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ABSTRACT 

A candidate drug compound is released for clinical trails (in vivo activity) only if its 

physicochemical properties meet desirable bioavailability and  partitioning criteria. Amino acid 

side chain anlogs play vital role in the functionalities of protein and peptides and as such are 

important in drug discovery. We demonstrate here that the predictions of solvation free energies 

in water, in 1-octanol, and self-solvation free energies computed using force field–based 

expanded ensemble molecular dynamics simulation provide good accuracy compared to existing 

empirical and semi-empirical methods. These solvation free energies are then, as shown here, 

used for the prediction of a wide range of physicochemical properties important in the 

assessment of bioavailability and partitioning of compounds. In particular, we consider here the 

vapor pressure, the solubility, Henry’s law constant and activity coefficients in both water and 1-

octanol, and the air-water, air-octanol, and octanol-water partition coefficients of amino acid side 

chain analogs computed from the solvation free energies. The calculated solvation free energies 
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using different force fields are compared against each other and with available experimental data. 

The protocol here can also be used for a newly designed drug and other molecules where force 

field parameters and charges are obtained from density functional theory. 

Keywords:  Amino Acid;  Side Chain Analogs; Solubility; Vapor Pressure; Octanol/Water 

Partition Coefficient; Solvation Free Energy; Self-Solvation Free Energy; Expanded Ensemble; 

Henry’s Law Constant. 

I.  INTRODUCTION 

The high cost ($500 million to $2 billion)1,2 of developing a new drug is mainly due to 

very limited success rate (0.01%) of clinical tests. The fulfillment of the so-called ADME 

(absorption, distribution, metabolism, and excretion)3,4 requirement of a potential drug candidate 

is important in a drug discovery project. Here we compute and use the solvation free energies of 

a compound in water, 1-octanol, and itself for the prediction of physicochemical properties 

related to ADME. 

The bioavailability and partitioning of a chemical compound depend on its 

physicochemical properties including vapor pressure of the liquid (�������
) or solid	(����
����), 

solubility in water (����) and in an organic solvent (e.g., solubility in 1-octanol, ����), and the 

air-water (���), air-octanol (���) and octanol-water (���) partition coefficients.5,6 The 

determination of the physicochemical properties in the prescreening of real or virtual 

pharmaceuticals and chemicals may require expensive and time consuming synthesis and 

laboratory measurements. To avoid this, common practice is to calculate these properties using 

empirical or semi-empirical multi-parameter correlative models.5,6 Such predictions can be 

satisfactory for the compounds used in the training set for the model, or for compounds with 
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similar structure and functional groups to those in the training set. But predictions from such 

models may not be accurate for other compounds. 

A theoretically-based alternative is to use force field-based molecular simulation in 

which the van der Waals dispersion and Coulombic interactions are considered explicitly. An 

attractive feature of this approach is that it can be used to predict properties of chemicals 

knowing only their chemical structure. This is advantageous for a newly proposed chemical, and 

for chemicals with only limited data or data of limited accuracy, or in cases where extrapolation 

over a large temperature range leads to results of  uncertain accuracy7. For example, the reported 

experimental vapor pressures for compounds of low volatility can disagree by an order of 

magnitude or more. Finding accurate experimental data for solubilities can also be difficult, with 

specific examples given by Jorgensen and Duffy8, Kishi and Hashimoto9 and Katritzky et al.,10,11 

all of whom pointed out that the experimental accuracy can be about 0.6 log unit.12 Also, 

experimental octanol-air partition coefficient data are limited in the literature13–15 and estimation 

methods are applicable to only certain classes of chemicals.16–20 

One alternative to experimental measurement is the use of quantitative structure-property 

relationships (QSPR) as used in chemistry and biology21 for the prediction of a variety of 

physicochemical properties. However, the most accurate QSPR modeling of vapor pressure and 

solubility requires at least some experimental vapor pressure22 and solubility data for molecules 

with similar functionalities, and the training set in their development must contain data for a 

greater number molecules than there are fitting parameters in the regression. Some QSPR models 

also require the data on boiling points, critical pressures, and critical temperatures,23–25 which 

may not be available. For compounds with low vapor pressures, the uncertainties and/or scatter 

in the experimental data results in poor QSPR predictions; in some cases there can be an order of 

magnitude difference between prediction and experiment. The UNIFAC (UNIversal Functional 

Activity Coefficient)26 method can lead to predictions with large errors. Also, commercial 
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databases such as DIPPR (Design Institute of Physical Properties),27 the TRC database,28 and 

IUCLID (International Uniform Chemical Information Database)29 contain inconsistencies (see 

