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Because of issues with accuracy and transferability otiegi®rbital-free (OF) density functionals, OF functiosidevelopment
remains an active research area. However, due to numeiffballties, all-electron self-consistent assessmentBffinctionals

is limited. Using an all-electron radial OFDFT code, we e the performance of a parametrized OF functional fordewi
range in parameter space. Specifically, we combine the mraed Thomas-Fermi-Weizsacker kinetic modekhdy for the
fractions of Weizsacker and Thomas-Fermi functionakgpeetively) with a local density approximation (LDA) fortlexchange-
correlation functional. In order to obtain converged restdr A values other thaa = 1, we use the potential scaling introduced
in previous work. Because we work within a wide region in paeger space, this strategy provides an effective routertbava
better understanding the parameters interplay that atiaachieve good agreement with the Khon-Sham (KS) model.  ideire
interest lies in total energy, Euler equation eigenvalud, électronic densities when the parameters are varieccleet®.2 and
1.5. We observe that a one-to-one relation betweamdy defines a region in parameter space that allows the atomigiese
to be approximated with a very small average error (less 8%rpercent for all the atoms studied) with respect to the KS
reference energies. For each atom, the reference KS HOM#D\&lie can also be reproduced with a similar error, but tiee o
to-one correspondence betweemandy belongs to a different region of the same parameter spaagrdyp to both properties,
the atomic density behaves more smoothly and the error iodejging the KS reference densities appears more insgnsiti
variation of the parameters (with mostly an average integrdifference of 0.15-0.2/¢| per electron). These results pave the
way towards testing of parameter transferability and thithér systematic improvement of OF density functionals.

1 Introduction system for which the kinetic energy can be calculated eyxactl
We can define the KS kinetic functiori®d by the constrained-

The Hohenberg-Kohn theorerhstate that for amN-electron  search formulatiohas
system in an external potentiathe electronic density deter- N

; ; . : 1
mines all the ground state properties of the system, sudieas t Tsn = min Z/ dr g (0) (= =02) i (r), )
wave function and any observable. In theory, in order to find P =T 2
the ground-state energy of theelectron system, it would suf-

: oS o : where the equivalent non-interacting total wave functisn i
fice to apply the variational principle to the energy functb

constructed as a Slater determinant from the single-partic

E[nj: X orbitals . Because the kinetic term is the dominant con-
E[n| = T[n] +Vedn] + + / drv(r)n(r). (1) tribution to the total energy expression, introducing tixe e
—_— act kinetic functional ensures that the remaining termsdwh
vin| need to be approximated) are comparatively small and easier

In practice, the exact form dE[n] for the many-body sys- to hano!le. This strategy allows to derive KS densjty funwio
tem is unknown and must be approximated. The Kohn-Shar@Pproximations of reasonable accuracy, especially when th

(KS) approacR, the most widely used approximation to DFT, balar}ce betwgen required computatiqnal resources and accu
works by introducing an equivalent non-interacting elestr "acy is taken into account. More precisely, in the KS method
we introduce the kinetic functiondl, the classical electron-

electron repulsive Coulombic interaction

t Electronic Supplementary Information (ESI) available. eSBOI:
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functional as The Thomas-Fermikinetic functional is the exact kinetiodu
tional of the homogeneous electron gas and therefore dlyrrec
Bis[n] = T[] + J[n] + Vedn] — J[n] + TIn] — Tsin] +V[n]. reduces tdls in the constant density limit. To improve the
Exc[n] description of atomic and molecular densities, Weizsadke
4) rived Tw as a correction to the Thomas-Fermi kinetic func-
In the spirit of the Hohenberg-Kohn theory, we can also intro tional®. This correction was later derived from gradient ex-
duce a kinetic functional that is explicitly density-dedent’.  pansjon techniques with a different prefacoffhe first two

This leads direCtIy to an orbital-free (OF) formulation bét terms in the gradient expansion are denoted asTthaW
same unknown energy functional. For example, we can introfynctional:

duce the exact single-electron kinetic functional thatjgie-
alent to the Weizsacker functiorigl[n]®

Treaw(n] = Tre[n] + A Tw[n], (10)

1 with the parameted = 1/9'%1L Weizsacker initially pro-
Eor[n] = /dr n'/2 <—§DZ> n%243[n] +V[n] posed the valug = 1, whereas later work proposed the value
(5) A =1/5by optimizing atomic and small molecule enerdfes
Tw(n] Other proposed values include= 0.186 for the limit of large
+Vedn] — J[n] + T[n] — Tw]n]. atomic numbel® andA = 0.12 from post-KS optimization of

small molecules energiés.

