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Abstract 

We report on the spectroscopy and dynamics of a Zr-naphthalene dicarboxylic acid 

(Zr-NDC) MOF in different diluted solvent suspensions and in a concentrated tetrahydrofuran 

(THF) one. In a diluted diethyl ether (DE) suspension, we observed intraparticle excimers 

formation between neighboring naphthalene organic linkers, leading to a red-shifted broad 

band in the emission spectrum and to a dynamics composed of three components of τ1= 650 

ps, τ2= 3.7 ns and τ3= 13.9 ns, assigned to the excimers photoproduction, monomers and 

excimers lifetimes, respectively. Furthermore, both absorption and emission spectra show a 

blue shift in more polar solvent characterized by the solvent polarity function f(ε,n). We also 

observed changes in the excimers formation time (490-840 ps) probably due to a variation in 

the MOF structural fluctuation induced by solvent filling. The global fluorescence quantum 

yield of these suspensions is around 0.30 ± 0.05. At higher concentrations of the MOF 

particles, we observed aggregates absorption and emission signals, having an intercrystal 

excimers formation in ~5 ps in a THF suspension, ~100 times shorter than the observed in a 

diluted one. Our results give the spectral and dynamical properties of a Zr-NDC MOF in 

solvent suspensions, opening the way to further studies of this kind of MOFs interacting with 

fluorescent dyes for possible photonics applications. 
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1. Introduction 

 

 During the latest two decades, research on the design of novel fluorescent 

nanomaterials with phototunable properties has aroused a great interest due to their 

applications in diverse fields of science and technology as nanophotonics or nanomedicine.1, 2 

Metal-Organic Framework (MOF) materials are one of the newest and promising 

nanomaterials for several applications. Owing to their excellent structural properties, like high 

specific surface areas, tunable cavity and related entrance volumes as well as their free and 

accessible cavities, MOFs have attracted considerable attention,3, 4 as potential materials for a 

wide range of applications: chemical sensors,5-10 optoelectronic devices,11, 12 gas storage,13-16 

catalysis17-19 and drug delivery,20-23 to cite few of them. For example, recently, MIL-100 has 

used to photodeliver an antitumoral drug (Topotecan), using one or two photon excitations.23 

Thus, great progresses have been made to develop several kinds of MOFs containing specific 

ligands/metals and having different pore sizes, internal cavities and chemical structures.4, 24, 25 

While many contributions have demonstrated the use of MOFs in catalysis, gas storage and 

drug delivery, their luminescence properties are at the early stage of study and application.26, 

27 Because of their chemical structure (composed by metal nodes and organic linkers), their 

luminescence can originate from: 1) the metal nodes, 2) the organic ligands, 3) the interaction 

between the metal and organic ligand (Metal-to-Ligand charge transfer (MLCT) or Ligand-to-

Metal charge transfer (LMCT)), 4) Antennae effects, or 5) excimer/exciplex due to 

photoevents between the ligands taking place in the excited state.26 Several studies have 

focused on the photoluminescence properties of MOFs composed by lanthanide (Ln) ions as 

metal nodes. Their luminescence properties are governed by energy transfer (antennae effects) 

from the organic linkers to the metal nodes, and the emission spectra are characterized by 

narrow emission bands of Ln ions transitions.28, 29 The use of the Ln-based MOFs for both 

sensing and white light emitting materials has been demonstrated.6, 30, 31  

A large number of MOFs having the organic linker as the emissive part, is Zn-based,32, 

33 which have been proposed for sensing small molecules.34, 35 For others metal-based MOFs, 

like [Mg(DHT)(DMF)2]n, the emission color, used as sensor of small molecules, depends on a 

proton-transfer process taking place in the organic linker.36 BODIPY- and porphyrin-based 

