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We have investigated the effects of thermal and electric fields on the electronic properties of silicene. The effects are studied
by a statistical analysis of canonical ensembles combined with the tight binding method. The tight binding parameters of
silicene are obtained by fitting with the first principles results. We analysis the statistics of the gaps, the masses of the Dirac
fermions and the effective speeds of light as a function of the cell dimension N. We show that the symmetry breaking caused by
the buckling disorder in the thermal field alter the band structures of the silicene with small cells greatly. However, the buckling
variation of any atom is compensated by other atoms in a large cell. Thus the band structure features near the Fermi energy
in the pristine silicene are still protected by the sublattice symmetry in thermal field. Moreover, the thermal field enhances the
effect of electric field to generate a band gap. The randomly buckled silicene needs much smaller electric field than the pristine
silicene. The higher temperature corresponds to a larger gap under the same electric field. All these features make silicene a
better candidate for electronic devices at ambient temperature.

1 Introduction

A novel two-dimensional material, silicene, is experimental-
ly synthesised and observed on silver and zirconium diboride
substrate.1–17 Many researches have been carried on the elec-
tronic properties of silicene, including the free standing sil-
icene18–26, the silicene on substrate27–31 and the silicene bi-
layer32–37. Silicene own most advantages that graphene has
such as the high mobility of Dirac fermions. Furthermore,
the microelectronic techniques is highly developed on silicon
materials, which makes the silicene more compatible to build
electronic devices such as field effect transistor(FET).

Most recently, the silicene FET is built at room tempera-
ture.38 A great effort is needed to improve the relatively low
on/off ratio of silicene FET. However, most computational re-
searches of silicene are concentrated on the zero-temperature
phenomena. There are many differences when a thermal field
is applied on two dimensional materials. The structural modi-
fication is conspicuous. One example is the intrinsic ripples
in graphene.39 For silicene, because the energy cost of the
changes in buckling height is small, a low energy thermal field
is sufficient to break the ordered buckling state.2,40,41 Thus the
change of the buckling heights in a thermal field is the most
obvious and also an unique factor which is different from that
of other materials such as graphene and boron nitride. At room
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temperature (∼ 300K), the buckling configurations are more
likely to be disordered rather than form a regular pattern as
it is at 0K. The disordered buckling will lead to a difference
in the electronic properties.23,42 This difference may lead to
unpredicted behavior of the silicene FET devices. Therefore,
how will the thermal field affect the band structure of silicene
is an important issue but not yet discussed.

In this work, we investigate the effect of thermal field on
the electronic properties of silicene. We find that the vibration
in buckling height is the main Goldstone mode while the in-
plane movement is frozen at room temperature. This effect
is studied using a canonical ensemble of silicene structures,
which are randomly buckled. The analysis of the variation
of the gaps, the masses of the Dirac fermions and the effective
speeds of light, show the effect of buckling disorder is smeared
out as the periodicity goes infinite. Therefore, the randomly
buckled silicene will share nearly the same electric properties
as pristine silicene. Moreover, the randomly buckled silicene
need much smaller electric field to generate the same gap and
the higher temperature corresponds to a larger gap under the
same electric field. All these features make silicene a better
candidate for electronic devices at room temperature.

This article is organized as follows: Section 2 describes the
details of the first principles method, the tight-binding method
and the ensemble model. Section 3 is the results and discus-
sions: Section 3.1 describes the general features of the energy
bands of random buckled silicene. Section 3.2 describes the
statistics of the gap, mass and the effective speed of light, re-
spectively; Section 3.3 studies the effect of the electric field on
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randomly buckled silicene at different temperatures. Section
4 is the summary.

2 Methods and Models

The first principles calculations are performed with the Vi-
enna Ab initio Simulation Package (VASP).43–45 The projec-
tor augmented-waves method46 and Perdew-Burke-Ernzerhof
exchange-correlation47 are used. The plane-wave cutoff ener-
gy is set to be 250 eV. The vacuum space is set to be larger
than 15 Å. The Brillouin zone is sampled using Monkhorst-
Pack scheme48. We use a k-point mesh of 18×18×1 for the
1× 1 unit cell, 6× 6× 1 for the 3× 3 and 4× 4 supercell in
the self-consistent calculations. Using the conjugate gradient
method, the positions of atoms are optimized until the conver-
gence of the force on each atoms is less than 0.005 eV/Å.

