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Bayesian inference of protein ensembles from SAXS data 

L. D. Antonov,a S. Olsson,b,c W. Boomsmad and T. Hamelrycka 

The inherent flexibility of intrinsically disordered proteins (IDPs) and multi-domain proteins with intrinsically disordered 

regions (IDRs), presents challenges to structural analysis. These macromolecules need to be represented by an ensemble 

of conformations, rather than a single structure. Small-angle X-ray scattering (SAXS) experiments capture ensemble-

averaged data for the set of conformations. We present a Bayesian approach to ensemble inference from SAXS data, 

called Bayesian Ensemble SAXS (BE-SAXS). We address two issues with existing methods: the use of a finite ensemble of 

structures to represent the underlying distribution, and the selection of that ensemble as a subset of an initial pool of 

structures. This is achieved through the formulation of a Bayesian posterior of the conformational space. BE-SAXS modifies 

a structural prior distribution in accordance with the experimental data. It uses multi-step expectation maximization, with 

alternating rounds of Markov-chain Monte Carlo simulation and empirical Bayes optimization. We demonstrate the 

method by employing it to obtain a conformational ensemble of the antitoxin PaaA2 and comparing the results to a 

published ensemble.

Introduction 

Recent years have witnessed increased recognition of the 

ubiquity and importance of intrinsically disordered proteins 

(IDPs) and multi-domain proteins with disordered intra-

domain linker regions (IDRs).1–5 Long unstructured regions can 

be found in more than half of eukaryotic proteins and at least 

25% are completely disordered.6 It is becoming evident that 

structural plasticity plays an important role in the function of 

biological macromolecules, e.g. in areas such as transcription 

regulation, cell signaling, and the function of chaperones.1,7,8 

Misfolding and aggregation of IDPs are associated with many 

human diseases, such as Alzheimer’s  and Parkinson’s.9,10 

These flexible proteins comprise dynamic systems that explore 

a conformational space that cannot be adequately described 

by a single state, but requires an ensemble of conformations.  

 Small-angle X-ray scattering (SAXS) and nuclear magnetic 

resonance (NMR), as solution structure methods, are well-

suited to characterize structural ensembles. SAXS, in particular, 

is a powerful technique, yielding averaged, low-resolution 

structural information across multiple spatial orders of 

magnitude. Combined with appropriate ensemble-based 

computational methodology, it could allow for the 

characterization of IDP and IDR flexibility not accessible 

through NMR spectroscopy or X-ray crystallography alone.11,12  

 Current computational methods aim to recover a 

representative ensemble as a subset of conformations from a 

large pool of candidate structures, based on experimental 

SAXS data.11–14 The initial pool of structures is generated from 

either knowledge- or physics-based models. A common 

assumption in these approaches is that the structural 

ensemble can be represented accurately by a weighted 

average of discrete conformations. Small sets of conformers 

are typically used as an approximation,15 in order to avoid 

overfitting and to reduce the computational load. The 

Ensemble Optimization Method (EOM) uses a genetic 

algorithm with a predefined number of structures of equal 

weight for ensemble selection,16 while the improved EOM 2.0 

optimizes individual weights together with an ensemble size 

within a customizable range.12 Minimal Ensemble Search (MES) 

uses a genetic algorithm on a population of ensembles of sizes 

between 2 and 5 structures.17 In the Basis-Set Supported SAXS 

(BSS-SAXS) approach, conformations are assigned to a small 

number of clusters, first by RMSD and then by scattering 

pattern similarity, after which a Bayesian MC algorithm is used 

to determine the cluster weights.18 The Ensemble Refinement 

of SAXS (EROS) method similarly uses RMSD clustering 

followed by maximum entropy19 cluster weight optimization.20 

In the program ENSEMBLE, a predetermined number of 

conformations is employed, with either equal or varied 

weights, and the ensemble is optimized using axial descent or 

simulated annealing algorithms.21–24 The Sparse Ensemble 

Selection (SES) method reformulates the ensemble selection 

problem as a linear least-squares problem that optimizes the 

weights of all structures in the initial pool, yielding a sparse 

ensemble of conformations.25 Many of these approaches limit 

the ensemble size explicitly while others, e.g. BSS-SAXS and 
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SES, use sparsity-inducing algorithms. However, in flexible 

systems, such as IDPs and IDRs, a small number of 

conformations may not adequately explain the data.25 

 In contrast, a number of methodologies that have been 

applied to NMR data eschew reweighing of structures in favor 

of probabilistic sampling according to the maximum entropy 

principle.15,26–32 In this manner, an ensemble-based description 

is obtained that balances the experimental data with prior 

information, typically encoded in a force field. 