Itis also reasonable to tredy as the first term in the expan-
sion of the KS kinetic functiondls and include a parametrized
Thomas-Fermi contribution as a correctfdd 18 In the gen-
eral form, the Thomas-Fermi functional is multiplied by a
function dependent on the number of electrbins

Another approach consists in expresskgg[n] in terms
of the KS kinetic functionalls and KS exchange-correlation
functionalEy.*5:

Eorln] = /dr n%/2 <—%D2> n2 4+ J[n] +V[n]

Excln] + Tl — Twfn], @
To[n]

where the final term is known as the Pauli functiofial The Issues with accuracy and convergence are why the de-
minimum of the energy functional is found by a functional velopment of OF kinetic functionals remains an active area
derivative subject to the constraint that the density iratgs ~ Of research. There are exce!lent recgnt reviews to which
to the number of electrons N using the Lagrange multiplierwe refer the reader for further information on such develop-

Typr[n] = Tw[n] + V(N)TTF[H]. (12)

gor. The resulting single Euler equation is tHen ment$17-22 Here, we briefly mention a few. For example,
1 53 5E 5T a family of kinetic functionals has been established in anal
—ZO24+ ] + xc[N o] +v(r) ) nY2(r ogy with the development of generalized gradient approxima
(r) (r)
2 on(r) ~ on(r) ~ dn(r) (7)  tions (GGA) for exchange-correlation functionals. Thestia
= gopn™/2(r). GGA form uses in its formulation the reduced density graidien
1 |Cn|

The eigenvalueor is equal to minus the ionization poten- 5= 2G2)1/3 W3 2 Weizsacker contribution, and a modified
tial for the exact energy functiorfal Relying on quantities Thomas-Fermi functional with an enhancement factor. From
borrowed from KS theory is obviously not the only possible the proposed GGA kinetic functionals, we can cite forms with
choice, but it allows to build on accumulated knowledge ofempirical and non-empirical parameters in the enhancement
the widely used KS functionals. After introduciigandE,. ~ factor’®2% Moreover, the general combination fr and
in the OF formulation of the total energy functional, the re- Tw is also derived from quantization from classical consider-
maining task to achieve an accuracy comparable to the pareations or information theoretic argumetitg®27 Similarly,

KS method is to obtain an orbital-free approximatiofigthat ~ nhon-local kinetic energy functionals include a sunirgf and
approaches the exact orbital-dependent KS limit. Tw functionals that is corrected with a non-local two-point
A number of OF kinetic functionals have been proposedunctional’®. Finally, we mention there is also a family of
over the years. Typically they are a combination of two ex-functionals developed and tested for embedding applicstio

act ubiquitous kinetic functionals: the Thomas-Feffhand ~ Wwith frozen density approach&s?®,

Weizsacke? kinetic functionals, defined as In examining the performance of kinetic functionals, most
3 . studies have relied on the use of what could be considered
Tre[n] = E(?JHZ)Z/S/ drn®3(r) (8)  good trial densities, typically from Hartree-Fock theonk®
2 LDA (local density approximation) calculations in nonfsel
Tw(n] = }/dr |On(r)| ) (9) consistent or post-KS treatments. While one can extracesom
8 n(r) useful information from such methods (for example, we can
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rule out functionals based on failures at this level), tretad- 2 Results and discussion

ies have a fundamental limitation to assess the true perfor-

mance of the kinetic functional, given that the self-cotesis  In order to define an OF model in the KS-like form described
density will differ from the density actually employed. Mer  in the introduction, we must work under approximations for
over, many applications of OFDFT functionals rely on the usethe KS kinetic and exchange-correlation functionals. Here
of pseudo-potentials that must overcome difficult problemswe use a parametrized kinetic functioathat we denote
stemming from the essential relationship between the ndethoas Tyrraw in an extension of the naming convention used