Table 1 of Ref. 7) as identified by Olsen and Nielsen.7 

Group contribution based methods30–34 such as UNIFAC35,36 and AQUAFAC (Aqueous 

functional group activity coefficients; application to hydrocarbons)37–41 are commonly used for 

the prediction of solubilities, though, they require a melting point correction term for solid 

solutes. Hansch et al.42 have correlated solubilities with octanol-water partition coefficients; 

however, this method is not applicable to solid solutes. Yalkowsky and Valvani43 improved the 

Hansch method by incorporating the entropy of fusion and melting point as in the group 

contribution method of Irmann.30 

The general solubility equation (GSE)43 and its variants44–47 require melting point and 

octanol/water partition coefficient data for the estimation of solubilities. Martinez and Gómez48 

used partition coefficients and entropies of fusion to predict aqueous solubilities for a class of 

compounds. Multiple linear regression models32,33,49 are also used widely in solubility 

estimations. Also the mobile order theory50–52 is used for solubility predictions; however, it is 

limited by the need for solute cohesion parameter information in addition to melting point 

corrections. Abraham and Le predicted solubility using solvation free energy relationships.53 

The accuracy of the methods discussed above depend on structural information (such as 

size, shape, morphology, conformation, and polymorphs) and the nature of the self-interactions 

(e.g., hydrogen bonding, molecular orientation, polarizability) and solute-solvent interactions 

(e.g., solvent accessible area, preferential solvation of functional groups, hydrogen bonding, 

dipole moment, the hydrophobic or hydrophilic characteristics of the solutes in aqueous 

solution). Quite often the correlations and model calculations rely on other experimental data and 

the experimental uncertainties or scatter among different measurements accumulate in the final 

predictions.  
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As a result of the availability of faster computers and powerful algorithms, molecular 

simulation techniques are becoming an increasingly important tool for the prediction of 

thermophysical properties. The uncertainty in the use of molecular simulations is the adequacy 

and accuracy of the force fields used. This is an important consideration in the work reported 

here. 

Amino acids are the building blocks of proteins, nucleic acids, hormones, 

neurotransmitters, and an essential component of living organisms. The affinities of amino acid 

side chains for water and 1-octanol can determine the structure of proteins in solution.54 The 

biological activities of peptides and proteins are also controlled by the solvation of the amino 

acid side chains, and are important in protein engineering and biochemistry. Here we calculate 

the physicochemical properties of amino acid side chain analogs (AASCAs) using molecular 

simulations. 

 The performance of small molecule force fields in reproducing experimental solvation 

free energies are commonly compared against one another with different water models and with 

either default partial atomic charges or those calculated from quantum or semi-classical methods. 

The accuracy of the force fields and the performance of the algorithms have been examined by 

others using amino acid side chain analogs as the test set.55–61 One of the more complete studies 

was carried out by Shirts et al.55 in which they compared the hydration free energies of amino 

acid side chain analogs using the AMBER, CHARMM, and OPLS-AA force fields, with TIP3P 

as a water model. Separately they compared the hydration free energies using the TIP3P, TIP4P, 

SPC, SPC/E, TIP3P-MOD, and TIP4P-Ew water models with the OPLS-AA (Optimized 

Potentials for Liquid Simulations-All Atom) force field for the amino acid side chain analogs.56 

As expected, they found that the hydration free energy results varied with the choice of force 

field and water model.  
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Later, more extensive simulations were carried out by Mobley et al.62 and Shivakumar et 

al.63,64 for several hundred molecules, including the amino acid side chain analogs. Also, the 

results of simulation using the GAFF(Generalized Amber Force Field)62 have been tested against 

measured solvation free energies for 504 neutral compounds with the TIP3P water model. 

Shivakumar et al.63,64 compared OPLS-2005/(SPC+default charge), GAFF/(SPC+AM1-BCC), 

CHARMm-MSI/(SPC+CHELPG) models for hydration free energy calculations. The general 

conclusion is that the resulting hydration free energies were found to vary with the choices for 

the water model, the partial atomic charges, and above all on the force fields. Recently, Caleman 

et al.65 have, in addition to hydration free energies, used the OPLS-AA66–69 and GAFF70 force 

fields to compute densities, enthalpies of vaporization, heat capacities, surface tensions, 

isothermal compressibilities, volume expansion coefficients, and dielectric constants. Also, 

Vanommeslaeghe et al.71 have reported densities and enthalpies of vaporization computed using 