To simulate a statistical ensemble, a large sample of struc-
tures are calculated. The calculations are nearly impossible
to be accomplished using the density-functional method. In-
stead, we use the Slater-Koster tight-binding method49 which
has been generally recognized as an efficient and a sufficiently
accurate method to study the group-IV nanostructures.50–56

The Slater-Koster Hamiltonian has the form

H =


H1,1 H1,2 · · · H1,M−1 H1,M
H2,1 H2,2 · · · H1,M−1 H1,M

...
...

. . .
...

...
HM−1,1 HM−1,2 · · · HM−1,M−1 HM−1,M
HM,1 HM,2 · · · HM,M−1 HM,M

 ,

(1)
where Hi, j = H†

j,i is a matrix describing the interaction be-
tween atom i and atom j, and M denotes the total number of
atoms in the cell. We consider four atomic orbitals of silicon
atom: s, px, py and pz, thus Hi, j is a 4×4 matrix. Explicitly,

Hi,i =


εs 0 0 0
0 εp 0 0
0 0 εp 0
0 0 0 εp

 (2)

is the expression of the diagonal submatrix, and

Hi, j =


hsis j hsi p j
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(i ̸= j) (3)

is the expression of the off-diagonal submatrix, where

hα i,β j =
N

∑
i=1

N

∑
j ̸=i

µα i,β j(|r j − ri|)exp[ik · (r j − ri)] (4)
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Fig. 1 (Color online) The energy bands of (a) 1×1 pristine silicene
and (b) 3×3 randomly buckled silicene. The solid line is the
density-functional result and the dash line is the tight-binding result.
The Fermi energy is set to zero. (c) The hooping parameters of ssσ
(square), spσ (circle), ppσ (up-triangle), ppπ (down-triangle) as a
function of distance. Inset: The schematic of the neighboring atoms
within cut-off radius. The black ball represents the selected atom,
and the grey balls represent the interacting neighboring atoms.

is the hopping integral between the orbital α of the atom i and
the orbital β of the atom j. The expression of µα i,β j is shown
in Table. 1.

Since the heights of buckling are different, the hooping pa-
rameters Vssσ , Vspσ , Vppσ , Vppπ are not constants but a func-
tion of r. We use the Goodwin57 form to describe the hooping
parameters as a function of distance:

Vµνλ (r) =V0

(
r0

rc

)n

exp
{

n
[(

r0

rc

)nc

−
(

r
rc

)nc]}
(5)

where V0, r0, rc, n, nc are parameters listed in Table 2. These
parameters together with εs and εp in Eq. (2) are fitted with
first-principles energy band of 1×1 silicene cell, as shown in
Fig. 1(a). Since the parameters are used to reproduce not
only the band structure of the prinstine silicene but also
that of the randomly buckled structures, we need to adap-
t the parameters to describe both the prinstine silicene
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Table 1 The Slater-Koster expression 49 of the µmα ,nβ of in Eq. (4). The Vss, Vspσ , Vppσ and Vppπ are the tight-binding parameters. Here
l = (r j − ri) · x̂, m = (r j − ri) · ŷ and n = (r j − ri) · ẑ

s j p j
x p j

y p j
z

si Vssσ lVspσ mVspσ nVspσ
pi

x −lVspσ l2Vspσ +(1− l2)Vspπ lm(Vppσ −Vppπ) ln(Vppσ −Vppπ)
pi

y −mVspσ lm(Vppσ −Vppπ) m2Vspσ +(1−m2)Vspπ mn(Vppσ −Vppπ)

pi
z −nVspσ ln(Vppσ −Vppπ) mn(Vppσ −Vppπ) n2Vspσ +(1−n2)Vspπ

Table 2 The hooping parameters for silicene in the Goodwin
form. 57 The unit is eV. The orbital energies εs =−3.21eV ,
εp = 0.0eV .