MOFs (BOB and BOP) exhibit green and red emissions, respectively,  from the organic 

ligand due to an energy transfer.37 From the point of view of dynamics, only few studies in 

which the emission of excimers species due to the interaction between the MOF organic 

linkers have been reported.32, 38 
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On the other hand, owing to their nano- and micro-porous structure, MOFs can act as 

hosts for luminescent dyes opening the possibility to energy transfer (ET) photoevents in the 

formed host-guest hybrid complexes. These hybrid materials are proposed for energy 

harvesting,39 detection of volatile organic compounds,40, 41 organic photovoltaics,42 and white 

light emitting devices (WLEDs).12, 43  

Herein, we investigated the photodynamics of Zr-NDC in different solvent 

suspensions. For diluted suspensions, the interactions between the organic linkers of the same 

MOF nanoparticle lead to excimers formation in 490-840 ps and exhibit excimers emission 

with longer lifetimes (13-15 ns). Armed with the femtosecond (fs) spectroscopy we also 

studied the photodynamical behavior of a high concentrated Zr-NDC in a tetrahydrofuran 

(THF) suspension. We observed an ultrafast component (~5 ps) owing to the interaction 

between NDC linkers of neighboring MOF crystals. Our results shed light on the 

photobehavior of a Zr-NDC MOF in different solvent suspensions, paving the way to further 

investigations for possible photonics applications.  

 

2. Experimental Section 
 

Zr-NDC was prepared according to the procedures reported in the original 

references.44, 45 X-ray diffraction (Bruker D8 diffractometer, Cu Kα radiation) was used to 

confirm the crystalline structure of the Zr-NDC. The synthesis method and corresponding 

analytical data are given in Electronic Supplementary Information (ESI†). 

For the spectroscopic studies, the solvents (anhydrous): acetonitrile (ACN, 99.8%), 

dioxane (DO, 99.8%), tetrahydrofuran (THF, 99.9%), diethyl ether (DE, 99.9%) and 

dichloromethane (DCM, 99.9%) were from Sigma-Aldrich, and used as received. The diluted 

solvent suspensions were prepared by adding ~1 mg of Zr-NDC solid to ~20 mL of the 

solvent and sonicating during 15 minutes. The concentrated Zr-NDC in THF suspension was 

prepared by adding ~1 mg of Zr-NDC solid to ~1 ml of THF solvent and sonicating during 15 

minutes.  

The steady-state UV-visible absorption and fluorescence spectra have been recorded 

using JASCO V-670 and FluoroMax-4 (Jobin-Yvone) spectrophotometers, respectively. 

Fluorescence quantum yield of Zr-NDC suspensions in the used solvents were measured 

using an integrating sphere setup Quanta from Horiba coupled to FluoroMax-4 (Jobin-Yvone) 

spectrophotometer. To get scattering-free spectra of these suspensions, we have diluted the 

samples. Picosecond emission decays were measured using a time-correlated single-photon 

counting (TSCPC) system.46 The samples were excited by a 40-ps pulsed diode laser centred 
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at 371 nm (<5 mW, 40 MHz repetition rate). The emission signal was collected at the magic 

angle and the instrument response function (IRF) was ~70 ps. The decays were deconvoluted 

and fitted to a multiexponential function using the FLUOFIT package (PicoQuant) allowing 

single and global fits. The quality of the fit was estimated by χ2, which was always below 1.2.  

The femtosecond (fs) emission transients have been collected using the fluorescence 

up-conversion technique. The system consists of a femtosecond Ti:sapphire oscillator 

(MaiTai HP, Spectra Physics) coupled to a second harmonic generation and up-conversion 

setups.47 The oscillator pulses (90 fs, 250 mW, 80 MHz) were centered at 700, 720 or 740 nm 

and doubled in an optical setup through a 0.5-mm BBO crystal to generate a pumping beam at 

350, 360 or 370 nm, respectively (~ 0.1 nJ). The polarization of the latter was set to magic 

angle in respect to the fundamental beam. The sample has been placed in a 1-mm thick 

rotating cell. The fluorescence was focused with reflective optics into a 1.0-mm BBO crystal 

and gated with the remaining fundamental fs-beam. The IRF of the full setup (measured as a 

Raman signal of pure solvent) was ~230 fs. To analyze the decays, a multiexponential 

function convoluted with the IRF was used to fit the experimental transients. All the 

experiments were performed at 293 K. 

