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Abstract

Kinked silicon nanowire (KSiNW) is a zigzag-shaped nanowire with its growth direction changed

regularly at the kinking joints, resulting in a quasi-two-dimensional structure. An intrinsic ten-

dency for the two-dimensional system is to generate some out-of-plane vibrations to withstand the

mechanical instability in the third dimension. In the present work, we report the lattice dynamical

study for the intrinsic out-of-plane twisting vibration of the KSiNWs. We derive the dynamical

matrix analytically, and explore the kinking effect on the phonon spectrum of the KSiNWs. Based

on the lattice dynamical analysis, we obtain an analytic formula for the geometrical dependence

of the twisting amplitude for the KSiNWs. The analytic formula provides valuable information

for the kinking induced twisting stability of KSiNWs serving as bio-probes for the intracellular

recording application.

∗ Correspondence to: jiangjinwu@shu.edu.cn
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I. INTRODUCTION

The kinked silicon nanowire (KSiNW) was synthesized by Tian et al. in Lieber’s group

at Harvard University in 20091. Initial efforts have been mainly devoted to investigat-

ing the formation of the kinking structure in nanowires from experimental and theoretical

communities.2–16 At present, experimentalists are able to control the growth of kinking struc-

tures under different conditions, so more recent works have been mainly focused on practi-

cal applications of the KSiNW. It has been demonstrated that the KSiNW is a promising

building blocks in bottom-up integration of active devices, taking advantage of its kinking

structure. For instance, as a characteristic feature of the KSiNW, the shape of the kinking

joint looks like an arrow, so it can act as bio-probes to record intracellular bioelectrical

signals.17,18 A very recent experiment applied the KSiNW to detect the inter and intracel-

lular force during smooth muscle contraction.19 Considerable progresses have been achieved

for this intracellular recording technique based on the free-standing KSiNWs with field-effect

transistor enclosed in the arms.20,21

In the intracellular recording experiment, the KSiNW serves as the tip end of the de-

tector. During the inserting of the tip end into the celluar, the intrinsic twisting vibration

is likely to be actuated due to the kinking configuration of the KSiNW. It is because the

joint of the KSiNW will be easily taped by environmental influence, leading to the actuation

of twisting motion of the KSiNW. Furthermore, the kinking configuration of the KSiNW

is actually a quasi two-dimensional (2D) structure. As we known, an intrinsic tendency of

low dimensional structures is to enhance their stability via introducing some movements in

the out-of-plane direction, which equivalently increases the dimension. For instance, carbon

nanotubes are quasi one-dimensional structures, which can increase their mechanical stabil-

ity by vibrating in their two lateral directions.22 As another example, graphene is a quasi

2D system, which is mechanically stable after generating some ripples in the out-of-plane

direction.23 The electrical performance can be affected by the vibration. At finite temper-

ature, phonon density state of each vibration mode follows the Bose-Einstein distribution,

if the whole system is at thermal equilibrium state. The electron-phonon interaction thus

contributes a constant relaxation time for the electrical properties.24 However, if the twist-

ing vibration in the kinked silicon nanowire are generated mechanically, then the phonon

density state of the twisting mode does not obey the Bose-Einstein distribution anymore.
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Consequently, the relaxation time from the electron-phonon interaction is not constant and

becomes time dependent; i.e., the twisting vibration induces some turbulence signal in the

electrical performance. As a result, the twisting vibration in the KSiNW (if strong enough)

will blur the electric signal reading out of the dectector during the intracellular recording.

Therefore, the objective of this work is to examine the strength of the intrinsic twisting

vibration for the KSiNW.

In this work, we perform a lattice dynamical investigation for KSiNWs, which demon-

strates the kinking effect on the phonon spectrum in KSiNWs. The lattice dynamical study

helps to examine the intrinsic twisting motion in the direction perpendicular to the KSiNW

plane. We obtain an analytic formula for the geometrical dependence of the thermal mean-

square vibration amplitude (TMSVA) due to the twisting motion of the KSiNW. It shows

that the intrinsic vibration is not strong (with averaged amplitude around 0.46 nm) for

KSiNWs used in present experiments, while the analytic formula illustrates that the in-

trinsic vibration can be considerably strong in KSiNWs with longer arms or thinner cross

sections.

