathematics such an embedding scheme corresponds to a stratified space [26, 27] where strata are
classified according to the number of merging particles. To be more precise, let us consider a Coulomb
system consisting of N electrons and several nuclei in the Born-Oppenheimer approximation where
nuclei are kept fixed and the configuration space restricts to electronic degrees of freedom. First of
all, the physical configuration space M of N electrons1 can be identified with R

3N . Let us define
the subset M0 ⊂ M of all possible coalescence points of particles including any number of electrons
and nuclei. With it, M\M0 can be considered as an open smooth manifold2 or more general as the
inner part of an open smooth manifold with boundary. Next let us consider the subset M1 ⊂ M0

of all coalescence points of more than two particles. The stratum M0 \ M1 is an open smooth
manifold representing edges of M. Correspondingly, we denote M\M1 as a singular manifold with
edges. Higher order strata can be constructed along the same lines, e.g., let the subset M2 ⊂ M1

denote the set of coalescence points of more than three particles. Again the stratum M1 \M2 is an
open smooth manifold representing the lowest order type of corners in M. Therefore M\M2 is a
singular manifold with edges and corners. In this way the configuration space can be decomposed
into its strata, i.e.,

M = M\M0 ∪M0 \M1 ∪M1 \M2 · · · . (2.3)

In Fig. 2, we illustrate this stratification process by cutting the three times folded sheet of paper
from Fig. 1 into its strata and do a reconstruction by adding successively singularities of increasing
order.

In order to do any meaningful analysis on stratified spaces it is necessary to demand existence of a
control function for each stratum. This function is defined in an appropriate tubular neighbourhood
of the stratum and provides on the neigbouring strata of higher codimension a measure of the
distance to the stratum. A control function g of a stratum S has to be positive semidefinite, with
nonvanishing gradient and S = {x ∈ M : g(x) = 0}, cf. Ref. [27]. In our simple example, depicted
in Fig. 3, control functions r and t are associated with edge and corner strata, respectively.

1We do not consider spin degrees of freedom or equivalent permutational symmetries of the electron coordinates in

our discussion.
2The manifold M \ M0 actually corresponds to the mathematical notion of a configuration space of N ordered

particles in R
3.
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Figure 2: Stratification of the singular configuration space of two electrons and a nucleus depicted
in Fig. 1. Removing all coalescence points of particles yields the open smooth manifold M \ M0

and various strata. Reconstruction of the singular manifold by first adding the edge strata gives
M\M1 and finally M after adding the corner singularity M1.

r
cone edge corner

a) b) c)

x
x

r
x tr

Figure 3: Control functions associated to the strata of singular configuration spaces of one and two
electrons and a nucleus. (a) One electron case: r controls the distance to the conical singularity.
(b,c) Two electron case: r and t control the distance to edge and corner strata.

The next step is to define appropriate differential operators on a singular manifold M. These
differential operators are defined on M0 and possess certain characteristic type of degenerate be-
haviour near lower dimensional strata. In order to make this degenerate behaviour more precise, let
us consider some generic model spaces which locally represent the nonsingular part of configuration
space M0 in a neighbourhood of a stratum.

The simplest case is a conical singularity, where the stratum corresponds to a single point. This
happens, e.g., at the location of a nucleus in the configuration space of a single electron. Near a
conical singularity, M0 can be represented by an open stretched cone: X∧ := R+×X with base X.
In our specific example, X is given by the two sphere S2. On the stretched cone X∧ let us define a
class of degenerate m’th order differential operators Diffm

deg(X
∧) which are of the form

A = r−m
∑

j≤m

ajα(r)(−r∂r)
j. (2.4)

Here coefficients ajα(r) represent m−j’th order differential operators on the base X and are smooth

up to r = 0. In the following, this class of differential operators is denoted by Diffm−j(X). A simple
example where these conditions are obviously satisfied is the shifted Hamiltonian of the hydrogen
atom in spherical polar coordinates

H − E = − 1

r2

[

1

2

(

−r
∂

∂r

)2

− 1

2

(

−r
∂

∂r

)

+
1

2
∆S2 + rZ + r2E

]

, (2.5)

which belongs to the operator class Diff2
deg(X

∧). The next higher singularities, we have to deal
with are of edge type and correspond to coalescence points of two particles. Locally M0 can be
represented by an open stretched edge (wedge): W := X∧ × Y , Y is an open subset of Rn where
n depends on the dimension of the edge. On a wedge let us define a class of edge degenerate m’th
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order differential operators Diffm
deg(W) which are of the form

A = r−m
∑

j+|α|≤m

ajα(r, y)(−r∂r)
j(rDy)

α (2.6)

with coefficients ajα(r, y) ∈ Diffm−j−|α|(X) smooth in r, y up to r = 0.
Finally, we consider corner type singularities which correspond to coalescence points of three

particles. Near such a corner, M0 can be locally represented by an open stretched corner M = R+×
X∧ × Y . The class of corner degenerate m’th order differential operators requires two independent
distance parameters r and t. Like before r controls the distance to the nearest edge stratum and
t controls the distance to the corner stratum itself. The class Diffm

deg(M) consists of all m’th order
differential operators of the form

A = t−mr−m
∑

k+j+|α|≤m

akjα(t, r, y)(−r∂r)
j(rDy)

α(−rt∂t)
k (2.7)

with coefficients akjα(t, r, y) ∈ Diffm−j−|α|(X) smooth up to r, t = 0.