and separation of orbitals on core and valence electfids ~ in the introduction, and an LDA exchange-correlation func-
Due to numerical difficulties. self-consistent all-electas-  tional*®3%. The parametrized orbital-free functional we study

sessment of OF functionals typically have focused on atom&€re is therefore:

or diatomic molecules and only a small number of OF func-  Eqc[n: A, y] = ATw[n] + yTre[n] + I[n] + V[n] + ELPA[n]
tionals have been tested®3¢ For example, in Chan et &, (12)
the kinetic TR W functional is used in addition to the LDA Using the partitioning introduced in Equation (6), we obtai

exchange for a few values af (A = 1,1/5,1/9,2) in self-  the KS-like equation to solve by setting:
consistent all-electron calculations using a Gaussialisbas

Out of theA values studied, the best agreement to Hartree- To[n] = (A — 1) Tw[n] + yTre(n], (13)
Fock energies is obtained far = 1/5, as in earlier work?. Exc[n] = E)'(-CDA [, (14)
The ionization energies increase with increasingand the
values computed oscillate around the experimental vafms.
the Ne atom, the progressive effect of increasing to lower
the value at the origin (position of the nucleus) and inogeas
the density value in the valence region. From the binding-ene
gies of molecules the authors conclude that, indeed, thie add

in Equation (7). The Weizsacker term in the Pauli functiona
can be expanded in its Laplacian form and combined back
with the first term so that the final KS-like equation to solve

IS:

tion of a gradient term such ag, allows for a small binding of A_p O8I  OEx[n STre[n] 12

the molecules. This binding increases with increasingut —5 0+ an(r) T anr) Y ann) +v(r) | ()
none of the tried parameters gives a satisfactory desznipti

because the errors in the atomic energy increase dragticall Vet(T)

These binding energies of molecules are reproduced by two = sopnl/z(r),
later studie§3°, using different methods. The first one uses a (15)

non-modified nuclear potential and both a Gaussian and grid _ _ _
basis, and the second study uses the PAW transformation a/ in the convenient scaled form used in previous wirk
a grid basis. Notably, with the use of the PAW method bulk 1 Vest (T £
simulations were reported at the same level of théory (_EDZ + %()) n1/2(r) = %nl/z(r)- (16)
We have chosen to extend the benchmark data of OF all-
electron self-consistent calculations for atoms. Usingln 2.1 Total energy
electron radial atomic OFDFT code to compute all-electron . o o
values, we study a wide region of the parameter space of th# the ideal limit where the exact form of the KS kinetic en-
parametrized Thomas-Fermi-Weizsacker kinetic model. Tdrgy functional is retrieved, both OF and KS energy function
achieve convergence for valuesiobther tham = 1, we use  &ls as defined in equations (4) and (6) are equal. We there-
the potential scaling from our previous wdfk By working fore explore the evolution of the total energy of the diffare
within this wide region in parameter space, we can achiev@toms in the first three rows of the periodic table as the two
a deeper understanding of the interplay between the fractio Parameters that def!ne the OF kmetlp energy functionabintr
of Tre and Ty contained in the model that yield good agree-duced here are varied. By comparing the KS and OF total
ment with the reference KS calculation. Here, total energy€nergies throughout this parameter space, one can degermin
eigenvalue, and all-electron densities are of interestjqpa ~ Which combinations oA andyyield good agreement between
larly when the parametedsandy are varied between 0.2 and the two methods. A good OF kinetic function@zew, can
1.5. We choose to compare the OFDFT results to referenc&en be obtained by minimizing the difference between the KS
KS calculations because, for the ideal case of an exacti&inetand OF predicted total energies (or other properties) veith r
functional, all the quantities should agree. These resuilts ~ SPect to the choice of andy. In practice, this can be done by
bridge the way to improving parameter transferability from Studying the quantity
atomic to dimeric systems, and in general to the overall im- Eor(A,y) — Exs

provement OF kinetic functional derivation. AE(A,y) (17)