 Here, we approach SAXS data in a similar manner, resulting 

in a new method for inference of structural ensembles, called 

Bayesian Ensemble SAXS (BE-SAXS). BE-SAXS combines a 

generative, fine-grained (i.e. atomic-level) model of protein 

structure with experimental SAXS data. Through an iterative 

expectation maximization (EM) algorithm the method adapts a 

prior distribution concerning protein structure in atomic detail 

to match the SAXS ensemble average, within the experimental 

uncertainty. The resulting posterior distribution takes the 

ensemble nature of the data into account and correctly 

balances information present in both the force field and the 

experimental data. The number of model parameters depends 

only on the number of experimental observables and 

representative structures can be sampled a posteriori. 

Furthermore, since conformations are not restricted to a 

subset of an initial pool of structures, bias attributable to the 

initial selection process and limited sampling is avoided.  

 We apply the BE-SAXS method to SAXS data for the flexible 

antitoxin PaaA2 and show substantial agreement between the 

recovered distribution of conformations and the published 

structural ensemble of the protein. These results illustrate the 

utility of the method in elucidating the flexibility of partially- or 

fully-disordered proteins. 

Theory and methods 

Inferential structural ensemble determination 

In probabilistic inferential structure determination (ISD) the 

goal is to establish a posterior distribution 𝑝(𝐱|𝐝, 𝛔2) of 

protein conformations 𝐱, given some experimental data 𝐝 with 

experimental errors 𝛔2.33 The classic ISD approach assumes 

that the experimental data represent a single conformation. 

Consequently, application of the method to disordered 

systems, which are characterized by highly heterogeneous 

ensembles, may give misleading results.27 Such flexible 

systems require an ensemble-based inference method. 

 SAXS experiments measure the temporal (i.e. over the 

measurement duration) and ensemble average of the X-ray 

scattering from all orientations and conformations of the 

proteins in a solution. Therefore, 𝐝 is a noisy observation of 

the true ensemble average 𝐞 of the scattering 𝐟 for each 

individual conformation of a protein. 𝐟 is a lower-dimensional 

projection, or coarse-grained representation, of the fine-

grained variable 𝐱, through a deterministic function, 𝐟 ≡ ℎ(𝐱). 

A model for such ensemble-averaged data was previously 

expressed as a Bayesian network and applied in the context of 

NMR data.27,28 It gives rise to the following posterior 

distribution over the coarse-grained variables: 

𝑝(𝐞, 𝐟|𝐝, 𝛔2) ∝ 𝑝(𝐝|𝐞, 𝛔2)𝑝(𝐟|𝐞)𝑝(𝐞). (1) 

 This coarse-grained probabilistic model is then combined 

with the prior distribution of the fine-grained variable 𝐱, 

according to an appropriate probabilistic prior model 𝑀, using 

the reference ratio method (RRM).34 The RRM is based on the 

principles of probability kinematics, a variant of Bayesian 

updating that can be used to modify a given probability 

distribution, in the light of new evidence regarding partitions 

of the distribution’s sample space.35 The updated posterior is: 

𝑝(𝐞, 𝐟, 𝐱|𝐝, 𝛔2, 𝑀) ∝ 𝑝(𝐝|𝐞, 𝛔2)
𝑝(𝐟|𝐞)

𝑝(𝐟|𝑀)
𝑝(𝐞)𝑝(𝐱|𝑀). (2) 

 This combined posterior is the distribution with minimum 

Kullback-Leibler divergence from the fine-grained prior 

𝑝(𝐱|𝑀), under the requirement that the marginal distribution 

of the coarse-grained variables follows eqn (1).36 

SAXS ensembles 

In the case of SAXS, the experimental data 𝐝 and the ensemble 

average 𝐞 constitute vectors of scattering intensities, while the 

structures 𝐱 are represented as vectors of atomic coordinates. 