2.2 The Hamiltonian as an edge/corner degenerate operator

In the previous section, a general ansatz for degenerate differential operators on conical, edge and
corner spaces has been given. It is the purpose of this section to show that the Hamiltonian of
a many-particle Coulomb system, represented in appropriate coordinates, actually fits into this
scheme. Our focus will be on two-electron Hamiltonians, it is however possible to extend the
following considerations to any number of electrons. First of all, we want to discuss the helium atom,
a paradigm for electron-pair correlation, but also effective Hamiltonians, derived from coupled or
independent electron-pair models, are considered. The Hamiltonian of the helium atom, here given
in Cartesian coordinates,

H = −1

2

(

∆1 +∆2

)

− 2

|x1|
− 2

|x2|
+

1

|x1 − x2|
, (2.8)

has been the subject of numerous analytical studies [28, 29, 30, 31] and represents one of the favourite
benchmark problems for numerical methods aiming for very high accuracies [32].

Various coordinate systems have been discussed in the literature in order to represent the singular
structure of the helium wavefunction, among them are Fock’s hyperspherical coordinates [33, 34, 35,
36] and Hylleraas coordinates [37, 38, 39, 40] which have been widely used for numerical simulations
of two-electron systems. Although these coordinate systems contain appropriate coordinates to
control the distance to singular strata, the corresponding Hamiltonians, however, fail to satisfy the
crucial requirement having coefficients which are smooth up to the stratum. Nevertheless, at least
one particular coordinate system exists, see e.g. [41, 42], which satisfies all of our requirements. It
represents a special kind of hyperspherical coordinates where R

6 corresponds to a conical manifold
(R+×S5)/({0}×S5) with embedded edge singularities Y1, Y2, Y3 on the hypersphere S5, see Fig. 4.
Explicitly, the edges Y1, Y2 represent coalescence points of an electron and the nucleus, whereas Y3,
corresponds to coalescence points of the two electrons. The embedded two dimensional edges Yi,
i = 1, 2, 3, themselves are homeomorphic to the two sphere S2. A detailed mathematical discussion
of this coordinate system and its generalization to N electrons is presented in Ref. [43]. Because of its
significance and in order to make the paper reasonably self contained, we present some particularly
relevant features of these coordinates in some detail below, cf. also our related discussion in Ref. [44].

Explicit relations to Cartesian coordinates in R
6 are given by

x1 = t sin r sin θ1 cosφ1, x2 = t sin r sin θ1 sinφ1, x3 = t sin r cos θ1, (2.9)

x4 = t cos r sin θ2 cosφ2, x5 = t cos r sin θ2 sinφ2, x6 = t cos r cos θ2,
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Figure 4: Schematic representation of hypershperical coordinates for the helium atom. On the five
sphere S5, embedded two dimensional edges are symbolized by Feynman diagrams.

with hyperspherical radius

t :=
√

x21 + x22 + x23 + x24 + x25 + x26, (2.10)

which controls the distance to the corner singularity and radial variable 0 < r ≤ π/2, where radial
“distances” r = 0, r = π/4, r = π/2 correspond to e1 − n, e1 − e2, e2 − n edge singularities,
respectively. The remaining variables (θ1, φ1) and (θ2, φ2) are spherical variables on X and Yi,
respectively. Instead of a single global coordinate system, it is more convenient to take an atlas of
three local coordinate systems, each assigned to a particular edge, such that the radial variable r
vanishes for this edge. In the case of the e− e edge it is therefore convenient to define hypersherical
coordinates with respect to center of mass coordinates

zi =
1√
2
(xi − xi+3), zi+3 =

1√
2
(xi + xi+3) for i = 1, 2, 3. (2.11)

In order to comprehend the singular structure imposed by these coordinates, it is helpful to
consider the corresponding quadratic differential form of the metric tensor

ds2 = dt2 + t2
[

dr2 + sin2 r
(

dθ21 + sin2 θ1dφ
2
1

)

+ cos2 r1
(

dθ22 + sin2 θ2dφ
2
2

)]

(2.12)

It can be seen that the metric is degenerate with respect to both distance variables r and t. The
part in square brackets represents the metric on the five sphere S5 and becomes degenerate at the
corner singularity. On S5, the metric becomes degenerate at the edge to which the coordinates refer.