)

Exs
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Fig. 1 Evolution of the relative error in OF total energies withgest to KS reference total energies calculated for all tbenatin the first
three rows of the periodic table, cf. equation 17 for a de€initThe cumulative error is calculated as the combinedaayeerror for the
whole set,NlEl Y alAEa|. The OF kinetic functional used ’sTw/[n] + YTt g [n] and the exchange-correlation is a LDA functional (cf. egurat 2
for the complete energy functional). The paramefeendy are varied in the same range for all plots. The black regidheértop-right corner
for He is due to the impossibility to bring the correspondaadculations to convergence.

which for each atom gives the relative error in the OF total en values corresponding to the region of good agreement can be
ergyEor, taking the KS valu&gs as areference, as a function described by means of a second-order polynomial fittinggl val

of A andy. One can then extend this analysis to a wider setwithin the ranges shown. These second-order expressieas gi
of elements by studying the cumulative error, which is sim-optimumys for any given in terms of reproducing the KS
ply given as the average relative err,érza|AEa| whereais  values:yopt(A) = apA? +&A +ap. The fitting coefficients for

an atom index andl, is the number of atoms included in the all the atoms studied are given in Table 1.

set. The error for each atom and the cumulative error as de- A simple correlation between the two components of the
fined above are presented in Figure 1. Previous work indicatekinetic functional can be observed. As the fraction of
the average error in the atomic energy at paraméferg) = Weizsacker functional added to the model increases so does
(1/5,1) is very smalt?32 We also find the average error in the need to decrease the fraction of Thomas-Fermi fundtiona
the atomic total energies calculated(aty) = (1/5,1) to be  in order to achieve a good description of the total energy. As
very small. In this OF model, which differs from the cited previously discussed, this correlation is not linear ardit be
work by the inclusion of LDA correlation, the average error clearly observed how the total energy values become more in-
for the present atomic set is only of 3 percent deviation fromsensitive to an increase of the von Weizsacker functiooal c
the KS reference values. Thia, y) combination is, however, tribution as the number of electrons in the system increases
not singular. It belongs to a whole region in parameter space

of good agreement between the OF and KS energies, denoted

by white and the superimposed dashed lines in the figure. Far 2 Eigenvalues

the H atom such region includes the linfit,y) = (1,0) for ) ) )
which the Weizsacker term is the exact kinetic energy func-The fundamental chemical properties of atoms are detednine
tional. The evolution of these regions of good agreement aBY the process of acceptance or removal of electrons. In
the atomic number increases is smooth, so that there still exhis context, the chemical reactivity of molecular systemd

ists a well-defined region of overall good agreement betweeAtOMS in particular is a desired quantity to be addressed by

the OF and KS energies. We note that for every atonfthg) ~ Means of the OF model. In t_he KS model the highest Qccupied
molecular orbital (HOMO) eigenvalue of the KS equations has

4| Journal Name, 2010, [vol] 1-10 This journal is © The Royal Society of Chemistry [year]
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Table 1Fitting parameters for the second-order polynomial low values of the parametgr there already exists an under-
Ve(A) = a2A% +-a1A +ao. This polynomial gives the combination  estimation of the OF eigenvalue (the error is negative) and n
of (A, y) yielding the OF total energies that better agree withthe /516 of) can decrease the error. However at moderate and
reference KS total ene!rgles_of the different atoms. Thedffitteves high values ofy and at lowA the eigenvalue error is positive
are shown as dashed lines in Figure 1. so that the OF eigenvalues are an overestimation of the KS
eigenvalue. Increasiny decreases the OF eigenvalue up to

,:tom 8_2372 i12.386 20032 the point where it matches the KS eigenvalueA lis further

He 0272 _1614 1347 increased, the OF eigenvalue just continues to deviate from
Li 0.305 -1428 1301 the KS value.