V0 r0 rc n nc

ssσ -2.54 2.27 3.37 1.72 9.05
spσ 2.95 2.27 3.38 1.97 7.92
ppσ 2.08 2.27 3.56 1.83 7.18
ppπ -1.06 2.27 3.43 1.81 7.09

and the randomly buckled silicene accurately. Thus sev-
eral 1× 1 cells with different buckling heights are chosen
to minimize the difference between the tight-binding and
first-principles results, to ensure the parameters is trans-
ferable to study the silicene with different buckling height-
s. A Nelder-Mead simplex method is used for this parameter
optimization.58

Vµνλ (r) is shown in Fig. 1(c). Vµνλ (r) decays rapidly with
the increase of inter-atom distance and vanish at 4Å, which
means that a pair of atoms with a distance larger than 4Å has
no direct interaction approximately. Thus we set a cut-off ra-
dius of 4Å, i.e. the tight-binding calculations include the inter-
action between a selected atom and its neighbor atoms within
4Å, as shown in Fig. 1.

These parameters are elaborately tested to confirm their ac-
curacy and transferability. Using the parameters fitted from
the 1 × 1 unit cell, we calculate the energy bands of sever-
al 3× 3 silicene supercells with different buckling configura-
tions, and compare them with the first principles results. One
example of these band structures is shown in Fig. 1(b). It
shows that this set of parameters is generally accurate to re-
generate the band structure near the Fermi energy of randomly
buckled structures.

The changes in buckling heights cost a relative small ener-
gy compared with those of in-plane displacements(Fig.2(b)).
At room temperature, the energy of the thermal field is about
Et f = kbT = 8.62× 105eV/K × 300K ∼ 25.86meV . For the
1 × 1 silicene cell, the buckling heights can change from
−0.67Å to 0.67Å, while the in-plane displacements can on-
ly vary from −0.07Å to 0.07Å. For the change of the buckling
height of one single silicon atom in the 4×4 silicene cell, the
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Fig. 2 (Color online) (a) The structure of buckling disorder silicene.
The solid/dash/dotted line represent the 1×1/3×3/5×5 silicene
cell. (b) The energies as a function of distance from the first
principles calculations. The circle denotes energy as a function of
the in-plane displacement from the equilibrium positions. The
square denotes the energy as a function of the buckling height of a
single silicon atom in the 4×4 silicene cell. The triangle denotes
the energy as a function of the buckling height of all the atoms in a
specific sublattice.
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buckling height can change from −0.62Å to 0.62Å, as shown
in Fig.2(b). It means that the buckling changes cost small en-
ergy, consistent with the former researches2,40,41. For sim-
plicity, we consider only the fluctuations of buckling height
and treat the in-plane movement as a frozen dimension.

In our calculations, the periodical boundary condition is ap-
plied. The buckling is disordered within the cell but has a pe-
riodicity of the supercell. In the finite-size scaling approach,
with the height of the basis vector increases, the buckling be-
comes totally disordered, which depicts the realistic situation.
The property of the infinite silicene sheet is obtained using ex-
trapolation as the supercell expands from 1×1 to 12×12. The
N ×N silicene cell is shown in Fig. 2(a).

The electronic property of silicene is dependent on the long
time average of the electronic structures. At room tempera-
ture, there are the flip-flop motions between different buck-
ling phases. Since the realistic silicene material in the thermal
field is randomly buckled, the long time average can be de-
scribed as an ensemble which consists of numerous randomly
buckled structures. Thus we simulate a canonical (NVT) en-
semble, which consists of numerous structures. We consider
2× 103 structures for each N ×N cell. We compare the s-
tatistic results with different numbers of configurations to
ensure that 2× 103 configurations are sufficient to simu-
late a canonical ensemble. As shown in Figure 3(a), the
distributions of the band gaps of σ=500 and σ=2000 8×8
silicene structures show little difference. The quantitative
comparison is shown in Figure 3(b). We define

η = (∆σ −∆σ0)/∆σ0 , (6)

where the ∆σ is the mean value of the band gaps of σ con-
figurations and ∆σ0 is the mean value of the band gaps of
σ0 = 2×103 configurations. It is clear that when σ is larg-
er than 900, the mean values ∆σ differ within 1% from
the mean value of ∆σ0 . Thus, we demonstrate that with
σ = 2×103 structures, the statistic error of ∆σ0 is less than
1%. Thus, the 2× 103 buckled structures are sufficient to
reproduce a canonical ensemble. Since the simulated en-
semble contains all the statistical properties of the silicene
in the thermal field, it includes all the entropy effect.