With respect these coordinates, the Hamiltonian of the helium atom becomes edge degenerate

H = r−2

(

∑

j+|α|≤2

ajα(r, y)(−r
∂

∂r
)j(rDy)

α +
r

t
ve−e(n)

)

, (2.13)

with coefficients ajα ∈ C∞(

R+ × Yi,Diff2−j−|α|(X)
)

and eventually corner degenerate

H = t−2r−2

(

∑

j+k+|α|≤2

aj,k,α(t, r, y)(−rt
∂

∂t
)j(−r

∂

∂r
)k(rDy)

α + rtve−e(n)

)

(2.14)
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with coefficients aj,k,α ∈ C∞(

R+×R+×Yi,Diff2−j−k−|α|(X)
)

. The potential functions ve−e(n) belong

to C∞(

R+ × S2
1 × S2

2

)

with explicit expressions in the corresponding coordinates given by

ve−n(r, θ1, φ1, θ2, φ2) := − Zr

sin r
− Zr

cos r
+

r
√

1− sin(2r)a(θ1, φ1, θ2, φ2)
(2.15)

and

ve−e(r, θ1, φ1, θ2, φ2) := −
√
2Zr

√

1 + sin(2r)a(θ1, φ1, θ2, φ2)
−

√
2Zr

√

1− sin(2r)a(θ1, φ1, θ2, φ2)

+
r√

2 sin r
, (2.16)

respectively. Here, the angular dependence is represented by the function

a(θ1, φ1, θ2, φ2) := cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ1 − φ2). (2.17)

2.3 Algebra of pseudo-differential operators on stratified spaces

In the previous sections we have shown that the configuration space and Hamiltonian of an interact-
ing Coulomb system matches the requirements imposed by an abstract theory of singular analysis.
Once this has been established, the whole machinery of this sophisticated theory is at our disposal
cf. Refs. [20, 21, 22]. It is the purpose of this section to give a rather informal account of the most
significant gains.

In the following, we restrict our discussion to Hamiltonian operators for electron-pairs, interacting
via a Coulomb potential, with external potentials which are either of Coulomb type or represent
effective local potentials due to the presence of other electrons not explicitly taken into account. In
particular it will be assumed that the exchange part is local, e.g., given in terms of an optimized
effective potential. Concerning these effective potentials, we will always assume that the required
regularity properties are satisfied. A rigorous proof for Hartree potentials has been given in Ref. [45].

The general approach to extract asymptotic information is based on the concept of a parametrix
of the shifted Hamiltonian operator A(λ) := H−λ where λ ∈ R might be an eigenvalue. In a certain
sense, a parametrix can be considered as an approximate inverse of a Hamiltonian. To make this
concept more precise, let us suppose that the shifted Hamiltonian and its parametrix are bounded
operators between appropriate function spaces, i.e.,

A : F1 −→ F2, P : F2 −→ F1. (2.18)

According to its definition, a parametrix satisfies the equations

PA = I +Gl and AP = I +Gr, (2.19)

i.e., P is the left(right) inverse of A modulo the Green operators Gl (Gr). Here the basic idea is that
the Green operator Gl (Gr) maps F1 (F2) into a particularly nice subspace S1 ⊂ F1 (S2 ⊂ F2). It
is clear from the definition, that a parametrix of a differential operator in Diffm

deg(M) must belong
to a wider class of operators, which are the so-called pseudo-differential operators. These operators
are grouped into classes Ls(M), with s ∈ R, such that Diffm

deg(M) ⊂ Lm(M), with m ∈ N, and
a parametrix P for A ∈ Diffm

deg(M) belongs to L−m(M). For further reference, let us denote the
whole class of Green operators by LG(M). In order to guarantee the existence of a parametrix, the
corresponding differential operator must be elliptic in an appropriate sense. A general discussion of
the concept of ellipticity has been given in the monograph [22] and a detailed proof of ellipticity for
Hamiltonian operators in Ref. [44].
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In the classical pseudo-differential operator calculus, the nice subspace S corresponds to the
space of smooth functions. However, due to the singular nature of our problem this cannot be the
case here, instead Green operators map into function spaces with specific asymptotic behaviour. Let
us consider e.g. an edge singularity, where the space S1 ⊂ F1 can be written as a direct sum

S1 = EN
1 ⊕FN

1 (2.20)

with asymptotic subspace

EN
1 := span

{

ω(r)
∑

j

mj
∑

k=0

cjk(φ1, θ1)vjk(t, φ2, θ2)r
−pj lnk r

}

(2.21)

and flattened space FN
1 . Here, ω denotes an appropriate cut-off function for r ≫ 0 and the asymp-

totic behaviour near the edge is characterized by a finite number of discrete parameters pj which
are located in a strip of the complex plane, i.e.,

pj ∈ {3
2 − γ −N < ℜz < 3

2 − γ}, (2.22)

with weight γ depending on the specific application, cf. Ref. [44] for further details. In this expansion,
asymptotic coefficients correspond to smooth functions cjk and vjk on the basis of the cone and edge
stratum, respectively. The flattened space FN

1 consists of functions u such that r−N+ǫu still belongs
to F1 for any ǫ > 0. Operators which belong to a class Ls(M) provide maps between asymptotic
subspaces, i.e., they preserve asymptotic information.

With our particular application in mind, it might seem unnecessary complicated to consider
asymptotic subspaces (2.21) with complex exponents pj. In the pseudo-differential calculus, however,
the values of the exponents have to be calculated and actually correspond to poles of meromorphic
functions. Therefore it is rather natural to assume complex exponents in the general setting. In this
respect our approach differs from the Fock expansion where a specific asymptotic behaviour, i.e.,
integer exponents, has been assumed from the very beginning. We want to emphasize, that any ad
hoc ansatz for an expansion requires a proof, that it actually converges to a solution. A question
which is still not fully settled in the case of the Fock expansion, cf. Refs. [28, 29, 30, 31].