II. STRUCTURE AND INTERATOMIC POTENTIAL

The structure of the KSiNW is shown in Fig. 1. The growth direction of the KSiNW

changes at the kink, following < 211 >arm to < 110 >joint to < 211 >arm, resulting in a quasi

2D configuration with kinking angle Θ0 = 120◦. Two lateral directions are < 110 > and

< 111 >. The arm length of the KSiNW is L. The thickness of the KSiNW is W = 80 nm,

and the square cross sectional area is A = 80nm × 80nm.

There are a huge number of silicon atoms in the KSiNW. To accelerate the numerical

simulation, we thus introduce the kinked chain model (KCM) to represent the KSiNW struc-

ture as shown in Fig. 1 (b). The KCM is a coarse-grained model, and similar chain model

has been successfully applied to simulate the mechanical properties of single-walled car-

bon nanotubes.25 The chain model has also been implemented to describe lattice dynamical

properties of layered structures.26,27 Each unit cell in the KSiNW is represented by N beads.

The bond length (distance between two neighboring beads) for the KCM is b, so we have

L = N
2
b. The mass of the bead in the KCM can be obtained by equaling the total mass of

the KCM to the total mass of the KSiNW, i.e., mKCM = Abρ with the cross sectional area

3
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A. The silicon mass density ρ = 8mSi

a3
Si

= 1.404 amuÅ−3 is taken from bulk silicon with lattice

constant aSi = 5.43 Å. The whole kinking structure sits in the xy-plane. The Cartesian

coordinate system is set as shown in Fig. 1.

We use the valence force field model (VFFM) to calculate the lattice dynamical prop-

erties of the KCM. The VFFM has been widely used to compute lattice properties or me-

chanical properties in covalent materials like diamond,28 molybdenum disulphide,29 black

phosphorus,30 silicon,31 and graphene.32 According to the specific kinking configuration of

the KSiNW, the following four potential terms are adopted to fully describe the lattice dy-

namical properties of the KCM. See the Method section for more discussions on these VFFM

potentials.

The first VFFM term captures the bond stretching between two neighboring beads 1 and

2 in the KCM,

Vr =
kr

2
[(~u1 − ~u2) · ê12]

2 , (1)

where kr is the potential parameter. The unit vector ê12 points from bead 1 to 2, while ~uj

is the displacement of bead j.

The second VFFM term describes the bond bending in the left or right arms,

Vθ =
kθ

2
(θ − θ0)

2 , (2)

where θ0 = 180◦ is the angle formed by two neighboring bonds, and θ is the angle during

vibration.

The third VFFM term corresponds to the bending of the kinking angle at the joint,

VΘ =
kΘ

2
(Θ − Θ0)

2 , (3)

where Θ0 = 120◦ is the initial kinking angle.

The fourth VFFM term is with respect to the twisting of the joint formed by beads 1,

2, and 3, where bead 2 locates at center of the joint of the KCM while beads 1 and 3 are

nearby the joint,

Vtw =
ktw

2
[(~u1 − ~u2) · êz − (~u3 − ~u2) · êz]

2

=
ktw

2
[(~u1 − ~u3) · êz]

2 , (4)

where êz represents the direction perpendicular to the 2D KCM.
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III. DYNAMICAL MATRIX

The lattice dynamical information for the KSiNW are contained in the dynamical matrix,

the eigenvalue solution of which provides the frequency and eigen vector of the full phonon

spectrum. Hence, an important step is to utilize the above VFFM potential to construct

the dynamical matrix, which are obtained analytically in the present work following the

equation of motion approach.33 We consider one unit cell for the KCM, containing N atoms

in each arm, so there are totally 2N atoms. The atom index is displayed in Fig. 1 (b).

The dynamical matrix from the first VFFM term, Vr, is the following matrix multiplied

by the force constant kr,

















































ΦL + ΦR −ΦL −ΦRδL

−ΦL 2ΦL −ΦL

−ΦL
. . . −ΦL

−ΦL 2ΦL −ΦL

−ΦL ΦL + ΦR −ΦR

−ΦR 2ΦR −ΦR

−ΦR
. . . −ΦR

−ΦRδR −ΦR 2ΦR

















































, (5)

where the phase factor δL = e−ika and δR = δ⋆
L, with wave vector k and lattice constant

a = 2Nb sin Θ0

2
. The two structural dyads are ΦL = êLêL and ΦR = êRêR, with êL =

(

sin Θ0

2
cos Θ0

2
0

)

as the axial direction for the left arm, and êR =
(

− sin Θ0

2
cos Θ0

2
0

)

as the axial direction for the right arm. These two dyads are related via ΦR = σxΦLσx, in

which σx is the the reflection symmetry with respect to the yz-plane,

σx =













−1 0 0

0 1 0

0 0 1













. (6)