Be 0207  -1.175 1236 Another striking difference between the total energy and
B 0.162 -1.013 1195 the eigenvalue is that the calculated region of best agree-
C 0145 00928 1180 ment strongly depends on the atom. In particular, the best
N 0128  -0859 1166 region for H and He show a distinctly different behaviour
o 0145 -0851 1167 when compared to the other atoms. This is because both
F 0.135 —0.79% 1147 species are single-orbital systems and they are well destri

Ne 0129 —0.768 1136 by the Weizsacker model, which corresponds to values of
Na 0165 —0.799 1145

Mg 0127  —0718 1122 (A,y) = (1,0). Ip general, a bgst s_et_of parameters can pe
Al 0.108 _0.672 1109 chosen to describe elements with similar chemical progerti

Si 0119 -0676 1112 (with the same number of valence electrons, i.e. elements in
=} 0113 —0.651 1104 the same column of the periodic table). The superposition
S 0147 —0.689 1117 therefore does lead to a high average error (more than 40 per-
Cl 0.128 —0.649 1106 cent) in comparison to the total energy. It is interesting to
Ar 0.135 —0.648 1108 note that the error at the pair of parametgYsy) = (1/5,1)

is quite high (48 percent). Furthermore, this parameter pai
) _ o _ does not belong to the fitted region of best agreement that can
a special physical 5'9”'f'ca_”é%4l- The KS HOMO eigen-  pe opserved in the cumulative graph. For each atomic species
value determines the decaying behaviour of the electr@nie d  the parameter region of lowest error has been fitted, as the en
sity and equals minus the ionization potential using the exurgy, to a second-order polynomial (red-dashed line), bad t
act energy function4f. The Euler equation eigenvalue in the coefficients are included in Table 2.
OF model also determines the decaying behaviour of the den- \yi can then conclude that achieving small errorshiath

sity and Ie4quals minus the ionization potential for the exackergy and eigenvalue is not possible with this simple param
functional’. When having an exact approximation for the KS g(erization. In order to achieve the best possible cheraizal

Kinetic ;ngctlonal in OF model, the wo eigenvalues should, acy for a specific problem of interest, one can however op-
coincide™™. Despite the poor description of the KS frontier ¢ this parametrization such that the resulting fuorei

eigenvalues, observed for both local and semi-local ex@®an inimizes both errors per each atom or for a small set of
correlation approaches, reproducing the KS results is @ firs;;o o

step in the construction of better kinetic functionals foe t

OF model. In this section, we study the behaviour of the OF

eigenvalue for the same atomic species surveyed in the-prev2.3  Electronic density

ous section, and compare it to the KS HOMO eigenvalue. The ] » o

error is defined in a similar way to the total energy case as 4 "¢ OF and the KS electronic densities should coincide if an

relative deviation from the KS reference for different\agiof ~ €Xact approximation of the KS kinetic functional is used in

A andy, writing the eigenvalue as(}, y), it reads the OI_: funct!on_al. To characterize the error we have used the
following definition:

gor(A,Y) — &sHomo
Ag(/\7 ): ) (18) drn r')\ — '
|Eksmomol An(A,y) = j‘{jr n(|)F(E':'(/\ y;zz J desis)(L) (49

where the cumulative error is defined in a similar way to the er

ror in the total energy as the average relative eﬁ;oza|Aea|. where the denominator reduces 8 for the neutral atomic
Here,ais an atom index anhl, is the number of atoms in the densities considered here (whéris the atomic number). The
set. Figure 2 shows the error in the eigenvalue for each atomicumulative error is defined as earlier ﬁyzaAna, whereais
species. The results show that the best set of parameters ben atom index anbl; is the number of atoms in the set. From
have differently compared to the error in the total energy. F the definition we expect that the regions of high density will

This journal is © The Royal Society of Chemistry [year] Journal Name, 2010, [vol], 1-10 |5
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Fig. 2 Evolution of the relative error in OF eigenvalue with reqpgedkS HOMO calculated for all the atoms in the first three rafthe
periodic table, cf. equation 18 for a definition. The cumiukaerror is calculated as the combined average error fontiae set,Nia S alA&a|.
The OF kinetic functional used &Tw[n] + yTr£[n] and the exchange-correlation is a LDA functional (cf. emual2 for the complete
energy functional). The parametérsandy are varied in the same range for all plots
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dominate this integrated error and therefore the errorn@ill  mation using parameters coming from our previous atomic
flect the core density error rather than the error in the dagay results. The nitrogen dimer is also studied in detail in one
tail. of the OF all-electron works we use as referetfceln that