With this background information at hand, it is easy to see how the parametrix and associated
Green operator provides a tool to study the asymptotic behaviour of solutions of linear equations
of type

A(λ)u = f, (2.23)

where f itself has a well defined asymptotic behaviour. Let us first consider an eigenvalue problem
A(λ)u = 0 where λ corresponds to an eigenvalue. Application of the parametrix from the left yields

P (λ)A(λ)u =
(

I +Gl(λ)
)

u = 0, −→ u = −Gl(λ)u, (2.24)

which means that the asymptotic behaviour of an eigenfunction is completely determined by the
left Green operator Gl. Similarly, for any solution u of the linear equation (2.23) one gets

P (λ)A(λ)u =
(

I +Gl(λ)
)

u = P (λ)f −→ u = P (λ)f −Gl(λ)u, (2.25)

which means that the parametrix and associated Green operator determine its asymptotic behaviour.

2.4 Asymptotic parametrices for Hamiltonian operators

The construction of a parametrix for a Hamiltonian operator and its corresponding Green operator
can be done in a systematic manner. Within the present work, the whole purpose of this procedure
is to get asymptotic properties of wavefunctions near singularities. This can be most easily achieved
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by introducing the concept of an asymptotic parametrix which can be evaluated order by order via
a recurrence scheme. Let us first note that every operator O ∈ Ls(M) can be written in the form

O =

N
∑

i=0

riOi mod LG(M) (2.26)

for any N ∈ N, with suitable Oi ∈ Ls(M); in particular, riOi is flat of order i, with i = 0, . . . , N ,
in the pseudo-differential algebra. This statement is trivial for the subclass of differential operators
where the expansion can be easily obtained from a Taylor expansion of the coefficients. We refer to
Ref. [46] concerning the extension of this concept to the whole class of pseudo-differential operators.

The recurrence scheme is based on the asymptotic expansion of the shifted Hamiltonian and its
parametrix.

( N
∑

i=0

riPi

)( N
∑

i=0

riAi

)

∼ I mod LG(M),

( N
∑

i=0

riAi

)( N
∑

i=0

riPi

)

∼ I mod LG(M) (2.27)

As already mentioned before, differential operators Ai can be easily obtained via Taylor expansions.
In an initial step, we construct P0 from the zero’th order equation

P0A0 = I mod LG(M). (2.28)

With this term at hand P1 can be obtained from the first order recursion equation

P0r
1A1 + r1P1A0 = 0 mod LG(M). (2.29)

In general O ∈ Ls(M) satisfies a commutator relation

Orβ − rβOβ = 0 mod LG(M) with Oβ ∈ Ls(M). (2.30)

With this relation and P0 applied from the right, we get

r1P1 = −P0r
1A1P0 mod LG(M) = −r1P0,1A1P0 mod LG(M), (2.31)

which gives an explicit expression for P1 in terms of known quantities. In principal, the recurrence
scheme can be extended to arbitrarily high order, e.g. in second order, one gets the equation

r1P1r
1A1 + r2P2A0 + P0r

2A2 = 0 mod LG(M), (2.32)

which becomes

r2P2 = −r1P1r
1A1P0 − P0r

2A2P0 mod LG(M)

= r2
(

P0,1,1A1,1P0,1A1P0 − P0,2A2P0

)

mod LG(M).

In order to extract asymptotic information it is essential to keep track of all Green operators which
have been accumulated in the course of the recurrence scheme.

3 Parametrix and Green operator of the helium atom

After a brief and fairly dense discussion of basic prerequisites and some necessary mathematical
backgound of our approach in the previous section, we are ready to state our main result and discuss
some of its implications. The recurrence scheme, outlined in Section 2.4, provides a constructive
approach in order to derive explicit asymptotic expressions for parametrices and corresponding
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Green operators. An illustrative example for such a construction is the hydrogen atom which has
been studied in Ref. [47].

The helium atom can be considered as a paradigm for electron correlation, in particular of
electron-pairs, and provides the setting for the study of effective electron-pair models, which will
be the subject of the following section. Therefore it represents a natural starting point for the
asymptotic analysis of electron correlation. According to our previous discussion, it is the main
outcome of our approach to derive an explizit expression for the Green operator, which encodes
essential asymptotic information, cf. Eqs. (2.24) and (2.25). In the following, we want to discuss
the Green operator corresponding to a shifted Hamiltonian of the helium atom (2.13), and extract
some well known asymptotic properties, commonly known as Katos’s cusp condition, from it. The
technical details of the corresponding calculations are rather involved and therefore we refrain here
from a detailed exposition. Instead, the interested reader is refered to a forthcoming publication
[48], which contains all the relevant calculations and proofs in full length.