The dynamical matrix contributed by the second VFFM term, Vθ, is the following matrix
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multiplied by a factor of kθ

b2
,



















































ΨL + ΨR −2ΨL ΨL ΨRδL −2ΨRδL

−2ΨL 5ΨL −4ΨL ΨL

ΨL −4ΨL 6ΨL −4ΨL ΨL

ΨL −4ΨL

. . .
. . . ΨL

ΨL

. . .
. . .

−4ΨL ΨL

ΨL −4ΨL 6ΨL −4ΨL ΨL

ΨL −4ΨL 5ΨL −2ΨL

ΨL −2ΨL ΨL + ΨR −2ΨR ΨR

−2ΨR 5ΨR −4ΨR ΨR

ΨR −4ΨR 6ΨR −4ΨR ΨR

ΨR −4ΨR

. . .
. . . ΨR

ΨR

. . .
. . .

−4ΨR ΨR

ΨRδR ΨR −4ΨR 6ΨR −4ΨR

−2ΨRδR ΨR −4ΨR 5ΨR



















































, (7)

where the structural dyads are ΨL/R = I − ΦL/R with 3 × 3 unit matrix I.
The dynamical matrix from the third VFFM term, VΘ, is the following matrix multiplied

by a factor of kΘ

b2 sin2 Θ0
,

























(ΩR + ΓRL + ΓLR + ΩL) − (ΩR + ΓLR) − (ΓRL + ΩL) δL

− (ΩR + ΓRL) ΩR ΓRLδL

.
. .

ΩR − (ΩR + ΓRL) ΓRL

− (ΩR + ΓLR) (ΩR + ΓRL + ΓLR + ΩL) − (ΓRL + ΩL)

ΓLR − (ΓLR + ΩL) ΩL

. . .

− (ΓLR + ΩL) δR ΓLRδR ΩL

























,(8)

where the structural dyads are

ΩL = (êL − êR cos Θ0) (êL − êR cos Θ0) ; (9)

ΩR = (êR − êL cos Θ0) (êR − êL cos Θ0) ; (10)

ΓLR = (êL − êR cos Θ0) (êR − êL cos Θ0) ; (11)

ΓRL = (êR − êL cos Θ0) (êL − êR cos Θ0) . (12)

A symmetry relationship can be found between ΓLR and ΓRL, i.e., ΓLR = Γ⊤
RL.

The dynamical matrix contributed by the fourth VFFM term, Vtw, is the following matrix
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multiplied by the force constant ktw,
















































0 0

Ξ −ΞδL

. . .

Ξ −Ξ

0

−Ξ Ξ
. . .

−ΞδR Ξ

















































, (13)

where the structural dyad is Ξ = êz êz.

The total dynamical matrix is a summation of the above four dynamical matrix.

IV. VFFM PARAMETERS FOR KSINW

To determine the VFFM parameters for the KCM, we need to compute corresponding

mechanical properties of the KSiNWs. All MD simulations for the KSiNW were performed

using the publicly available simulation code LAMMPS34,35, while the OVITO package was

used for visualization36. The interaction between silicon atoms is described by the Stillinger-

Weber potential37. Owning to its efficiency and accuracy, this empirical potential has gained

a wide application in the simulation of silicon and other similar valence bonded systems.

The Newton equations of motion are integrated using the velocity Verlet algorithm with a

time step of 1 fs.

The force constant, kr, for the bond stretching potential in the KCM can be obtained

using the Young’s modulus of the SiNW. Figure 2 (a) shows the Young’s modulus for straight

< 211 > SiNWs of different thickness. The two lateral directions of the SiNW are <