As is the case for the total energy error, Figure 3 showsll-electron reference, they proved that adding the Véeiksr
there is a different dependence for each atom of the region dfinctional in the kinetic functional helped to overcome e
best agreement. However, it tends to quickly converge whebinding failure of the Thomas-Fermi kinetic model. However
increasing the number of electrons. The average erroriigthe with the parameter&,y) = (1/5,1) fitted to atomic energies
fore quite homogeneous (at 0.15 to O}&((per electron). Con- the binding energy obtained was very small and the bond dis-
trary to the total energy and eigenvalue cases, a wide range tance was completely overestimated with respect to a HF cal-
parameters allow to approach the KS density with a similarculation. By increasing, and usingA,y) = (2,1), they ob-
error. The maximum possible deviation is 1 so that it can alsdained a good value for the bond length but at the price of
interpreted as a percentage (multiplying the error by 188).  having a binding energy overestimated. Here, we use parame-
average error of 15 to 20 percent is a poor feature that was sinters coming from our own fitg (coefficients from the energy
ilarly encountered in the eigenvalue error. We can theeefor fit in Table 1 for N atom) andg (coefficients from the eigen-
conclude that for the present parametrization and for atomsalue fit from Table 2 for N atom) to study the binding energy,
the integrated density error is a quantity that can be othitte bond length distance and eigenvalue of themblecule. We
from a fitting procedure without much loss with respect to im-user cut = 1.0 Bohr and grid spaciny = 0.14Ain the setup
proving the functional. Other density-dependent erromfjua  generation and GPAW calculation respectively.
ties may be more sensitive to the parameters and further ex-
ploration is required. Table 3 summarizes the;Nesults. We tested first two pairs
of parameters with samk but differenty, oney fitted to re-
produce the KS atomic energy and the otpéitted to repro-
duce the KS HOMO eigenvalue. The result is that the kinetic
We focused on the nitrogen dimer as an example of diatomiéunctional with parameters fitted to reproduce the atomic KS
molecule where we can study the error in the molecule foreigenvalue reproduces better the dimer KS bond distanee (th

2.4 N, molecule

6| Journal Name, 2010, [vol] 1-10 This journal is © The Royal Society of Chemistry [year]
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Fig. 3 Deviation of the OF density with respect to the KS densitydimms. The maximum deviation is 1 and it would correspond to a
situation of complete no overlap of the densities. On thietrigand side the combined cumulative error (or mean erooithie set of atoms is
included. The OF kinetic functional usedAdw[n] + yTrr[n] and the exchange-correlation is a LDA functional (cf. emumat?2 for the
complete energy functional). The parametirandy are varied in the same range for all plots

error is 0.1A while the other one gives an error of 049. 2.5 Convergence tests
We tested another value ¢f this time close to the value re-

ported in the reference. Settidg= 2, they fitted to repro- |, oy calculations, we have used the all-electron radiahit
duce the KS HOMO eigenvalue equals to 1.007, a value veryqge that is included in the DFT code GPARMand that was
close to the one reported by Chan e¥alWith those param- previously modified to solve self-consistently the OF mini-
eters, we obtained good tgond distances but again bad binding;,ation problen®, The atomic all-electron code in GPAW
energies. The error is 0.0%and 26 eV for bond and binding 5 ysed as a generator of the atomic all-electron orbitalesie
respectively. Finally, we used the parameters in the iB®rs g5y for the generation of the PAW transformation. In our pre
tion of the two optimum curves and obtained simultaneously,ioys workd® we presented the parameters for the calculations
a lower error in both quantities, 02and 2.7 eV for bond ot 5 small set of atoms. Here we extend systematically our
and binding respectively. For practical applications hesve  .qnyergence tests to the atoms in the first two rows of the pe-
the errors obtained with the parameters optimized for 8nergyiogic table. We have used in the calculations presentesin t
and eigenvalue simultaneously are unacceptable. With'-applprevious sections the GPAW parameigper node andmi x
cations in mind, we should still decrease the error by finexgt 10 800 and 0.01, respectively, in the all-electron atomi
tuning the parameters or even trying other equivalentiigin - e, These parameters determine the number of points in the
sets (for example electronegativity, electron affinity @edt  5¢omic radial grid and the degree of mixing between old and
evaluation of ionization potential). Our main conclusi@rd o\, potentials during the self-consistency cycle. In otder