CGenFF (CHARMM Generalized Force Field).71 The TraPPE72–74 force field has also been 

studied for reproducing experimental vapor pressures. Recently Garrido et al.75 used different 

force fields for the calculation of octanol-water partition coefficients. However, what has not 

been studied is how well different force fields perform in the calculations of solubilities and air-

solvent partition coefficients. Moreover, computations of self-solvation free energies, and from 

them vapor pressures, by molecular simulations are rarely found in the literature. Although 

important in drug design, vapor pressure and solubilities (in water and 1-octanol) of a solid 

solute in its subcooled state is rarely reported. As an alternative to force field-based simulations 

for computing solvation free energies, one can use quantum mechanics-based solvation models 

including the polarizable continuum model (PCM),76 Minnesota solvation models (MSM),77 

and variants of conductor-like screening model (COSMO-RS,78 DCOSMO-RS,79 and COSMO-

SAC80). A detailed discussion of the usage of these models is out of the scope of this work. 
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Here we demonstrate that use of a combined framework of molecular simulations and 

macroscopic thermodynamics to compute the physicochemical properties of drug-like small 

molecules. Also, the validity of the protocol is examined for subcooled properties of crystalline 

or amorphous compounds, as is the feasibility of using currently available small molecule force 

fields for the computation of physicochemical properties. Here, the water, 1-octanol and self-

solvation free energies are computed using the four different force field models discussed above. 

From these solvation free energies, predictions for the thermophysical properties are made and 

compared with available experimental data. 

II. METHODS 

A. Solvation Free Energy Calculation: Expanded Ensemble Method 

  A number of methods are available for the calculation of solvation free energies,81-84 and 

the choice of the method primarily depends on computational accuracy and efficiency. The 

availability of a phase space convergence check, a built-in error estimation mechanism, the 

ability to handle conformational barriers, and minimum post-processing are important criteria for 

choosing a suitable algorithm,85,86 and this led us to use the expanded ensemble (EE) method83 in 

the calculations here. In the EE algorithm the solvation free energy is calculated from a single 

simulation dividing the phase space Hamiltonian into subensembles for faster convergence, and 

connecting them using a random walk for the insertion of a solute into the solvent. The details of 

the algorithm can be found elsewhere.83,87-89 

B. Simulation-Based Thermodynamics Protocol of Computing Physicochemical Properties 

  Molecular simulation uses information on the atomic-level interactions between a solute 

and a solvent from which ensemble averages of different thermodynamic quantities can be 

obtained; the solvation free energies are of interest here. The detailed protocol for computing 

physicochemical properties from solvation free energies can be found elsewhere90 and shown 
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schematically in Figure 1. Following are the main equations for computing vapor pressure 

(Pvap),
91,92 solubility	(�
������),93 and the partition coefficients (octanol-water log�����;85,86,90 

air-water log�����;91 and air-octanol: log�����91) from solvation free energies 

���� = ���exp #∆%&'()*+ ,         (1)  

����
���� = ����
-.��/01 2∆3)4&* #1 − +7+ ,8                                                                                     (2) 

�
������ ≡ �
������ = #:;<=:> , exp ?− @%&A(;'BC*+ D                    (3) 

log����� = (@%E<CF@%AGC)H.J�J*+                                                                                                        (4) 

log����� = − ∆%E<CH.J�J*+log����� = − ∆%AGCH.J�J*+
K                            (5) 

In eqn. (1), �� = 24.45	atm is the ideal gas pressure at 298 K at a density of 1 mol/L,	� is the 

molarity of the solute in its pure liquid state, R is the gas constant, and T is the room temperature. 

Since p-cresol is a solid at room temperature and pressure, the subcooled liquid vapor pressure 

(����
-.��) was calculated using eqn. (1) and then corrected for the solid phase vapor pressure 

(����
����) using eqn. (2) where ∆OP-
	is the entropy of fusion at the melting temperature Tm (in 

degrees Kelvin).  In eqn. (3), ΔR
������ is the solvation free energy and 
solvent solventM C=  	is the 

solubility of the solute where “solvent” is either “water” or “octanol”.  The solubilities of solid p-

cresol in water and 1-octanol were computed using the corrected vapor pressure (eqn. (2)) 

mentioned earlier.   

C. Simulation Details 

(i) Modeling Solvents and Amino Acid Side Chain Analogs 

   The amino acid side chain analogs (see Figure 2 for molecular structure) were modeled 

using the parameters of GAFF,70 CGenFF,71 and OPLS-AA66–69 force fields. The initial 

geometries were generated using ArgusLab 4.0.194 and then optimized in the gas phase using 
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Gaussian 0995 to obtain the minimum energy structure. The pdb (protein data bank) files created 

from the optimized geometries were used in AmberTools 1.596 to obtain the GAFF parameters 

and AM1-BCC charges. The pdb files were converted into mol2 format using OpenBabel 2.3.197 

and then uploaded to the ParamChem98-100 webpage to generate the parameters and charges for 

CGenFF, and manually validated for accuracy. The default charges and parameters for OPLS-

AA force fields were collected from literature. 