1̄11 > and < 011̄ >. The orientation of the SiNW is in accordance with the arms of the

experimental KSiNW samples.1 All SiNWs and KSiNWs in the present work have square

cross section. For SiNWs with thickness W > 15 nm, the value of the Young’s modulus

is almost saturated at 144.1 GPa, which agrees quite well with the Young’s modulus in

bulk silicon based on first-principal calculations between 110 GPa and 180 GPa.38–40 The

thickness of the experimental KSiNWs are around1 80 nm, so their Young’s modulus can be

approximated to be the saturated value, i.e., 144.1 GPa.
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Considering the SiNW is uniaxially deformed by strain ǫ, the total stretching energy

within the SiNW is 1
2
Eǫ2 × AL where A is the cross-sectional area and L is the length of

the straight SiNW. The Young’s modulus is E. On the other side, if a straight chain model

is stretched by strain ǫ, the total strain energy within the chain is 1
2
kr (bǫ)2 × N where N

is the bond number in the chain model satisfying Nb = L. From the equaling of the strain

energy for both systems, we get the stretching potential parameter for the KCM,

kr =
EA

b
. (14)

The force constant, kθ, for the bond bending potential in the KCM can be derived using

the bending modulus of the SiNW. To calculate the bending modulus of the SiNW, the

SiNW is bent around one lateral direction, i.e., < 1̄11 > or < 011̄ >, which leads to the

same bending modulus value as shown in Fig. 2 (b). We find that the bending modulus of

the SiNW is proportional to the square of the thickness. We consider SiNWs of square cross

sections, so the bending modulus is actually proportional to the cross sectional area of the

SiNW; i.e., Dθ = 14.1A.

For a bending curvature κ = 1
R

for the SiNW, the bending energy is 1
2
Dθκ

2 × AL. For

the same bending curvature, the chain model is bent by angle ∆θ = bκ. As a result, the

bending energy in the chain model is kθ

2
κ2b × L. By equaling of the bending energy in the

two systems, we get the bond bending parameter kθ for the KCM,

kθ =
DθA

b
= 14.1

A2

b
. (15)

The force constant, kΘ, for the kinking angle bending potential in the KCM can be

obtained using the angle bending modulus of the KSiNW. Figure 2 (c) shows that the

bending modulus for the kinking angle can be calculated by moving the left and right

arms in tangent directions following the arrows in the figure. The obtained angle bending

modulus is a function of the cross sectional area, DΘ = 54.5A2. For a small variation ∆Θ

of the kinking angle Θ, the angle bending energy in the KSiNW and the KCM are equaling

to each other as,

1

2
DΘ (∆Θ)2 =

1

2
kΘ (∆Θ)2 , (16)

giving the force constant parameter for the bending of the kinking angle, kΘ = DΘ = 54.5A2.

The force constant, ktw, for the twisting potential in the KCM can be obtained through

the twisting modulus of the KSiNW. The twisting modulus of the kinking joint can be

8
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TABLE I: The VFFM parameters for the KCM. The second line lists the geometrical dependence

for the VFFM parameters. The third line contains the explicit VFFM parameters for the KCM

representing for the KSiNW of cross sectional area A = 80nm × 80nm = 6400 nm2. The bond

length in the KCM is b = 10aSi = 5.43 nm.

b (nm) mKCM (amu) kr

(

eV
nm2

)

kθ (eV) kΘ (eV) ktw

(

eV
nm2

)

expression 10aSi b × A × 8mSi

a3
Si

EA
b 14.1A2

b 54.5A2 15.5A2.5

(b cos Θ
2 )

2

b = 10aSi
5.43 4.88 × 107 1.056 × 106 6.639 × 108 2.233 × 109 3.029 × 108

A = 6400 nm2

calculated following the approach shown in Fig. 2 (d). The left and right arms are moved in

opposite direction along the out-of-plane direction. The twisting modulus is τ = 15.5A2.5.

Equaling the twisting energy in the KCM and KSiNW leads to

1

2
τ (∆φ)2 =

1

2
ktw (∆uz)

2 , (17)

where the twisting angle is ∆φ = ∆uz

b cos
Θ0
2

. Hence, the twisting force constant is obtained,

ktw =
τ

(

b cos Θ0

2

)2 =
15.5A2.5

(

b cos Θ0

2

)2 . (18)

Table I summarizes the expressions for the four VFFM parameters in the KCM. In partic-

ular, explicit VFFM parameter values have been provided for KSiNWs of the experimental

cross section, i.e., A = 80nm × 80nm.

V. RESULTS AND DISCUSSIONS

A. Phonon spectrum for KSiNWs

Using VFFM parameters listed in Tab. I, we obtain the analytic expression for the full

dynamical matrix of KSiNWs by adding up Eqs. (5), (7), (8), and (13); i.e., Dtot =
∑

i Di.