A force field or a fragment library could be used to sample 

from the prior distribution 𝑝(𝐱|𝑀); here, we use the PROFASI 

force field.37 A coarse-grained vector 𝐟 is generated through a 

forward model by approximating the scattering function ℎ(𝐱) 

with the Debye formula, which holds for spherical scatterers:38 

𝐟 ≡ 𝑔(𝐱, 𝑞) = ∑ ∑ 𝐹𝑖(𝑞)𝐹𝑗(𝑞)
sin(𝑞𝑟𝑖𝑗)

𝑞𝑟𝑖𝑗
 

𝐾

𝑗=1

𝐾

𝑖=1

, (3) 

where 𝑞 = (4𝜋 sin 𝜃)/𝜆 is the momentum transfer, with 

scattering angle 2𝜃 and wavelength of the x-ray beam 𝜆. 𝐹𝑖(𝑞) 

is the atomic form factor for atom 𝑖, 𝑟𝑖𝑗  is the distance 

between atoms 𝑖 and 𝑗, and 𝐾 is the number of atoms in the 

structure. The X-ray scattering factors are calculated using a 

linear combination of Gaussians fit to empirical data.39 

 Posterior distribution. We use a Gaussian distribution for 

the likelihood, 𝑝(𝐝|𝐞, 𝛔2), to relate the data to the ensemble 

average 𝐞. For the ratio of the two unknown distributions 

𝑝(𝐟|𝐞) and 𝑝(𝐟|𝑀) in eqn (2) we use a log-linear model 

𝒢(𝐟|𝐞, 𝐁) with a link function 𝑙(𝐁, 𝐞) = 𝐁𝐞−1,40 

𝒢(𝐟|𝐞, 𝐁) =
exp(𝐟𝑇𝑩𝒆−1)

𝒵
, (4) 

where 𝐁 is a diagonal matrix and 𝒵 is a normalization 

constant. The matrix 𝐁 serves to match the first moment, 〈𝐟〉, 

of the coarse-grained prior represented by the PROFASI force 

field, to the ensemble average 𝐞. This model is scale-invariant 

when 𝐟 and 𝐞 are scaled together, i.e. 𝒢(𝐟|𝐞, 𝐁) = 𝒢(𝑐𝐟|𝑐𝐞, 𝐁) 

for any constant 𝑐. This is required due to the arbitrary scale of 

SAXS data. 

 Assuming a uniform prior for 𝐞, the joint posterior 

distribution from eqn (2) for SAXS ensembles becomes: 
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𝑝(𝐞, 𝐟, 𝐱|𝐝, 𝛔2, 𝐁) ∝ 𝒩(𝐝|𝐞, 𝛔2)𝒢(𝐟|𝐞, 𝐁) exp(−𝛽𝐸prof(𝐱)). (5) 

 In the last term, 𝐸prof is the energy of the PROFASI force 

field and 𝛽 ≡ 1/𝑘𝑇, where 𝑇 is the temperature and 𝑘 is the 

Boltzmann constant. 

 Determining B. We modify the EM algorithm described by 

Olsson et al,28 to estimate the matrix 𝐁 (Fig. 1). This 

corresponds to adopting an empirical Bayes strategy for the 

prior distribution of the ensemble posterior. 

 In the E-stage of iteration 𝑘 of the algorithm, a Markov 

chain Monte Carlo (MCMC) simulation, as implemented in the 

PHAISTOS framework,41 produces 𝑁 samples 𝒮(𝑘) =

{𝐟1..𝑁 , 𝐞1..𝑁 , 𝐱1..𝑁} from the posterior 𝑝(𝐞, 𝐟, 𝐱|𝐝, 𝛔2, 𝐁(𝑘)). The 

result is a conformational ensemble of structures together 

with their forward-computed SAXS profiles, whose average 

optimally matches the experimental data. The iterative 

algorithm is initialized with the zero matrix, 𝐁(0) = 𝟬, resulting 

in an unrestrained simulation with the structural prior, 

exp(−𝛽𝐸prof(𝐱)). 

 A new scaling matrix 𝐁(k+1) is estimated in the M-stage, by 

minimizing a 𝜒𝐸𝑀
2  objective function: 

𝐁(𝑘+1) = arg min
𝐁(𝑘+1)

∗
𝜒𝐸𝑀

2 , (6) 

with: 

𝜒𝐸𝑀
2 ≡ ‖

〈𝐞𝐁(𝑘+1)
∗ 〉 − 〈𝐟𝐁(𝑘+1)

∗ 〉

𝛔
‖

2

+ ‖𝐃(𝑘+1)‖
2

, (7) 

where 𝐃(𝑘+1) ≡ 𝐁(𝑘+1)
∗ − 𝐁𝑘 .  