 

3. Results and Discussion 

 

Figure 1 shows the SEM images, X-rays diffraction pattern, and a structural 

representation of Zr-NDC. Clearly, the sample is a highly crystalline material of an octahedral 

shape which edge is ≤ 400 nm. The structure (Figure 1D) contains two different internal 

cavities (a octahedral central cage with a pore size of ~14 Å surrounded by eight corner 

tetrahedral ones whose pores size is ~11 Å).48 The topological structure shows a possible π-π 

interaction between the naphthalene rings. To explore the ligand-ligand interactions, we 

performed steady-state and ps-fs time-resolved emission studies of Zr-NDC in several diluted 

suspensions, and in a concentrated tetrahydrofuran (THF) one. 

 

3.1.  Zr-NDC Steady-State Absorption and Emission Spectra  

 

  To begin with, the UV-visible absorption and emission spectra of Zr-NDC compared 

to that of the organic linker (2,6-NDC) were recorded. Figure 2 A shows a comparison of the 

related spectra of both compounds in a diethyl ether (DE) suspension. Clearly, the absorption 

spectra for both systems are similar in shape (showing a vibrational structure, typical of 
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naphthalene derivatives) but that of Zr-NDC (0-0 transition at 357 nm) is shifted to longer 

wavelengths by 10 nm (800 cm-1). The shift reflects the interaction between the organic 

linkers and the Zr-oxide cluster part.48  

The emission spectrum of 2,6-NDC is a mirror-image of the absorption one (Figure 2 

A). That of Zr-NDC is red shifted due to interactions between the naphthalenes and the Zr-

oxide cluster parts, and exhibits a broader and red-shifted tail (around 450 nm). It is well 

known that naphthalenes at high concentrations or when they are embedded in polymeric 

matrixes form excimers (excited state dimers).49-51 The excimers formation is reflected by a 

broader and red-shifted emission band, similar to the one observed in the Zr-NDC MOF 

spectrum. Therefore, we assign the broad emission band at 450 nm to excimers luminescence. 

Its intensity is not very high as it will depend on both excimers formation and fluorescence 

quantum yields. The excitation spectrum of Zr-NDC in a DE suspension does not depend on 

the observation wavelengths, indicating the same ground-state origin of the emitters. 

Considering that the closest carbon-carbon distance (~4 Å) between two adjacent naphthalene 

rings into the MOF (from X-Ray),45 the excimers formation is topologically possible. In 

agreement with these observations, similar conformation of naphthalene molecules was 

observed for [Fe2(O)(O2CCH2C10H7)2(TACN-Me3)2](PF6)2 metal-organic complex, which 

exhibits a red-shifted emission band due to naphthalene excimers emission.52 Different 

theoretical reports have investigated the singlet-singlet and triplet-triplet electronic states of 

naphthalene dimers in different conformations (face-to-face, T-shaped, etc), showing that the 

face-to-face (or eclipsed) conformation is the preferred one for the singlet state, leading to 

excimers.53, 54 However, in the Zr-NDC MOF the naphthalenes linkers are interacting with Zr-

metal nodes giving place to a three-dimensional network, which modifies the electronic 

coupling between the naphthalenes, changing the monomers dynamics and excimers 

formation photoproperties. To get information on the excimer photoproduction, the 

photodynamics of Zr-NDC was investigated and compared to that of 2,6-NDC. 