The eigenvalue solution of the total dynamical matrix leads to the phonon spectrum ω(k)

of the KSiNW, and the eigen vector (vibration morphology) u(k, σ) of each phonon mode

(k, σ) as,

Dtotu(k, σ) = ω2(k, σ)u(k, σ), (19)
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where k is the wave vector and σ is the branch index. Fig. 3 shows the four acoustic branches,

i.e., the y-direction transverse acoustic (TAy) branch, the longitudinal acoustic (LA) branch,

the twisting (TW) branch, and the z-direction transverse acoustic (TAz) branch. The full

phonon spectrum is shown in the top inset. The lower inset displays the unit cell (by gray

rectangular box) with N = 6 used for this phonon calculation. The lattice constant is a.

In Fig. 4, we analyze the contribution from each VFFM potential to the four acoustic

branches. For instance, in Fig. 4 (a), the frequency ω(k, TAy) and the eigen vector u(k, TAy)

for the TAy branch has been obtained by Eq. (19). We thus compute the contribution from

the i-th VFFM potential by,

ω2
i (k) = u†(k, TAy)Diu(k, TAy), (20)

where i = 1, 2, 3, 4 represents for the four dynamical matrix corresponding to Vr, Vθ, VΘ,

and Vtw. Insets in each panel display the eigen vector of each phonon mode at wave vector

k = 0.2π/a. The arrow on each atom represents the real component of uje
i∆q , with phase

factor ∆q = k ∗ (qa) for the q-th unit cell. Ten unit cells have been used to demonstrate one

cycle of the vibration wave with k = 0.2π/a.

Figure 4 (a) shows that the TAy branch is dominated by the stretching potential Vr at

the Brillouin zone (BZ) boundary, and is mainly contributed by the bond bending potential

Vθ in the other BZ region. From its eigen vector shown in the inset, it can be seen that such

interplay between the stretching term and bending term is due to the kinking configuration

of the KSiNW. Fig. 4 (b) shows that the LA branch is contributed mainly by the stretching

potential Vr owning to its stretching-like vibration morphology. The TW branch shown

in Fig. 4 (c) and the TAz branch in Fig. 4 (d) are both dominated by the bond bending

potential in the full BZ.

The rest of the paper will be devoted to discussing the two TW modes at the BZ edge

(k = π/a). These two TW modes have the same frequency. Fig. 5 (a) and (b) illustrate

the vibration morphology for these two modes of the KSiNW described by the KCM with

N = 50. The color is with respective to the z component of the eigen vector. In Fig. 5 (a),

neighboring joints in the lower regime undergo out-of-phase vibration, while all joints in the

upper regime are almost silent. As a result, all joint areas in the upper regime are twisted.

For the other TW mode shown in Fig. 5 (b), similar analysis reveals that all joint areas in

the lower regime are twisted.

10
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These two TW modes at the BZ edge (k = π/a) are of particular importance in the

KSiNW, because the kinking configuration is actually a quasi 2D structure. A natural ten-

dency of the quasi 2D structure is to enhance its stability by self-actuating vibrations in

the out-of-plane direction. For instance, the quasi 2D graphene plane always has vibra-

tion induced ripples in the out-of-plane direction, which strengthens its thermal stability.23

Similarly, these two TW modes generate an out-of-plane vibration for the KSiNW, thus

strengthening the thermal stability of the KSiNW. Furthermore, these two TW modes are

most easily to be actuated in the KSiNW, due to the kinking configuration. As illustrated

by Fig. 5 (c), the arm length of the KSiNW is usually several orders larger than its thickness,

so it is easy for an external influence to affect the long arms of the KSiNW. This influence

will eventually actuate the TW mode shown in Fig. 5 (a). As a result, these two TW modes

generate the most significant effect on the stability of the KSiNW, and is most likely to be

detected experimentally.

In Fig. 6, we further examine the eigen vector of the first TW mode shown in Fig. 5 (a)

for KSiNW described by the KCM with N = 50. Similar results are found for the other

TW mode shown in Fig. 5 (b). For a pure twisting motion of the KSiNW around the x-axis

for small angle δω, the displacement should be ~u = ~δω × ~r = (δω)y. Fig. 6 shows that

the z-displacement for the two arms connecting to the same upper joint (at y=145 nm)

can be fitted to functions uz = 0.4/(e−186(y−157)−1−1) and uz = 0.4/(e−173(y−159)−1−1). The

motion of these two arms are almost out of phase, resulting in the twisting of upper joint

regions. For atoms far away from the upper joint, the z-displacement can be approximated

to be uz ≈ 0.002(157 − y) and uz ≈ 0.002(159 − y), both of which are linear functions,

fulfilling the twisting motion style. However, it is quite interesting that for atoms close

to the upper joint region, the z-displacement decays exponentially as uz ≈ 0.4e−186(157−y)

or uz ≈ 0.4e−186(159−y). An exponentially decaying eigen vector is a characteristic feature

for the localized phonon mode, so it means that the kinking configuration induces some

localization effect on the TW mode.