According to the ensemble theory, the possibility of the
structure with energy E is P ∝ exp(−βE), where β = (kBT )−1

and kB is the Boltzmann constant. The Metropolis algorithm59

is used to sample the structures. The structure is accepted with
the possibility P.

The cohesive energy E of the structure is evaluated using a
simple model.

E = ∑
⟨i, j⟩

9

∑
m=1

Cm(Zi −Z j)
m, (7)

where ⟨i, j⟩ is a pair of nearest neighbors in the cell, Zi −Z j
is the difference in buckling height, and the parameters are
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Fig. 3 (Color online) (a) Probability distribution of the band gaps in
8×8 silicene. The dark bars and the light bars denote the statistics
of σ=500 and σ=2000 different structures, respectively. The dotted
line and dash line denote the fitted Gaussian distributions of σ=500
and σ=2000, respectively. (b) The mean values of the gaps as a
function of the number of structures.

obtained as C1 = 3.25,C2 = −170.63,C3 = −122.20,C4 =
−331.38,C5 = −1406.53,C6 = 773.39,C7 = 6111.70,C8 =
7269.61,C9 = 2813.81 by fitting with the energy curve in
Fig.2(b).

3 Results and Discussions

3.1 General features of energy bands of random buckled
silicene

The semimetal feature of silicene is protected by the symmet-
ric AB sublattices. The energy dispersion E(k) of the quasi-
particle near Fermi level is Dirac-type60,61:

E(k) =±ch̄(⃗k− k⃗0), (8)

where c is the effective velocity of light, h̄ is the Planck con-
stant and k⃗0 is the location of the Dirac point in the k space.

When the thermal field randomizes the buckling heights,
the original rotatory inversion symmetry of pristine silicene is
broken and a band gap is generated. In other words, the dis-
order produces an intervalley scattering vector, which causes
a small band gap in each structure and disturbs the linear dis-
persion near the Fermi level. It can be viewed as a mass gen-
eration in massless Dirac fermions. The dispersion of massive
Dirac fermion is described as:

E(k) =±
√

c2h̄2(⃗k− k⃗0)2 +(mc2)2, (9)

where m is the mass of the Dirac fermion.
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Fig. 4 (Color online) (a-i)Tight-binding energy bands of N ×N
silicene near the Fermi level (N=3,4,...,11). The Fermi energy is set
to zero.
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Fig. 5 (Color online) Tight-binding energy bands (circles) and
fitting curves (solid lines) of (a) 3×3 and (b) 6×6 silicene near the
Fermi level. Dash lines denotes the E(k) curve of massless Dirac
fermions.
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Fig. 6 (Color online) (a-i) Probability distributions of the gaps of
N ×N cells (N=3,4,...,11). (j) The mean values of each ensemble.

Figure 4 shows the example of the energy bands of N ×
N(N=3,4,..,11) supercells. According to the location of the
Dirac point in the k space, the N×N supercells can be divided
into two categories. One is N = 3p and the other is N ̸= 3p,
where p = 1,2,3. For the N ̸= 3p supercells, the Dirac point
is located at K and K’, while for the 3p× 3p supercells, the
valleys K and K’ are folded into the Γ point. This folding
results in significant intervalley scattering and a relative large
band gap.

The E(k) of massive Dirac fermions (9) is fitted with the
tight-binding band data. As shown in Fig. 5, the tight-binding
bands of 3× 3 and 6× 6 supercell can be well fitted with the
function in Eq. (9). The parameters c and m can be obtained
for each structure of N ×N supercell.