For the helium atom, the Green operator Gl near an e − e or e − n edge has a leading order
asymptotic expansion of the form

Glu(r, ϕ1, θ1, y) ∼ 2t2
[(

1 + rtZ1 + r2
(

−2 + 1
3(tZ1)

2 + 1
3tZ2

)

)

P0Q0,1(u)(y)

+1
6r

2P0Q0,2(u)(y) +
(

1
3r +

1
6tZ1r

2
)

P1Q1,1(u)(y) (3.1)

+1
5r

2P2Q2,1(u)(y) − 1
30r

2P2Q2,2(u)(y)

]

+O(r3)

with parameters

Z1 :=

{

1√
2

for ve−e

−Z for ve−n

, Z2 := −tλ+

{

−2
√
2Z for ve−e

1− Z for ve−n
(3.2)

where λ might correspond to an eigenvalue and Pl, l = 0, 1, 2, . . ., denote projection operators on
subspaces which belong to eigenvalues −l(l+1) of the Laplace-Beltrami operator on S2, i.e. relative
angular momenta of the electron-pair (e− e edge) or of an electron with respect to a nucleus (e−n
edge). The linear operators Ql,j map u(r, ϕ1, θ1, t, ϕ2, θ2) into a function Ql,j(u)(ϕ1, θ1, t, ϕ2, θ2)
which does not depend on r anymore. Explicit expressions of the operators Ql,j are rather involved
and will be given in a forthcoming publication [48]. By the projection operators Pl, l = 0, 1, 2, . . ., the
function Ql,j(u) is furthermore projected with respect to the angular variables θ1, ϕ1 on subspaces
of relative angular momentum eigenvalues, i.e,

PlQl,j(u)(ϕ1, θ1, t, ϕ2, θ2) =

l
∑

m=−l

Ylm(θ1, ϕ1) vlmj(t, θ2, ϕ2) (3.3)

with

vlmj(t, θ2, ϕ2) :=

∫

S2

Ȳl,m(θ1, ϕ1)Ql,j(u)(ϕ1, θ1, t, ϕ2, θ2)dθ1dϕ1, (3.4)

where Ylm, −l ≤ m ≤ l, denote the corresponding spherical harmonics.
At this point it seems to be appropriate to discuss our main result (3.1) in less technical terms

and to clarify its relation to previous work, in particular with respect to various higher-order cusp
conditions mentioned in the quantum chemistry literature. First of all, (3.1) together with the
corresponding parametrix represents an approximate inverse of a shifted Hamiltonian (2.13), here
considered as an operator acting between appropriate function spaces, where the shift parameter
might be an eigenvalue or not. In conventional quantum chemistry, only the inverse of a shifted
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noninteracting Hamiltonian, acting on the virtual part of Hilbert space, seems to be a valid option
and provides e.g. the basis of the CC iteration scheme. It is a subject of our future work to study
possible local modifications of standard iteration schemes using interacting Green operators and
parametrices in order to improve convergence near the e − e edge. This seems to be possible,
because the Green operator (3.1) maps any function u into a function with this specific asymptotic
behaviour.

In the case of a linear electron-pair model of the general type (2.23), it is possible to deter-
mine the asymptotic behaviour of its solution from Eqs. (2.24) or (2.25) using the corresponding
asymptotic Green operator and parametrix. It should be mentioned, that the electron-pair mod-
els dicussed below require only trivial modifications of the Green operator (3.1) and corresponding
parametrix. Once again, we want to emphasize that the asymptotic recurrence scheme of Section
2.4 is constructive and can in principle be extended to any order in the e − e distance. Therefore
it is possible to calculate the asymptotic expansion (3.1) to any order in a systematic way and
determine the asymptotic behaviour well beyond Kato’s cusp condition. Here we want to mentioned
that various generalizations of Kato’s cusp condition have been already discussed in the literature,
cf. Refs. [49, 50, 51, 52]. Let us point to an important difference with respect to the present work.
It is a common assumption in these papers that the most general underlying asymptotic expansion
of a wavefunction is of the general form

u(r, θ, φ, s) ∼
∑

0≤l

∑

0≤n

rl+n

l
∑

m=−l

ulmn(s)Ylm(θ, φ), (3.5)

where r, θ, φ denotes spherical coordinates with respect to the e − e distance and s refers to the
center of mass of an electron pair. However, an asymptotic expansion of the form (3.5) cannot be
taken for granted. It might happen, e.g., that logarithmic terms like rk ln r show up. Actually,
logarithmic terms are well known from the Fock expansion of the helium atom near the corner
singularity where both electrons approach the nucleus. The absence of logarithms and noninteger
exponents in the asymptotic expansion at the e− e edge requires a proof. Only recently, Fournais
et al. [19] proved rigorously the existence of an asymptotic expansion (3.5) near an e − e edge for
eigenfunctions of many-electron Hamiltonians. Their proof is rather sophisticated and should be
considered as a subsequent justification of the work done in quantum chemistry. Because it restricts
to eigenfunctions, Ref. [19] applies to (2.23) in the case f = 0 and λ an eigenvalue, but not for
general right hand sides f and arbitrary values of the shift parameter λ, which is of relevance for
approximate linear many-particle models, to be discussed below. In contrast to this, our approach
does not make any a priori assumptions concerning the asymptotic behaviour. It only requires that
the right hand side f has an asymptotic expansion of the general type (2.21), cf. Ref. [20]. Therefore,
integer exponents and the absence of logarithms in the asymptotic expansion of the Green operator
(3.1) are an outcome of our calculation and not the consequence of any assumption. In particular,
this is of significance for approximate models, derived from CC theory, where the proof of Ref. [19]
does not immediately apply.