Figure 7 shows the arm length dependence for the frequency of the TW modes. We have

comparatively used two different bond lengths; i.e., b = 5.43 nm and 10.86 nm. Obviously,

the choosing of different bond length value has no effect on the frequency of the TW modes.

The frequency is an inverse square function of the arm length. In the above, we have learnt

that the TW phonon branch is dominated by the VFFM potential Vθ (see Fig. 4 (c)) and the
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corresponding force constant parameter is proportional to the square of the cross-sectional

area A, i.e., kθ ∝ A2 (see Tab. I). The mass of the atom in the KCM is proportional to the

cross-sectional area A. As a result, we obtain the geometrical dependence for the TW mode

as ω = 0.80L−2 ×
√

A/(80 × 80) = 0.01
√

AL−2. We note that the frequency for the TW

mode is not dependent on the kink angle Θ0, because Figure 4 (c) shows that the frequency

of the TW mode is dominated by the VFFM potential Vθ which is not related to the kink

angle.

B. Twisting vibration analysis

We now examine the averaged vibration amplitude of the TW modes at a given tem-

perature. We derive the TMSVA due to the twisting motion of the KSiNW. Fig. 6 shows

that the vibration displacement for the TW mode is a linear function in most regimes, while

it decays exponentially nearby the joint that is twisted. The exponential decay illustrates

some localized property for the TW mode due to the kinked configuration of the KSiNW.

However, the exponential decaying regime is so small that we can approximate the vibra-

tion displacement by a linear function, z (y, t) = ξ y
Ly

sin ωt with Ly = L cos Θ
2

and ξ as the

amplitude for the vibration of the joint. This is a general twisting motion of the KSiNW

around the axis locating at y = 0.

In the bio-probe experiments, only a single kink is used at the tip of the detector, and

the two ends of the kink serve as source and drain connections. To be consistent with

the experimental set up, we consider only a single kink in the following twisting vibration

analysis. The total energy during the twisting vibration in one unit cell is

E =
∫ 1

2
ρds

(

dz

dt

)2

+
∫ 1

2
ρdsω2z2

=
1

2

(

1

3
m

)

ω2ξ2, (21)

where ds is the length element, and m = 2Lρ is the total mass for one unit cell in the

KSiNW described by the KCM. The mass density per length is ρ.

For a particular amplitude ξ, the probability of finding the KSiNW between z and z +dz

at (x, y) is P (ξ, z)dz. It is proportional to dt. As a result, we have

P (ξ, z) ∝ | dt

dz
| =

1

ω

√

(

y
Ly

)2
ξ2 − z2

. (22)
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Considering
∫

ξy
Ly

− ξy
Ly

1

ω

√

(

y
Ly

)2

ξ2−z2

dz = π
ω
, we can write down the normalized probability func-

tion

P (ξ, z) =
1

π

√

(

y
Ly

)2
ξ2 − z2

. (23)

For the TW mode with frequency ω, the energy of the system is quantized En = (n+ 1
2
)h̄ω.

The vibration amplitude corresponding to En is denoted by ξn. The distribution for En state

at temperature T is given by,

Wn =
exp

[

−(n + 1
2
)h̄ω/kBT

]

∑+∞
p=0 exp

[

−(p + 1
2
)h̄ω/kBT

]

≈ h̄ω

kBT
e(−nh̄ω/kBT ), (24)

where the approximation in the last step is applicable for high temperature. This approxi-

mation is reasonable for room temperature because the frequency of the TW mode is low.