 

3.2.  Zr-NDC Picosecond Time-Resolved Emission Observations 

 

Figure 2 B exhibits representative emission decays of Zr-NDC in a DE suspension observing 

at shorter (405 nm) and longer (500 nm) wavelengths, and upon excitation at 371 nm. Table 1 

gives the obtained lifetime values together with the normalized (to 100) preexponential 

factors (ai) and contributions (ci = τi x ai) using a global analysis procedure and multi-

exponential model. While the decay of 2,6-NDC in DE exhibits a monoexponential behavior 

due to monomers emission (at low concentrations it does not form excimers), giving a single 
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fluorescence lifetime of 8.9 ns, that of Zr-NDC exhibits a rich behavior in which we observed 

decaying and rising components. At shorter emission wavelengths (≤ 440 nm): we got three 

decay times; τ1= 650 ps, τ2= 3.7 ns and τ3= 13.9 ns, having the second component its 

maximum contribution at this region and opposite to the third one. However, for wavelengths 

longer than 470 nm, the τ3-component presents its maximum contribution, while that of τ2 has 

a very weak one, and τ1 is now a rising signal. It is clear that 3.7 and 13.9 ns emitters share a 

common decaying and rising channel reflected in the τ1 component. Thus, the 13.9 ns 

component is assigned to the excimer emission lifetime, the 3.7 ns corresponds to the 

monomer one, and the 650 ps is due to the excimer photoformation of closely naphthalene 

ligands. Comparable photodynamical behavior, in which the shorter component is assigned to 

the monomers and the longer one to the excimers, has been described for concentrated 

dimethyl-2,6-naphthalenedicarboxylate (2,6-NDC) in chloroform solutions.49, 50 Time-

resolved emission behavior of a highly concentrated (0.115 M) 2,6-NDC in a chloroform 

solution showed a biexponential behavior of 1.4 (assigned to the monomer species) and 15 ns 

(due to excimers ones), having the former its maximum contribution at the bluest part while 

the latter at the reddest one.49 In a similar way, 2,6-NDC in a less concentrated chloroform 

solution (~10-2 M) exhibited a biexponential behavior with 6.8 (monomers lifetime) and 13.4 

ns (excimers lifetime).50 Moreover, the fluorescence decays of poly(polyoxy-tetramethylene-

glycol naphthalene-2,6-dicarboxylate) (PTMN), even at lower concentration (1.3x10-5 M), 

also showed a biexponential decay giving time constants of 3.6 and 10.2 ns, assigned to the 

monomers and excimers lifetimes, respectively.49 To further investigate the photodynamics of 

the monomers in the Zr-NDC MOF, we have excited at 350 and observing at the bluest region 

(370 and 380 nm), where the emission is mainly from the MOF monomers. An accurate fit of 

the decays at these wavelengths, gating the signals within a 12-ns window, gives two lifetimes 

of 4.9 ns and 690 ps due to monomers emission and excimers formation, respectively.  

 

3.3. Solvent Effect on Zr-NDC MOF 

 

After understanding the Zr-NDC photobehavior in a DE suspension, we have explored 

the effect of solvent on the steady-state spectra and ps-photodynamics. Figure 3 displays 

normalized absorption and emission spectra together with the fluorescence decays at 500 nm 

upon excitation at 371 nm, using suspensions of acetonitrile (ACN), dioxane (DO), 

tetrahydrofuran (THF), diethyl ether (DE) and dichloromethane (DIC). Table 2 gives the 

obtained values of the emission decay parameters. The absorption spectra (Figure 3A) in the 

used solvents (except for DO) are similar in shape, showing a small shift to shorter 
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wavelengths with the solvent polarity function (f(ε,n); where ε and n are the dielectric 

constant and the refraction index, respectively). A comparable behavior is observed for the 

emission intensity maxima (Figure 3B), exhibiting a blue shift at higher values of f(ε,n) 

(Figure S1 in ESI†). However, both the absorption and emission spectra of the free linker, 

2,6-NDC, do not show any simple correlation with f(ε,n) (Figure S2 in ESI†). Thus, we 

believe that the interaction between the naphthalene linkers and the Zr-metal cluster part in 

Zr-NDC is behind the hypsochromic behavior of Zr-NDC emission. Larger negative 

solvatochromism effects have been observed for other MOF-based systems as 

((WS4Cu4)I2(dptz)3)·DMF)n
55 and (Mg–NDI),56 leading to their use as chemical sensor. On 

the other hand, the emission quantum yield of Zr-NDC in the used solvents is almost the same 

(0.30 ± 0.05). Focusing now on the ps-dynamics (Figure 3C and Figure S3 in ESI†), while the 

emission lifetimes of the monomers (τ2=3.7-4.2 ns) and excimers (τ3= 13.2-14.8 ns) present 

small changes with the solvent nature, the component corresponding with the excimers 

formation exhibits a significant change (τ1= 490-840 ps) with the medium, reflecting the role 

of the environment on excimers formation (Table 2). We could not find any simple 

correlation between the values of τ1 with the solvent polarity, acidity or basicity parameters. 