3.1 Kato’s cusp condition revisited

With the asymptotic Green operator at hand, it is straightforward to derive Kato’s cusp condition
[14] from the leading order terms. Let us first consider the asymptotic behaviour of wavefunctions
near the e− e edge. With respect to the euclidean distance between both electrons

x12 := |x1 − x2| =
√
2t sin r =

√
2t
(

r +O(r3)
)

, (3.6)

the asymptotic expansion for a symmetric (singlet) state Ψs of the electron-pair

GlΨs ∼
(

1 + 1
2x12

)

1√
π
t2v001(t, θ2, ϕ2) +O(x212), (3.7)
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is perfectly equivalent to Kato’s “cusp” condition, x2 6= 0,

1

4π

∂
∫

S2 Ψs(x12,ω12,x2)dω12

∂x12

∣

∣

∣

∣

x12=0

=
1

2
Ψs(0, ·,x2), (3.8)

where ω12 denotes the corresponding angular coordinates of the e−e distance. For an antisymmetric
(triplet) state Ψt of the electron-pair, we get

GlΨt ∼
√
2tr

(

1 + 1
4

√
2tr

)

1
∑

m=−1

Y1m(θ1, ϕ1)
√
2
3 tv1mj(t, θ2, ϕ2) (3.9)

∼ x12
(

1 + 1
4x12

)

1
∑

m=−1

Ylm(θ1, ϕ1)
√
2
3 tv1mj(t, θ2, ϕ2) + · · · . (3.10)

At next, we want to discuss the asymptotic behaviour of wavefunctions near an e− n edge. Let
us first consider states with P0Ψ 6= 0, the asymptotic expansion for such states yields

GlΨ ∼ (1− Z|x1|) 1√
π
t2v001(t, θ2, ϕ2) +O(|x1|2), (3.11)

with respect to the euclidean distance between an electron and a nucleus. Again this is perfectly
equivalent to Kato’s cusp condition, x1 := |x1| and x2 6= 0,

1

4π

∂
∫

S2 Ψ(x1,ω1,x2)dω1

∂x1

∣

∣

∣

∣

x1=0

= −ZΨ(0, ·,x2), (3.12)

where ω1 denotes the corresponding angular coordinates of the e − n distance. For states with
P0Ψ = 0 and P1Ψ 6= 0, e.g. higly excited Rydberg states, the asymptotic expansion

GlΨ ∼ |x1|
(

1− 1
2Z|x1|

)

1
∑

m=−1

Ylm(θ1, ϕ1)
2
3tv1mj(t, θ2, ϕ2). (3.13)

resembles to the 2p state of a He+ ion.

4 Effective electron-pair models derived from CC theory

In quantum chemistry a multitude of electron-pair models are known, among the most popular
are CCSD and various variants of CEPA. It is not our intention to make extensive comments on
these models or to discuss how these models are related to each other. CC theory, however, seems to
provide a unified framework, cf. [53], and is a good starting point to establish a hierarchy among these
models. The models are based on an effective single particle model, like Hartree-Fock, and assign to

each pair of occupied orbitals a wavefunction Ψ
(2)
i,j which represents an electron-pair embedded in an

effective mean-field generated by the remaining electrons. Let us assume the canonical decomposition
of the effective electron-pair wavefunction

Ψ
(2)
i,j (x1,x2) = Ψ

(1)
i,j (x1,x2) + τi,j(x1,x2) (4.1)

into a noninteracting part Ψ
(1)
i,j and the pair-amplitude τi,j. In any effective electron-pair model,

pair-amplitudes rely on the constraint

Qτi,j(x1,x2) = τi,j(x1,x2), (4.2)
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imposed by the projection operator, commonly known as strong orthogonality operator [55]

Q := (1− q1)(1− q2) with q :=

N
∑

i=1

|φi〉〈φi|, (4.3)

where φi, with i = 1, 2, . . . , N , represent occupied orbitals. The physical reason behind Q is Pauli’s
principle which excludes the subspace assigned to the remaining N − 2 particles from the Hilbert

space of the pair and an orthogonality constraint between the two parts Ψ
(1)
i,j and τi,j of the pair

wavefunction.