The thermal averaged probability amplitude is,

< P (z) > =
+∞
∑

n=0

P (ξn, z)Wn

=
+∞
∑

n=0

1

π

√

(

y
Ly

)2
ξ2 − z2

× h̄ω

kBT
e(−nh̄ω/kBT )

=

√

√

√

√

√

1
6
mω2

(

Ly

y

)2

πkBT
e
−

(

Ly
y

)2
1
6 mω2z2

kBT . (25)

This is exactly a Gaussian shaped function f (x) = 1√
2π

1
σ
e−

(x−µ)2

2σ2 . Thus the standard devia-

tion is

σ2 =
kBT
1
3
mω2

(

y

Ly

)2

. (26)

Obviously, this deviation depends on the y-coordinate, so we do an average for the y-

coordinate,

σ̄2 =
1

Ly

∫ Ly

0
σ2dy =

kBT

mω2
. (27)

For a KSiNW with arm length L and cross sectional area A, the total mass of one unit

cell is m = 2ALρ. The mass density, ρ = 8mSi

a3
Si

= 1.404amu

Å3
, is taken from bulk silicon with
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lattice constant aSi = 5.43Å. We have obtained the frequency for the TW mode in the

above, i.e., ω = 0.01
√

AL−2. As a result, we obtain

σ̄2 =
kBT

mω2
=

kBT

A2Lρ × 10−4AL−4

= 29.38
TL3

A2
. (28)

That is,

σ̄2A2

TL3
= 29.38. (29)

The dimensions for quantities in this equation are [T ] = K, [L] = µm, [A] = nm2 and

[σ̄] = nm.

For example, at room temperature, the twisting vibration amplitude of a KSiNW of

L = 10µm and A = 80nm × 80nm is σ̄ =
√

σ̄2 = 0.46 nm. It indicates that the TMSVA

is weak and will probably not influence the sensitivity of the KSiNW based bio-sensor

in the experiment. However, Eq. (29) illustrates that the twisting vibration amplitude

becomes obviously stronger for thinner or longer KSiNWs, eg. σ̄ = 20.8 nm for KSiNW of

length L = 50µm and A = 40nm × 40nm. The length of the KSiNW can be manipulated

by controling the growing time of the arm in the experiment.1 Thus, Eq. (29) is able to

be validated experimentally for KSiNWs of different size via the TEM set up, which has

successfully detected the TMSVA in carbon nanotubes.22

VI. CONCLUSION

We have performed lattical dynamical analysis for the phonon spectrum of the KSiNW.

We obtain analytic expressions for the dynamical matrix based on the valence force field

model, which are used to discuss the kinking effect on the phonon spectrum in KSiNWs. The

twisting modes have hybrid linear and exponential eigen vectors, owning to the localization

feature of the kinking joints in the KSiNW. Using the lattice dynamical information, we

derive an analytic formula for the amplitude of the twisting motion, σ̄2A2

TL3 = 29.38, disclosing

the dependence of the twisting amplitude σ̄ on the cross-sectional area A and the arm length

L at temperature T in the KSiNW.

14

Page 14 of 24Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



Acknowledgements

The work is supported by the Recruitment Program of Global Youth Experts of China,

the National Natural Science Foundation of China (NSFC) under Grant No. 11504225, and

the start-up funding from Shanghai University.

Appendix: Details of the VFFM

We show some key steps in derivation of the bond bending potential expression. Following

is another usual VFFM form for the bond bending vibration,

Vθ =
kθ

2
(cos θ − cos θ0)

2 , (30)

where θ0 is the initial bond angle for atoms on the arm in the KCM. For a chain system like

the KCM investigated in the present work, we have θ0 = 180◦, leading to

cos θ − cos θ0 ≈ − sin θ0 (∆θ) − cos θ0

2
(∆θ)2 =

1

2
(∆θ)2 ∝ u2. (31)

As a result, the vibration energy is Vθ ∝ u4, yielding zero dynamical matrix within the linear

approximation, so such potential form is not suitable for the derivation of dynamical matrix

for a chain system like the KCM.

We have thus described the bond bending using the following potential in the present

work,

Vθ =
kθ

2
(∆θ)2 . (32)

We now demonstrate how to expand this potential in terms of the vibration displacement.