 Conceptually, the M-stage aims to ensure that a given 

ensemble average 𝐞 and the matching coarse-grained average 

of the sampled structures 〈𝐟〉 coincide. It is necessary to 

normalize by the experimental errors in eqn (7), since SAXS 

data ranges over several orders of magnitude across the 

scattering profile. The role of the second term is to use 

Tikhonov regularization to avoid overfitting.42 Here, it is 

utilized specifically to avoid excessive changes to the matrix 𝐁 

due to finite sampling issues, allowing for monotonous 

convergence of the parameters. 

 The expectation of the coarse-grained variable, 〈𝐟𝐁(𝑘+1)
∗ 〉, is 

estimated from the 𝑁 samples using importance sampling:43 

〈𝐟𝐁(𝑘+1)
∗ 〉 ≈ ∑ 𝐟𝑖

exp(𝐟𝑖
𝑇𝐃(𝑘+1)𝐞𝑖

−1)

∑ exp(𝐟𝑗
𝑇𝐃(𝑘+1)𝐞𝑗

−1)𝑁
𝑗=1

𝑁

𝑖=1

. (8) 

 It is notable that the importance weights in eqn (8) do not 

change when 𝐟 and 𝐞 are scaled together. In practice, both the 

coarse-grained vector 𝐟 and the ensemble average 𝐞 are 

brought to scale with the experimental data 𝐝 – the former 

through a scaling coefficient determined at initialization, and 

the latter through the Gaussian ensemble likelihood. 

Therefore, the matrix 𝐁(𝑘+1) and the associated structural 

ensemble produced by the algorithm remain invariant, 

regardless of the absolute magnitude of 𝐝. 

 The expectation of the ensemble average is approximated 

by the sample average: 

〈𝐞𝐁(𝑘+1)
∗ 〉 ≈

1

𝑁
∑ 𝐞𝑖

𝑁

𝑖=1

. (9) 

 For further details see the work of Olsson et al.28 

 We use the basin hopping stochastic global optimization 

algorithm,44 for the minimization of the objective function in 

eqn (6); however, other optimization techniques such as 

genetic algorithms or parallel tempering may be utilized. In 

principle, because the function is convex, gradient descent 

algorithms are also applicable but we found that they can be 

unstable due to finite statistical sampling. Convergence can be 

considered achieved once the objective function falls below 

0.5, indicating incremental improvements within the 

experimental uncertainty of the data. 

Simulations 

 Experimental data. We utilized the published 

conformational ensemble of the disordered protein PaaA2 in 

order to test the BE-SAXS ensemble method.45 PaaA2 is an 

antitoxin that is encoded by a toxin-antitoxin module in 

Escherichia coli O157.46 In the absence of its binding partner, 

the toxin ParE2, PaaA2 behaves like an IDP. However, it 

contains two stable 𝛼-helical regions that are flanked by highly 

disordered stretches of amino acids.45 

Fig. 1 Flow chart of the BE-SAXS algorithm. The method ensures that the ensemble 

average of the posterior distribution matches the experimental SAXS data, through an 

empirical Bayes procedure, formulated as an iterative EM algorithm.  
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 The published structural ensemble of PaaA2 consists of 50 

conformations and is available from the PDB database under 

the code 3ZBE. The structures were selected by the application 

of a jackknife procedure to EOM-derived SAXS ensembles from 

a pool of NMR-restrained conformers.45 Following the 

Reference Ensemble Method,47 in order to validate the BE-

SAXS algorithm we used a SAXS forward model to create a 

synthetic data set from the reference ensemble of 50 

conformations. This allows controlling for all sources of 

uncertainty in the evaluation. We constructed the SAXS 

ensemble average data 𝐝 for the protein by generating SAXS 

profiles 𝐝𝑖  for each conformation, using the FoXS program,48 

and averaging the individual profiles: 

𝐝 =
1

50
∑ 𝐝𝑖

50

𝑖=1

. (10) 

 Experimental errors 𝛔2 were assigned as the population 

variance of the data. 