3.2 Statistics of energy gap, mass and effective speed of
light

The band gap ∆ = 2mc2 can be obtained from Eq.(9). We
carry a statistic study of the band gaps of each N × N su-
percell, as shown in Fig. 6(a-i). When N is small, the peak
of the distribution is wide, which means the gaps vary in a
large range. For N = 3, The intervalley scattering is strong e-
nough to generate a considerable gap (over 100meV). In gen-
eral, with N increases, the intervalley scattering is weakened.
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Fig. 7 (Color online)(a-i) Probability distributions of m of N ×N
cells (N=3,4,...,11). (j) The mean values of each ensemble.

The peak of the gap distribution shifts left and the distribution
become narrower. However, in the 3p×3p supercell, there ex-
ists a much more significant intervalley scattering. Therefore,
an abnormality occurs in the 3p× 3p supercell. The gap of
3p× 3p supercell is larger than that of (3p− 1)× (3p− 1)
supercell with the same p. Nevertheless, the general trend
that gap decrease with the increase of N is still clear among
each group of 3p(Fig.6(a)(d)(g)), 3p+ 1(Fig.6(b)(e)(h)) and
3p+2(Fig.6(c)(f)(i)) supercells.

The quantitative evaluation of the variation of band gaps
can be done by the analysis of the average values. As shown
in Fig.6 (j), the band gap variation have the periodicity of
three. Each row (3p+1, 3p+2, 3p+3) in Fig.6(a-i) forms a
group p(p=1,2,3.....). For each group p, the gaps of the three
supercells have the relation 3p+ 2 < 3p+ 1 < 3p+ 3. With
the increase of p, the average gap of the group p decreases. It
is predicted that the gap is extrapolated to zero at some N. This
means that the randomly buckled silicene sheet with N → ∞
become semimetal again, the same as the pristine silicene. The
effect of buckling disorder on the silicene gap is smeared out.

Although the disorder generates a mass to the Dirac
fermions, the mass is rather small. As shown in Fig.7, the m
ranges from 7.6× 10−33kg to 5.3× 10−32kg. It is only 1/100
of the mass of free electron, which makes the randomly buck-
led silicene much better than the traditional semiconductors to
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Fig. 8 (Color online) (a-i) Distribution of the effective speed of light
of N ×N cells. (j) The mean values of each ensemble.

build high-speed electronic devices.
The masses of Dirac fermions m show the similar tendency

of the variation of gaps as a function of N. It is worth noting
that the abnormality of 3p×3p supercell is more obvious. For
example, the mean value ⟨m⟩ of 6× 6 silicene is about three
times larger than that of 5×5 silicene. The difference between
N = 3p and N ̸= 3p decreases rapidly with p increases. The
effect of buckling disorder on m is also smeared out as in the
gap statistics when the size of silicene increases.

The similar analysis is carried on the statistics of effective
speed of light, as shown in Fig.8. Similar to the band gaps, the
3p×3p supercell also shows speciality in Fermi velocity. The
effective speed of light c of 3p× 3p is abnormally low. This
is also due to the existence of strong intervalley scattering.

The effective speed of light of the pristine silicene is
from 5.27× 105m/s to 6.75× 105m/s with different types of
exchange-correlation functional.21 The mean value ⟨c⟩ in the
randomly buckled N ̸= 3p silicene is only 14% lower than that
of the pristine silicene.

From the results of the gap, mass and effective speed of
light c, we demonstrate that the effects of buckling disorder
become weaker as N increases. In general, with N increases,
the strength of the intervalley scattering decreases. Thus,
(N+1)×(N+1) cell is more similar to the pristine silicene
than N×N cell, which means that the (N+1)×(N+1) cell
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has smaller gap, lighter electron mass and higher effective
speed of light than those of the N ×N cell. However, in the
3p×3p supercell, because the Dirac point is folding to the
Γ point, there exists a much more significant intervalley
scattering.62 The strong intervalley scattering causes larg-
er gap, heavier electron mass and smaller effective speed
of light. Therefore, an abnormality occurs in the 3p× 3p
supercell, which shows a periodicity of three in the distri-
butions of energy gap, mass and effective speed of light.