However, we suggest that a structure breathing of Zr-NDC MOF can happen by filling its 

pore with solvent molecules.57 This lattice structural modification can alter the linker-linker 

distance, producing changes in the excimers formation, whose rate constant depends on the 

donor-acceptor distance and orientation. Recently ultrafast 2D IR spectroscopy has shown 

that filling the pores of a functionalized UiO-66 MOF with dimethylformamide leads to 

different structural fluctuations of the MOF,58 substantially slowing down its dynamics. Other 

study on the so called a flexibility of MOF,57, 59 reported on the structural lattice change in 

presence of trapped solvent into the cages.60 In addition to that, another possible explanation 

of observing a solvent-dependent risetime of the excimers formation resides on the different 

dielectric constants of the used solvents (shielding effect) that could affect the electronic 

couplings between the 2,6-NDC linkers of the Zr-NDC MOF, modifying the energy transfer 

rate constant between the involved entities.  

     To conclude this part, Scheme 1 summarizes the above discussion of the 

photoevents taking place after the Zr-NDC photoexcitation in diluted suspensions. At S1 the 

naphthalene monomers lead two different pathways: 1) they emit UV-blue light in 3.6-4.1 ns, 

and 2) they interact with other monomers at the ground state to form excimers in 490-840 ps, 

which emit blue light in 13-15 ns. 

 

3.4. Femtosecond Observation  
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To explore the photobehaviour of Zr-NDC at higher concentration in the suspension, 

we have carried out both steady-state and fs-emission time-resolved measurements using 

highly concentrated Zr-NDC THF suspension (~1 mg / ml). Figure 4 exhibits the normalized 

absorption and emission spectra of a high concentrated Zr-NDC in THF suspension compared 

to those obtained for a diluted one, whereas Figure S4A (ESI†) shows the absorption 

spectrum of the concentrated sample (without normalize). While the absorption spectra are 

similar in shape, that of the concentrated sample displays a red-tail due to the interaction of 

closely MOFs nano-crystals (Figure 4A and Figure S4 A in ESI†). When exciting at 335 nm, 

the emission spectra are also similar in shape, but that of the concentrated sample is also red-

shifted (Figure 4B). The shift is an indication of the particle interaction. Moreover, when 

exciting at 370 nm the concentrated sample, the emission spectrum is quite different, showing 

a broad band similar to that obtained for the Zr-NDC in solid-state (Figure 4B). The excitation 

spectrum of the concentrated sample (Figure S4 B in ESI†) also exhibits an increase in the 

intensity of the red-tail at longer observation wavelengths, indicating a major contribution of 

this population in the red-shifted emission signal. The appearance of the 380 nm absorption 

band in the excitation spectrum at higher Zr-NDC concentrations, and its absence in the 

spectrum of diluted sample reflect the aggregates (interparticle) absorption. Thus, the above 

observations indicate that at higher concentrations neighboring crystals of MOFs in 

suspensions strongly interact, showing red-shifted absorption and emission bands. 