 Computation. The EM algorithm ran for a total of 21 

iterations. In each E-stage, the PHAISTOS framework was used 

to run 64 independent MCMC chains for 106 steps.41 Samples 

𝒮(𝑘) were saved every 103 steps to be used in the M-stage, 

after a 40% burn-in. The global optimization algorithm of the 

M-stage was run for up to 20 independent iterations, or until a 

stable solution was found. The algorithm reached convergence 

at iteration 10, as judged from the change in fit between EM 

steps, 𝜒𝐸𝑀
2 , from the ensemble SAXS profile fit, 𝜒𝑆𝐴𝑋𝑆

2 , and 

from the magnitude of the changes in the scaling matrix 𝐁. The 

measure of fit to the experimental data was defined as: 

𝜒𝑆𝐴𝑋𝑆
2 ≡

1

𝑁
‖

𝐝 − 〈𝐟〉

𝛔
‖

2

, (11) 

where 〈𝐟〉 is the ensemble average: 

〈𝐟〉 ≡
1

𝑁
∑ 𝐟𝑖

𝑁

𝑖=1

 (12) 

 The generative probabilistic models TorusDBN and 

BASILISK were used as proposal distributions during the MCMC 

simulation for main chain and side chain moves, 

respectively.49,50 The introduced bias was subsequently 

removed. The PROFASI force field at 𝑇 = 300 K was used as 

the prior distribution of the structures 𝐱.37 

 GPU calculations. The forward calculation of the SAXS 

profile is the most compute-intensive part of the BE-SAXS 

ensemble method. We used our GPU Parallel Page-Tile SAXS 

algorithm with atomic form factors to accelerate the 

computation of eqn (3).51,52 We utilized a 16-core Intel Xeon 

E5-2660 server with 2 NVIDIA GeForce GTX 690 GPU cards 

(4x1536 GPU cores), which allowed us to run the 64 MCMC 

chains in parallel. 

 To accelerate the M-stage, we implemented an OpenCL 

kernel that calculates eqn (8) on the GPU.53 The efficiency of 

this approach depends on the number of samples used; for 

this simulation, the GPU acceleration reduced the stage time 

by a factor of 3. 

 Ensembles. The structural ensembles for each EM iteration 

(EMi, for 𝑖 = 0, ⋯ ,20) were generated by uniformly sampling 

conformations from the 64 independent MCMC chains at 104 

MC-step intervals, after a 40% burn-in. This resulted in 3904 

structures per iteration. 128 structures were sampled 

uniformly from EM0 and EM9 in order to visualize the 

ensembles. 

Results and discussion 

Algorithm convergence for PaaA2 

In the E-stage of the first iteration of the BE-SAXS algorithm, 

the conformational ensemble EM0 of the protein PaaA2 was 

effectively sampled from an unrestrained PROFASI force field. 

The resulting ensemble average does not fit the SAXS 

scattering profile well, as evidenced by the high value of the 

𝜒𝑆𝐴𝑋𝑆
2  measure (Fig. 2). This suggests that PROFASI alone, as a 

minimalistic force field, does not accurately capture the details 

of the flexibility of PaaA2 represented in the calculated 

ensemble-averaged SAXS data. In subsequent iterations, 

however, the fit improves rapidly and reaches a stable region. 

The objective function, 𝜒𝐸𝑀
2 , also reaches a low value quickly 

and falls below 0.5 in iteration 9 (Fig. 2). At this level, by the 

nature of 𝜒𝐸𝑀
2 , modifications to the matrix 𝐁 produce changes 

in the importance sampling approximating distribution that are 

within the experimental uncertainty of the data. The individual 

coefficients of 𝐁 also stabilize at iteration 9, further indicating 

convergence. The equilibrium reached thereby is dynamic, due 

to the stochastic nature of the basin hopping global 

Fig. 2 Convergence of the BE-SAXS algorithm for the protein PaaA2. (Top) 𝜒𝐸𝑀
2  is a 

measure of the change in fit between the approximating and target distributions of the 

ensemble average at each iteration. (Bottom) 𝜒𝑆𝐴𝑋𝑆
2  measures the fit between the data 

and the posterior ensemble average 𝐟 at each iteration. The dotted red line indicates 

the point of convergence of the algorithm at iteration 9, where 𝜒𝐸𝑀
2  is below 0.5 and 

𝜒𝑆𝐴𝑋𝑆
2  is close to unity.