The band structures near the Fermi level are protected by
the AB sublattice symmetry. The symmetry breaking caused
by the buckling disorder of one cell may be compensated by
another cell. When N is small, the probability of the genera-
tion of the compensated structure is small. With the N → ∞,
the probability become large and the average effect on the
silicene will eventually vanish. This indicates that the in-
finite silicene sheet shares the similar properties with the
pristine silicene. Thus, it is predicted that the buckling dis-
order may not change the properties obtained from pris-
tine silicene, such as the semimetal band structure, the
high mobility of the quasiparticles, the topological gap18

and the band structures of hydrogenated and lithiated sil-
icene63–65.

3.3 Energy gap with electric field

The essential condition to build FET devices using silicene is
the generation of a gap. The application of electric field is a
commonly used method. In the followings, we show the effect
of the electric field on randomly buckled silicene. The tight-
binding Hamiltonian with the electric field is also described
by Eq. (1), where the Hi,i become20

Hi,i =


εs + eEz 0 0 0

0 εp + eEz 0 0
0 0 εp + eEz 0
0 0 0 εp + eEz


(10)

instead of Eq. (2), where E is the electric field in Z direction,
e is the charge of the electron and z is the hight in Z direction.

A large electric field is needed to generate a sufficient gap
in pristine silicene at zero temperature.20,21 To investigate sys-
temically the thermal effect together with the electric field E
on the silicene, we calculate the electronic properties of the
8× 8 silicene with different E and different temperature T .
An electric field varies from 0.01V/Å to 0.1V/Å is applied to
the 8× 8 supercells at 0K, 150K, 300K and 450K. N = 2000
structures are sampled using the Metropolis algorithm for each
situation.

The gap statistics of the 8×8 silicene ensemble at 300K is
shown in Fig. 9(a-i). As the electric field increases, the peak
shifts right. The gaps change linearly with the electric field,
as shown in Fig. 9(j). At 0K, the buckling heights in silicene
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Fig. 9 (Color online) (a-i) Distributions of the gaps of 8×8 cell
with E = 0.01−0.09V/Å at 300K. (j) The mean value of each
ensemble at 0K, 150K, 300K and 450K.

1–9 | 7

Page 7 of 9 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



become ordered. The relation between gap ∆ and electric field
E at 0K is consistent with the former study.20 The ∆(E) curve
at 150K is almost the same to the 0K curve with only a small
shift upward. At 300K and 450K, the shifts are more obvi-
ous. A higher temperature causes a larger gap for the same
E. To generate a band ∆ = 37meV at 0K, an electric field
E = 0.7V/Å is needed while only E = 0.1V/Å is needed at
450K. It means that compared with the pristine silicene, the
randomly buckled silicene need much smaller electric field to
generate the same gap. The main reason is that the average
buckling height becomes larger in the thermal field, which in-
creases z in Eq. (9). Therefore, the symmetry between AB
sublattices are easier to be broken in a small electric field.

4 Summary

In summary, we have investigated the effect of thermal field on
the electronic properties of silicene. The vibration in buckling
height is the main Goldstone mode while the in-plane move-
ment is frozen at room temperature. The randomly buckled
structure due to thermal fluctuation is used to simulate the sil-
icene at nonzero temperature. The long time average of the
electronic structure of silicene can be described by an ensem-
ble which consist of numerous randomly buckled structures.
Using the finite-size scaling approach, N × N(N = 1,2.....)
supercells are calculated and the property of the realistic sil-
icene material is predicted by extrapolation to the limit N →∞.
From the statistics of the gaps, the masses of Dirac fermions
and the effective speed of light as a function of N, we conclude
that the effect of buckling disorder is smeared out as N → ∞.
Thus, the randomly buckled silicene shares almost the same
electronic properties as pristine silicene. Moreover, to gener-
ate a band gap, the randomly buckled silicene need much s-
maller electric field than the pristine silicene. The higher tem-
perature corresponds to a larger gap under the same electric
field. All these features of silicene have a great application
potential for electronic devices at room temperature.
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