To get insight on the ultrafast photobehavior of the interacting closely crystals, we 

performed femtosecond (fs) time-resolved emission study in THF exciting at 350, 360 and 

370 nm (Figure 4C). At the latter, we are mainly pumping the aggregates as said above 

(Figure 4A), while at 350 and 360 nm, both aggregated and non-aggregated MOF 

nanoparticles will be interrogated. Figure 4D shows the fs-emission transients upon excitation 

at 360 nm. In addition to the long sub-ns decaying and rising component observed in the ps-

experiments (using diluted MOF suspensions), we got an ultrafast time (~5 ps) which is 

decaying at the bluest side of the spectra and rising at the reddest one. As said above, exciting 

at 360 nm will lead to excimers formation from monomers of the same crystals and from 

interacting ones. Thus, the observed dynamics is a combination of both intra as well as inter 

crystals interactions. To support this interpretation we also excited at different wavelengths 

(350 and 370 nm) and observed at 470 nm (Figure 4C). While the rising component exciting 

at 350 nm is 16 ps those upon exciting at 360 and 370 nm (the absorption is mainly due to the 

aggregated crystals) exhibit a substantial decrease being 5 and 3 ps, respectively. This 

observation clearly indicates that a component of 3 or 5 ps is mainly due to excimers 
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formation between closely MOF crystals. Note that the VR-cooling takes place in a similar 

time-scale than that observed here, so we cannot discard a contribution of the former to the 

obtained components. To check the possibility of a Zr-NDC photodegradation under fs-

irradiation, we have taken the absorption spectra at different times (up to 15 min) using 350 

nm fs-pulse laser beam. Figure S5 (ESI†) shows no significant spectral changes (in shape) 

suggesting that the fs-transient are free from a possible photodegradation. 

To summarize this part, Scheme 2 displays a representation of the two different 

possibilities for the excimers photoformation, depending on the suspension concentration. In 

Zr-NDC diluted suspensions, the excimers photoformation takes place in 490-840 ps and it is 

mainly due to the interactions between naphthalenes of the same MOF nanoparticle. 

However, at higher concentrations the excimers are mostly formed in ~5 ps owing to the 

interactions between naphthalenes of neighboring MOF crystals.  
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4. Conclusion 

 

Herein, we have reported on the spectral and photophysical properties of a Zr-NDC 

MOF in solvent suspensions, showing excimers formation between neighboring naphthalene 

linkers. The excimers formation is reflected by a broad red-shifted band in the Zr-NDC 

emission spectra and also by its dynamics, giving three components of τ1= 650 ps (excimer 

formation process), τ2= 3.7 ns (monomer lifetime) and τ3= 13.9 ns (excimer lifetime). 

Increasing the polarity of the media, a blue shift in the emission spectra was observed. 

Moreover, while the monomer and excimer lifetimes do not exhibit much change with the 

medium, that of excimer photoformation shows a considerably change of almost twice (from 

490 ps in ACN to 840 ps in DCM suspensions). We believe that the filling of the Zr-NDC 

pores with solvent molecules can lead to a structure breathing, modifying the linker-linker 

distance and therefore, producing changes in the excimers formation. At higher Zr-NDC 

concentrations, we observed an aggregation effect, reflected by a red-shift in the absorption 

and emission spectra. The fs-dynamics studies of the MOF in a concentrated THF suspension 

show an ultrafast component (~5 ps) assigned to the intercrystals excimers photoformations 

owing to the interaction between naphthalenes of closely MOF particles.   

Our results give information on spectral and dynamical behaviors of Zr-NDC MOF in 

suspensions opening the way to further studies for future applications in photonics.  
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Captions of figures and tables 

 

Scheme 1. Proposed mechanisms for the photoprocesses taking place within Zr-NDC MOF in 

the used diluted solvent suspensions after the photoexcitation. M* and (MM*) are the excited 

monomers and excimers, respectively. 

 

Scheme 2. Representation of the excimers photoformation in A) Diluted suspensions, due to 

interaction between naphthalenes of the same MOF crystal; and B) Concentrated THF 

suspension, owing to interactions between naphthalenes of closely MOF crystals.  

 

Figure 1. (A), (B) Scanning Electron Microscopy (SEM) images of Zr-NDC crystals. (C) X-

ray diffraction spectrum of Zr-NDC (Bruker D8 diffractometer, Cu Kα radiation). (D) 

Illustration of the Zr-NDC MOF crystalline structure (Zr polyhedron is represented by blue, O 

by red atoms, C by black and H by grey). The yellow spheres indicate the tetrahedral cages 

while the green ones those of the octahedral pores. 