Page 4 of 8Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



PCCP  Paper 

This journal is © The Royal Society of Chemistry 20xx Phys. Chem. Chem. Phys., 2015, 00, 1-3 | 5 

Please do not adjust margins 

Please do not adjust margins 

optimization algorithm used in the M-stage, combined with 

the underdetermined optimization problem in eqn (6). 

 Convergence in the BE-SAXS algorithm has to be evaluated 

comprehensively, by examination of both 𝜒𝐸𝑀
2  and 𝜒𝑆𝐴𝑋𝑆

2 , 

since a low 𝜒𝐸𝑀
2  does not guarantee that the conformational 

ensemble provides a good fit to the data. If there is an 

insufficient number of steps in the E-stage to allow for the 

MCMC to reach equilibrium, then the Boltzmann distribution 

will not be sampled successfully. Thus, a low 𝜒𝐸𝑀
2  could be 

achieved at a specific iteration and still result in a 𝐁 matrix that 

does not produce an ensemble average matching the 

experimental data. Furthermore, it is necessary to examine the 

behavior of the 𝜒2 statistics and the 𝐁 coefficients over a 

range of EM iterations, to determine if an equilibrium has in 

fact been reached. Because the optimization problem in eqn 

(6) is underdetermined, fluctuations in both the matrix 𝐁 and 

𝜒𝑆𝐴𝑋𝑆
2  are expected. However, in order to assume 

convergence, these fluctuations should be confined to a stable 

and relatively narrow region. 

BE-SAXS restrains the PaaA2 ensemble 

We examined and compared the EM0 and EM9 structural 

ensembles of the protein PaaA2, in order to evaluate the 

performance of the BE-SAXS method. The scattering average 

for the initial, unrestrained ensemble EM0 exhibits a poor fit to 

the SAXS profile, 𝐝, (𝜒𝑆𝐴𝑋𝑆
2 = 65.0) while the average for the 

restrained ensemble EM9 shows good agreement with the data 

(𝜒𝑆𝐴𝑋𝑆
2 = 0.9), within the margins of error (Fig. 3). The high 𝑞 

range of the SAXS profile contains atomic-level data and the 

larger deviation observed there could be due to the stronger 

influence of the PROFASI force field on the local structure of 

the simulated IDP protein than on the overall shape. While the 

deviation is within the error bounds, it may be desirable to 

further penalize discrepancies within this range during the M-

stage optimization. Alternatively, better sampling of the local 

structure could be achieved by a longer simulation that 

emphasizes local and side chain moves. This may allow for a 

more accurate assessment of the agreement between the 

ensemble averages of the target and approximating 

distributions in the M-stage. 

 To further characterize the EM0 and EM9 ensembles, we 

compared their radius of gyration (𝑅𝑔) distributions to the 𝑅𝑔 

distribution of the published PaaA2 reference ensemble (Fig. 

4). The 50-structure 3ZBE ensemble is relatively compact, 

while the unrestrained PROFASI-driven EM0 exhibits a wider 

variation of 𝑅𝑔 with two prominent modes. On the other hand, 

the SAXS-restrained EM9 closely matches the original 

ensemble in both its mean and sample error, suggesting that 

BE-SAXS is able to extract ensemble-level 𝑅𝑔 information from 

the SAXS profile. 

 Due to the low information content of SAXS data, it is not 

possible to summarize the ensemble using only a few 

representative conformations, despite the presence of a force 

field. However, the scattering profile can inform about the 

general shape of the protein. Taking advantage of the stable 𝛼-

helical regions in PaaA2, we defined a shape descriptor, 𝐾𝑠ℎ , as 

a proxy to the 3-dimentional shape. The 𝐾𝑠ℎ  measure is 

calculated as the ratio of the distances between the distal and 

proximal ends of the two helices (the Cα atoms of residue pairs 

(16,57) and (28,42), respectively); thus 𝐾𝑠ℎ  is an indicator of 

the “openness” of the overall structure. We compared the 

distributions of the descriptor for the EM0, EM9, and reference 

ensembles (Fig. 5). The unrestrained EM0 gives rise to a 

bimodal distribution for 𝐾𝑠ℎ  and favors open structures. The 

shape descriptor distributions for the reference ensemble and 

the SAXS-restrained EM9 show substantial similarity to each 

other, and share a propensity for more compact structures. 