In the present work our focus is on the behaviour of wavefunctions near the e − e edge. It is
well known from quantum many-body theory, that the so-called ladder diagrams give the dominant
contribution to short-range correlation. A simple model where ladder diagrams are summed to
infinite order is the Bethe-Goldstone (BG) equation, which can be easily derived from CCSD by
neglecting all interactions among different electron-pairs. The BG equation can be written in the
following form

Q
(

−1
2∆1 + v1 − 1

2∆2 + v2 − Ei,j

)

τi,j(x1,x2) (4.4)

= −Q
1

|x1 − x2|
Ψ

(1)
i,j (x1,x2)−QV

(ij)
fluc (x1,x2)τi,j(x1,x2),

with coefficient matrix

Eij := 〈φi, (−1
2∆+ v)φi〉+ 〈φj , (−1

2∆+ v)φj〉+ 1
2 〈Ψ

(1)
i,j ,

1

|x1 − x2|
τi,j〉, (4.5)

and fluctuation potential

V
(ij)
fluc (x1,x2) :=

1

|x1 − x2|
− v

(i,j)
Hx (x1)− v

(i,j)
Hx (x2) +

1
2〈Ψ

(1)
i,j ,

1

|x1 − x2|
Ψ

(1)
i,j 〉 (4.6)

in which

v
(i,j)
Hx := v

(i)
H + v

(j)
H + v(i)x + v(j)x (4.7)

represents the contribution of orbitals i, j to the Hartree and exchange potential, respectively. The
BG equation (4.4) is still nonlinear due to the last term of the coefficient matrix Eij which depends
on τi,j. In the following, we skip this term and consider a simplified linear BG equation with
coefficient matrix

E
(0)
ij := 〈φi, (−1

2∆+ v)φi〉+ 〈φj , (−1
2∆+ v)φj〉 = ǫi + ǫj . (4.8)

The BG equation can be further simplified by neglecting all second order terms. This yields the
equation for Rayleigh-Schrödinger (RS) 1’st order perturbation theory

(

−1
2∆1 + v1 − 1

2∆2 + v2 − εi − εj
)

τi,j(x1,x2)

= −Q
1

|x1 − x2|
Ψ

(1)
i,j (x1,x2),

which provides the starting point for an iterative solution of the BG equation.
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4.1 Kato’s cusp condition for effective electron-pair models

The BG and 1’st order RS models are linear equations of the general form (2.23), where the asymp-
totic behaviour can be obtained from the parametrix and Green operator according to Eq. (2.25).
An explicit calculation yields

P0τi,j ∼ τi,j|r=0 +
1
2 (
√
2rt)

(

Ψ
(1)
i,j + τi,j

)

∣

∣

∣

r=0
+O(r2). (4.9)

or the equivalent expression

P0Ψ
(2)
i,j ∼ Ψ

(2)
i,j

∣

∣

∣

r=0
+ 1

2(
√
2rt) Ψ

(2)
i,j

∣

∣

∣

r=0
+O(r2). (4.10)

The latter in turn is equivalent to Kato’s cusp condition

∂x12
P0Ψ

(2)
i,j

∣

∣

∣

r=0
= 1

2 Ψ
(2)
i,j

∣

∣

∣

r=0
. (4.11)

For comparison, 1’st order RS perturbation theory yields

P0Ψ
(2)
i,j ∼ Ψ

(2)
i,j

∣

∣

∣

r=0
+ 1

2(
√
2rt) Ψ

(1)
i,j

∣

∣

∣

r=0
+O(r2), (4.12)

or equivalently

∂x12
P0Ψ

(2)
i,j

∣

∣

∣

r=0
= 1

2 Ψ
(1)
i,j

∣

∣

∣

r=0
, (4.13)

which can be considered as a 1’st order approximation of Kato’s cusp condition, cf. the discussion
in Ref. [54].

4.2 Asymptotic singular analysis of iteration schemes

Usually, the BG equation is solved via the fixed-point iteration scheme

(

−1
2∆1 + v1 − 1

2∆2 + v2 − E
(0)
i,j

)

τ
(n+1)
i,j (x1,x2) = −Q

1

|x1 − x2|
Ψ

(1)
i,j (x1,x2)

−QV
(ij)
fluc (x1,x2)τ

(n)
i,j (x1,x2), (4.14)

with initial guess τ
(0)
i,j = 0, i.e., starting from first-order RS perturbation theory. The corresponding

diagrammatic representation of (4.14), via Goldstone ladder diagrams, is shown in Fig. 2. In every
single iteration step the asymptotic expansion becomes

P0τ
(n+1)
i,j ∼ τ

(n+1)
i,j

∣

∣

∣

r=0
+ 1

2(
√
2rt)

(

Ψ
(1)
i,j + τ

(n)
i,j

)

∣

∣

∣

r=0
+O(r2). (4.15)

From this it can be seen, how the fixed-point iteration scheme eventually converges towards Kato’s
cusp condition. Let us define

∆τ
(1)
i,j := τ

(1)
i,j

∆τ
(2)
i,j := τ

(2)
i,j − τ

(1)
i,j (4.16)

...