is that in order to improve the kinetic functional transfatisy test the energy deviation with respect to reference atitese
from atoms to molecules, the kinetic functional must catyec  51,e$2 for the selected atoms, theandy values were set
describe the tendency to donate electrons at the atomit levgy g 2 ang 1.0, respectively. Taking the energy vaugom
This conclusion requires now a systematic explorationgisin jitarature®? as a reference, the deviativ of the calculated

more molecules, molecular properties and using a widererangq energyEor for an atom can be expressed as
of parameter space.

AE = Eqr — E. (20)

This journal is © The Royal Society of Chemistry [year] Journal Name, 2010, [vol], 1-10 |7
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Table 2 Fitting parameters for the second-order polynomial
ye(A) = axA2+ayA +ap. This polynomial gives the combination
of (A,y) yielding the OF eigenvalue that better agree with the
reference KS HOMO of the different atoms. The fitted curves as

shown as dashed lines in Figure 2.

Table 3 Binding energies in eV (BE=2E(N)-E@)), optimized bond
length inAand eigenvalue in eV of the Nmolecule for various
parameters in the kinetic OF functionelyy + yTtr. The LDA
exchange-correlation functional is composed of Dirac erge and
PW correlatio8:3%. The KS reference values are calculated with
the same exchange-correlation in spin-polarized fornmalising

Atoms a a1 o GPAW.

H —0.607 Q0161 Q407

He —0.422 0202 0203 Method and Parameters BE re Eigenvalue

Li -0.351 Q992 Q811 OF (A, yE) = (1.000,0.435) 87.488 0534 21829

Be —-0.188 0625 Q469 OF (A, ye) = (1.000,0.847) 21062 Q991 -8.172

B —-0.215 0852 Q657 OF (A, ) = (2.000,1.007) 37.398 1010 -9.294

c —0.179 Q710 0479 OF (A, Nye) = (0.5990.697) 14383 0903 —8.057

N —0.152 0616 0383 KS LDA 11663 1093 -10418

(0] —0.152 Q573 0319

F —0.136 0519 0278

Ne —0109 Q455 0255 ing. In conclusion, a grid spacing of 0.#8could be used

Na —0.794 1579 Q751 to save computational time with suclcut . Belowr cut =

Mg -0.162 803 542 1.2 Bohr, the grid spacing needs to be decreased until con-
Al —0.955 1726 Q742 . . . . .

Si 0230 0958 0578 vergence of the a_tomlc energy is achieved. In th_ls region the
P _0151 0759 0474 energy deviation increases as one goes to heavier atoms. As
s _0137 Q682 Q392 seen in Figure 5 (b) for the example for the O atom, using
cl _0131 0636 0331 anr cut equal to 1.0 Bohr the energy deviation is found to
Ar ~0.109 0563 Q302 converge ah = 0.14A (energy difference of -0.017 eV). To

Note that in this section we use Bohr units farut (the ra-

test the parameters for the PAW generation for systems other
than atoms and belomcut = 1.2 Bohr one needs to test the
convergence of energy differences (such as binding enttgy)

dius of the PAW augmentation sphere), because these are tAdis is exactly the case of the;Mnolecule studied in the last
units used in the PAW setup generation. The grid calculatiorsection. The LDA bond leght (and expected bond lenght) is
energy values are given in eV. ) _ e
As seen from Figure 4 the energy deviation for selectegvould notinduce augmentation sphere superposition eators
atoms does not exceed the absolute value of 0.007 eV, Thuguch distance. We test then with respect to the all-electron
thegper node = 800 value was used for extending the con- binding energy referenéd the deviation when varying the

vergence tests to the PAW setup generator.