 
Figure 2. (A) Normalized UV-visible absorption and emission spectra of 2,6-NDC (black 

dashed line) and Zr-NDC (red solid line) in DE suspensions. For emission the excitation 

wavelength was 335 nm. (B) Magic-angle emission decays of Zr-NDC (blue and red, 

respectively) in DE suspensions.  The observation wavelength is indicated as inset and the 

samples were excited at 371 nm. The solid lines are from the best-fit using a multiexponential 

function and the IRF is the instrumental response function. 

  

Figure 3. Normalized UV-visible (A) absorption and (B) fluorescence spectra of Zr-NDC in 

(1) ACN (black line), (2) THF (red line), (3) DE (dark yellow line), (4) DO (blue line) and (5) 

DIC (green line) suspensions. For emission, the excitation wavelength was 335 nm. (C) 

Magic-angle emission decays of Zr-NDC in (1) ACN (red), (2) THF (green), (3) DO (blue), 

(4) DE (grey) and (5) DIC (pink) suspensions.  The samples were excited at 371 nm and the 

observation wavelength was 500 nm. The solid lines are from the best-fit using a 

multiexponential function and the IRF is the instrumental response function. 

 

Figure 4. Normalized UV-visible (A) absorption spectra of diluted (~1mg / 20mL, dashed 

line) and concentrated (~1mg / mL, solid line) Zr-NDC THF suspensions; and (B) emission 

spectra of a diluted (black dashed line, λexc = 335 nm) and concentrated (red solid line and 

blue dotted line λexc =335 and 370 nm, respectively) Zr-NDC THF suspensions, and Zr-NDC 
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in solid-state (green dashed-dotted line, λexc = 350 nm). Fs-emission transients of high 

concentrated Zr-NDC THF suspension exciting at (C) 350, 360 and 370 nm and observing at 

470 nm, and (D) exciting at 360 nm and observing as indicated. The solid lines are from the 

best multiexponential fits. 

 

Table 1. Values of time constants (τi), normalized (to 100) pre-exponential factors (ai) and 

fractional contributions (ci= τiai) obtained from the fit of the emission decays of Zr-NDC in a 

DE suspension upon excitation at 371 nm and observation as indicated. The negative sign for 

a1 indicates a rising component in the emission signal. The error estimation is provided by the 

fluofit analysis of the decay. 

 

Table 2. Values of time constants (τi) obtained from the global fit of the emission decays of 

Zr-NDC in the used solvents, upon excitation at 371 nm and observation as indicated. The 

error estimation is provided by the fluofit analysis of the decay. 
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Scheme 1. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Scheme 2. 
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Figure 1. 
 
 

A)                                                                        B) 
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Figure 2. 
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Figure 3. 
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Figure 4.  
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Table 1. 
 

 
 

 
Table 2.  

 
 

 
 
 
 

 
 

(*) Decay at the blue (405-435 nm), while it is a rise at the red (475-525 nm) regions. 
 
 
 

λ obs (nm) τ1 / ps 
± 50 

a1 c1 τ2 / ns 
± 0.2 

a2 c2 τ3 / ns 
± 0.3 

a3  c3 

405 650 45 8 3.7 40 38 13.9 15 54 

435 650 40 5 3.7 35 26 13.9 25 69 

475 650 -100 -100 3.7 18 6 13.9 82 94 

500 650 -100 -100 3.7 15 5 13.9 85 95 

525 650 -100 -100 3.7 10 3 13.9 90 97 

Solvent τ1 / ps (*) 
± 50 

τ2 / ns 
± 0.2 

τ3 / ns 
± 0.3  

Acetonitrile 490 3.9 14.3 
Dioxane 550 4.3 13.5 

Tetrahydrofuran 620 4.4 14.8 
Diethyl Ether 650 3.7 13.9 

Dichloromethane 840 4.2 13.2 
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