∆τ
(n)
i,j := τ

(n)
i,j − τ

(n−1)
i,j ,
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τ i,j∆ (2) τ i,j∆ (3)τ i,j∆ (1)

+ + + ...=

Bethe−Goldstone

Figure 5: Iterative solution of the BG equation.

i.e., ∆τ
(n)
i,j corresponds to the contribution of the n’th order ladder diagram, cf. Fig 5, and the

asymptotic expansion of such diagrams for n > 1 is given by

P0∆τ
(n)
i,j ∼ ∆τ

(n)
i,j

∣

∣

∣

r=0
+ 1

2(
√
2rt) ∆τ

(n−1)
i,j

∣

∣

∣

r=0
+O(r2). (4.17)

This behaviour can be subsumed by the following formal perturbation scheme. Let us take

Ψi,j(λ) = Ψ
(1)
i,j +

∑

0≤n

λn∆τ
(n)
i,j , (4.18)

with (4.17), the cusp condition becomes

∂x12
P0Ψi,j(λ)|r=0 =

1
2λ Ψi,j(λ)|r=0 . (4.19)

Formal perturbation theory yields

∂x12
P0Ψ

(1)
i,j

∣

∣

∣

r=0
= 0

∂x12
P0∆τ

(1)
i,j

∣

∣

∣

r=0
= 1

2 Ψ
(1)
i,j

∣

∣

∣

r=0
(4.20)

∂x12
P0∆τ

(2)
i,j

∣

∣

∣

r=0
= 1

2 ∆τ
(1)
i,j

∣

∣

∣

r=0

...

which means that (4.19) reproduces order by order our asymptotic result.

4.3 Beyond ladder diagrams

The BG equation represents a rather crude approximation and in order to deal with state of the
art models like CCSD or CEPA, it is essential to take further classes of diagrams into account. In
particular it becomes necessary to consider nonlinear couplings between pair amplitudes, like in ring
diagrams. This is the subject of our present work where we want to study the effect of various classes
of diagrams on the asymptotic behaviour. It is rather obvious from our analysis that such diagrams
mainly affect higher-order terms in the asymptotic expansion of pair amplitudes. Nevertheless, it
seems to be premature to make any precise statement. In order to get a rough idea which steps are
required for nonlinear models, we want to refer to Ref. [45], where an asymptotic singular analysis
has been performed for the nonlinear Hartree-Fock model.

5 Adaptive wavelet approximation of pair-amplitudes

The asymptotic analysis of the pair-amplitudes permits a rigorous statement concerning their adap-
tive approximation by tensor product wavelet bases. Given a three dimensional isotropic wavelet
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basis {γα, α ∈ Λ} with index set Λ, we consider the tensor product wavelet expansion of pair-
amplitudes

τi,j(x1,x2) =
∑

α,β∈Λ
cαβ

(

γα(x1)γβ(x2) + γβ(x1)γα(x2)
)

. (5.1)

For computer simulations one has to restrict the expansion to a finite number of wavelets. Obviously
it is desirable to select wavelets in an adaptive manner according to their significance. The under-
lying mathematical concept is best N -term approximation which belongs to the realm of nonlinear
approximation theory. For a detailed exposition of this subject we refer to Ref. [56]. Loosely speak-
ing, we consider for a given basis, the best possible approximation of a function in the nonlinear
subset ΣN which consists of all possible linear combinations of at most N basis functions, i.e.,

ΣN :=







∑

(α,β)∈∆
cαβ (γα ⊗ γβ + γβ ⊗ γα) : ∆ ⊂ Λ,#∆ ≤ N







(5.2)

Here, the approximation error
σN (u) := inf

fN∈ΣN

‖u− uN‖H (5.3)

is given with respect to the norm of an appropriate Hilbert space H. A best N -term approximation
space Aα(H) for a Hilbert space H contains all functions for which the error has convergence rate
σN (u) ∼ N−α. Actually, the function spaces Aα(H) correspond to certain Besov spaces where
wavelets provide stable Riesz bases. This property enables a direct estimate of the approximation
error from wavelet coefficients.

In order to study N -term approximation rates for pair-amplitudes, it is important to establish
the following growth estimates

|∂α
x
∂β
y
τi,j(x1,x2)| ≤ cα,β |x1 − x2|1−|α|−|β| , for x1 6= x2 and |α|+ |β| ≥ 1, (5.4)

with respect to their partial derivatives near the e− e edge. Such estimates are a simple corollary of
our asymptotic analysis. It is an immediate consequence of previous work, cf. [57], that with respect
to the Sobolev space H1 the following error estimate

‖ τ − τN ‖H1 ≤ CN− 1

2
+ǫ, (5.5)

for any ǫ > 0, can be achieved. Therefore, the error in energy converges with O(N−1+ǫ), for any

ǫ > 0, which might be compared with the empirical convergence rate of O(N− 1

2 ) for correlation
consistent basis sets given in Ref. [58].

6 Conclusions

We presented a general approach to study the asymptotic behaviour of wavefunctions near coales-
cence points of particles. It can be applied to the original many-electron Schrödinger equation, as
well as to approximate models in the realm of CC theory. Singular analysis provides the abstract
mathematical framework and it was our task to show that electronic structure theory actually fits
into it. In this respect, we followed a top down approach, with an abstract mathematical theory at
the beginning and explicit calculations of asymptotic parametrices and Green operators at the end.
Much remains to be done, in particular the extension of our analysis to higher order terms and the
asymptotic analysis of nonlinear couplings between pair-amplitudes, which appear in CC theory.
Another important aspect of our present work is the incorporation of asymptotic parametrices and
Green operators into numerical methods using systematic bases like wavelets.
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