Fig. 3 Scattering curves for the protein PaaA2. The original data calculated from the 

published structural ensemble are shown in black, with error margins in grey. The fit of 

the unrestrained ensemble at iteration 0 of the EM algorithm is shown in blue. The fit 

of the optimized ensemble at iteration 9 of the EM algorithm is shown in red. 

Fig. 4 Comparison of the distributions of the radius of gyration, 𝑅𝑔, for the 3ZBE 

ensemble reported by Sterckx et al.45 (black) and the ensembles at EM iterations 0 

(blue) and 9 (red). The distribution for 3ZBE was derived through kernel density 

estimation, due to the limited number of conformations. 
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 The ability of the BE-SAXS method to restrict the solution 

space to areas consistent with the experimental data is further 

evident in the visualized ensembles (Fig. 6). EM9 exhibits 

characteristics similar to the reference ensemble – it favors 

conformations in which the two 𝛼-helices are packed closely 

together, while maintaining significant overall flexibility. At the 

same time, the unrestrained EM0 comprises structures that are 

consistent with uniform rotation around the disordered linker. 

The linker flexibility is greater in EM9 than in EM0, with more 

diversity in the relative orientations of the two helices, as in 

the original ensemble. 

 The peripheral disordered regions in both EM0 and EM9 

exhibit much more helical structure than the 3ZBE ensemble. 

This is likely the effect of the PROFASI force field on local 

structure and it helps explain the larger deviation of the 

scattering profile at high 𝑞 values. The main advantage of 

PROFASI is efficiency, but a more sophisticated force field 

would presumably produce a better fit with the data. 

Conclusions 

A novel method for inference of protein ensembles from SAXS 

data, which we call Bayesian Ensemble SAXS, was described 

and demonstrated here as a proof of principle. BE-SAXS 

proceeds through successive expectation maximization steps 

and uses a Bayesian probabilistic model for ensemble-

averaged SAXS data to modify a probabilistic model of protein 

structure, in agreement with an experimental scattering 

profile. This results in a generative model that can be used 

directly to characterize a protein’s conformational ensemble, 

or that can be further restrained with other types of 

experimental data, such as NMR. The generative approach 

offers a particular advantage for flexible systems, such as 

intrinsically disordered proteins and proteins with long 

disordered regions, since it does not impose restrictions on the 

ensemble size and allows sampling of the full conformational 

space allowed by the data. The number of parameters of the 

generative probabilistic model only depends on the number of 

experimental observables, and not on the size of the 

ensemble. This stands in contrast to many existing SAXS 

ensemble methods that fit a set of structures to the data and 

where each replica results in a linear increase in the number of 

parameters. 

 To illustrate the BE-SAXS method, we applied it to the 

ensemble-averaged SAXS data for the published 

conformational ensemble of the highly flexible antitoxin 

PaaA2. We showed that our approach restrains the 

conformational space accessible to the protein simulation and 

yields ensembles with characteristics consistent with the 

original set of structures. The ability of the method to model 

protein flexibility suggests its utility in characterizing other 

IDPs and multi-domain proteins. The Bayesian probabilistic 

formulation used here can be complemented by other 

probabilistic models based on experimental observables. In 

particular, NMR residual dipolar couplings (RDCs) and chemical 

shifts are commonly utilized in the context of disordered 

proteins.29,54 We expect that employing BE-SAXS in concert 

with methods that make use of other experimental data, can 

Fig. 6 SAXS-derived conformational ensembles of PaaA2. (A) The published 50-member 

ensemble of PaaA2 (PDB: 3ZBE), derived from NMR and SAXS data. (B) Subsample of 

128 conformations from EM0, the unrestrained ensemble at iteration 0 of BE-SAXS. (C) 

Subsample of 128 conformations from EM9, the SAXS-restrained ensemble at iteration 

9 of BE-SAXS. All structures are aligned on the first helix (colored in cyan). The color of 

the second helix corresponds to the 𝑅𝑔 of the structure in Å (indicated in the color bar).

Fig. 5 Comparison of the distributions of the shape descriptor, 𝐾𝑠ℎ, for the 3ZBE 

ensemble reported by Sterckx et al.45 (black) and the ensembles at EM iterations 0 

(blue) and 9 (red). The distribution for 3ZBE was derived through kernel density 

estimation, due to the limited number of conformations.
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greatly help elucidate the native state ensembles of flexible 

macromolecular systems. 
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