We can use the benchmark data we have produced in ad
tion to data from the literature to study the PAW generation
parameter cut and the parameters for the evaluation of this
model on the grid using the PAW transformation (grid spacin
h). Ther cut parameter determines the size of the augmenta9
tion sphere and therefore the size of the region where the PAV
transformation will be defined. For each atom, we study th

set of parameter@\,y) = (1,1).
The total energy deviation obtained from equation (20) for3 Conclusions

of only 1.093A. An rcut = 1.0 Bohr (:0.53,&) therefore,

grid parameteh. We obtained with grid spacing the error is
qi0-075, -9.081 and -0.082 eV with grid spacing of 0.18, 0.14
and 0.12A respectively. We obtained then that binding energy
is converged for grid spacing of 0.24and that the error with
grespec:t to all-electron referenoce is small. We have thegefo
hosen the grid spacing of 0.24for our dimer calculations.
systematic study of binding energy convergence for a wider

et of molecules will be presented in our next study.

the H and O atoms as a functionro¢ ut is presented in Fig-

ure 5. It is found that for the first and second row elementdUsing an all-electron radial atomic orbital-free DFT cégle

of the periodic table the energy deviation converges to thave have studied the performance of a parametrized OF model.
reference value with ancut value equal to 1.2 Bohr, for In the model we include a parametrized Thomas-Fermi-
all the tested grid spacings. For instance, for the H atom, atVeizsacker kinetic functional, where and y determine the

r cut = 1.2 Bohr the maximum energy deviation was found amount of Weizsacker and Thomas-Fermi functionals added
about 0.007 eV foh = 0.2 A, compared to 0.005 eV for to the model, respectively, in addition to an LDA exchange-
h = 0.12 A, while the computation time was about one or- correlation. We have studied the interplay betwdeand y

der of magnitude shorter. Aboveeut = 1.2 Bohr the grid in terms of achieving agreement between the OF calculation
atomic energy shows very little dependence on the grid spa@nd the corresponding KS calculation. We have compared the

8| Journal Name, 2010, [vol] 1-10 This journal is © The Royal Society of Chemistry [year]
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gpernode = 800

(a) Hydrogen

0.006 0.06 ¢
0.004 H A SR B R ©=0 h = 0.2000 |
0.002 ' 11 i |e=e h=101765
S BO04E N b 1 0=0 b= 0.1429 |-
g 0000?{ Somb AL |e=e n=o01200]]
= —0.002 F £9 . . : . : : :
& _0.004 E B 002 - ey NG e
AU 2
—0.006 - ey el (0,01 Py e Oy DG L
—0.008 0.00 ‘
H He 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
rcut, Bohr
Fig. 4 Energy deviation with respect to reference vafiealculated 2.0 (b) Oxygen
for the first and second row elements gper node = 800 . : : : :
: : : : : . |@=@ h =02
A=0.210,rcut =1.2Bohr. 1.5 Ry -ieeene- e 0-0 h—81222 ;
T LOF- Y it {e=0 h=0.1429
. ) g 05k i 0 . 1 |©=0 h=0.1200]
OFDFT results to the equivalent KSDFT results followingthe < " § : : : : ‘
rationale that for a perfect KS kinetic functional appro&im T 00 _08 .....
tion, quantities such as total energy, Euler equation e@jes A b B8 = ; : : :
and electronic density should agree completely. 0.5 Bt S SR C N
As the fraction of the Weizsacker functional added to the —-1.0 S

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
rcut, Bohr

model increases so does the need to decrease the fraction
of Thomas-Fermi functional in order to achieve a good de-
scription O:fthetgmal. energly. lnt Comlrajt’ thedbeSt :ﬁglbn ?.Fig. 5 Convergency of total energy with respect to all-electron
agreement for the eigenvaiue strongly depends on the par I%nergy using TFD1W theory for varioug ut values and different

ular atom. The atomic density error shows a similar depengrid spacings, calculated for the H (a) and O (b) atoms, ris@dy.
dence but converges fast towards a homogenous error when

the atomic number increases.
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