Using the Talor expansion in Eq. (31), this bond bending potential takes the form,

Vθ = kθ (cos θ + 1) . (33)

Let’s consider a particular angle θ213. During vibration, the angle is calculated as,

cos θ =
~r21 · ~r23

r21r23

, (34)

where ~r21 = ~r2 − ~r1 and ~rj = ~Rj + ~uj. The initial position for atom j without vibration is

~Rj and the vibration displacement is ~uj. Some algebra lead to,

~r21 · ~r23 = −b2

(

1 +
ur

21 + ur
23

b
− ~u21 · ~u23

b2

)

, (35)
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where ur
ij = ~uij · êr

ij is the projection of vibration displacement on the longitudinal direction,

which contributes directly to the change of the bond length, but has no effect on bond angle

viration. The distance between two neighboring atoms i and j is b = Rij. We also have,

r−1
21 = b−1

[

1 − ur
21

b
− u2

21

2b2
+

3 (ur
21)

2

2b2

]

. (36)

Similar expression can be obtained for r−1
23 . As a result, we get

cos θ = −1 +
1

2b2

(

~u⊥
21 + ~u⊥

23

)2
, (37)

where the displacement vector is decomposed as ~uij = ur
ij ê

r
ij + u⊥

ij ê
⊥
ij. Finally, the potential

in Eq. (32) is expanded in terms of the vibration displacement,

Vθ =
kθ

2b2

(

~u⊥
21 + ~u⊥

23

)2
. (38)

From the above, we get the angle variation due to vibration, ∆θ = 1
b
|~u⊥

21 + ~u⊥
23|. If both

bonds r21 and r23 are still in the same plane during vibration and assuming ê⊥21 · ê⊥23 = 1, we

will have ∆θ = 1
b

(

u⊥
21 + u⊥

23

)

which can be validated geometrically.
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FIG. 1: (Color online) Structure of the KSiNW. (a) The axial direction of the KSiNW changes at

the joint, following < 211 >arm to < 110 >joint to < 211 >arm. The kinking angle is Θ0 = 120◦.

Two lateral directions are < 110 > and < 111 >. The arm length is L. (b) The KSiNW is described

by the KCM, which is a coarse-grained model with N beads in the arm. The bond length of the

KCM is b, satisfying L = N
2 b.
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FIG. 2: (Color online) Determining mechanical properties for KSiNWs. (a) Stretching of SiNW.

The relationship between the Young’s modulus and the thickness W of SiNW is described by

Y = 144.1 − 66.2eW/4.1. (b) Bending of SiNW. The thickness dependence of the bond bending

modulus for SiNW can be fitted to function Dθ = 14.1W 2. (c) Bending of the joint in KSiNW.

The angle bending modulus for KSiNW with cross-section A is DΘ = 54.5A2. (d) Twisting of the

joint in KSiNW. Plus indicates inward direction, and minus means outward direction. The angle

twisting modulus for KSiNW with cross-section A is τ = 15.5A2.5.
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FIG. 3: (Color online) Phonon spectrum for the four acoustic branches in KSiNW described by

the KCM with N = 6. Force constant parameters are listed in Tab. I. Lower inset displays the

unit cell of the KSiNW described by the KCM. Upper inset is the full phonon spectrum.
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FIG. 4: (Color online) The contribution from each VFFM potential term to the acoustic phonon

branches. (a) TAy branch. (b) LA branch. (c) TW branch. (d) TAz branch. Insets illustrate the

corresponding vibration morphology of the mode at ka/2π = 0.1 in each branch.
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FIG. 5: (Color online) Two twisting mode at ka/2π = 0.5. Color is with respective to the z-

component of the vibration. (a) Neighboring lower joints vibrate in the opposite direction, resulting

in the twisting of upper joints. (b) Lower joints are twisted. (c) A schematic diagram demonstrates

an easy exactuation of the two twisting modes in (a) and (b). One lower joint ‘A’ is taped, leading

to the twisting of two neighboring upper joints ‘B’ and ‘C’, which eventually excites the twisting

mode in (a).

22

Page 22 of 24Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



−0.2

−0.1

 0

 0.1

 0.2

 0  500  1000  1500

N
or

m
al

iz
ed

 z
 d

is
pl

ac
em

en
t

y coordinate (Å)

uz=0.4/(e−1856(y−1566)−1
−1)

uz=−0.4/(e−1728(y−1590)−1
−1)

FIG. 6: (Color online) The z-displacement of two neighboring arms (connecting by one upper joint)

for the twisting mode in Fig. 5 (a). The upper joint has the maximum y-coordinate of 145 nm.
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FIG. 7: (Color online) The arm length dependence for frequency of the TW mode in KSiNW with

cross-section 80nm × 80nm. Data from the KCM with two different bonds 5.43 nm and 10.86 nm

fall in the same curve, so the frequency of the TW mode is independent of the choose of the bond

length in the KCM.
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