(ii) Simulation Conditions 

All NPT-EE83,87-89 simulations were carried out using MDynaMix package102,102 

version 5.2.4 at room temperature and 1 atm pressure controlled by a Nose-Hoover103,104 

thermostat and barostat, respectively. The relaxation times for the thermostat and barostat were 

30 fs and 700 fs, respectively.  The initial configurations of all simulations were generated 

placing the optimized molecular geometries in a face centered cubic lattice and replicated using 

the minimum image convention and periodic boundary conditions.105 The van der Waals 

interactions were truncated at 12 Å	and conventional long range corrections105 were applied. The 

Ewald summation method was used to account for the electrostatic interaction.105-107 A long time 

step of 2 fs was used for integrating the equations of motion for the slower moving parts of the 

molecule and a short time step of 0.5 fs was used for integrating the equations of motion for the 

faster moving components, following the double time step algorithm of Tuckerman et al.108  

In all solvation free energy calculations using the EE algorithm, including that for the 

self-solvation free energies, a single solute molecule was gradually inserted into the fluid of 

solvent molecules; the numbers of solvent molecules used for water, 1-octanol, and the pure 

liquid of amino acid side chain analogs were 500, 200, and 200, respectively. Twenty to thirty 

subensembles were used and the extent of the insertion of the solute molecule in a solvent was 

started from the fully disengaged state (T = 0)  and ended at the fully inserted state (T = 1). The 

values of the insertion parameter, T, were distributed uniformly109 among the subensembles. The 
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balancing factors were optimized automatically using the Wang-Landau (WL) algorithm110,111 

with 20 iterations used for optimization. The initial increment in the WL optimization was 0.1 

and later scaled by a factor of 0.5 after each iteration, and at each iteration the system passed at 

least twice between the first (m=1) and the last (m=30) subensembles.   

To calculate the self-solvation free energy of subcooled tyr (p-cresol) at room 

temperature the initial configuration was first generated at very low density and then gradually 

compressed at a steady rate until the solid density was reached without crystallization or 

solidification. [An alternative approach would be starting from higher temperature, lower than 

the boiling temperature but higher than the freezing temperature, and quenching the system at a 

controlled rate.] Then the system was equilibrated in the NPT ensemble for 2 ns before initiating 

EE simulations at constant temperature and pressure. In a 20 ns simulation run several 

intermediate configurations, including the starting and ending configurations, were visually 

examined for further confirmation of the subcooled liquid phase. 

D. Compilation of Experimental Data for Comparison with Simulation Results 

  The reliability of the experimental data effects on the assessment of the accuracy of 

computational methods55,56. For the analysis here the experimental hydration free energies were 

collected from the experimental database of Katrizky et al.10, though in most of the simulation 

literature the comparison is with the measured data of Radzicka and Wolfenden.112 These 

measured data sets for hydration free energy were found to be consistent with each other for the 

set of amino acid side chain analogs (AASCAs) studied here, other than for thr (ethanol) for 

which they differ 0.15 kcal/mol. The rationale for comparing with the data from Katrizky et al.10 

is that we examined the measured hydration free energies and the solvation free energies in 1-

octanol from different sources, and examined the values of log����� calculated from these 

using eqn. 4. Although the data of Katrizky et al.10  and Radzicka and Wolfenden112 were found 
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to be consistent with each other for the hydration free energies of the AASCAs studied here, the 

solvation free energies in 1-octanol and the calculated log����� were significantly different 

between the two data sets. To understand the inconsistencies we compared the calculated 

log����� data with the recommended data of Sangster (Supplementary Figure 1 and 

Supplementary Table 1) and found that solvation free energies of Katrizky et al. agreed with the 

recommended log����� values better than those of Radzicka and Wolfenden.112 This is the 

reason for choosing Katrizky et al. data for our comparisons. Also, the solvation free energies in 

octanol were compared with those calculated from the measured hydration free energies and 

recommended log����� data of Sangster et al. 113,114 The self-solvation free energies of ser 

(methanol), thr (ethanol), and 1-octanol were obtained from the experimental data of Katrizky et 

al.10, and the self-solvation free energies of phe (toluene) and tyr (p-cresol) were calculated from 

their measured vapor pressure data reported in the EPIWEB 4.1115 database and the measured 

molarity in the liquid phase using eqn. (1); the self-solvation free energy of solid p-cresol was 

calculated from its experimental sub-cooled vapor pressure and the molarity in the sub-cooled 

phase. The experimental data for the pure liquid or solid phase vapor pressures of the amino acid 

side chain analogs, the subcooled liquid vapor pressure of tyr (p-cresol) and the experimental 

aqueous solubility data of the amino acid side chain analogs were also obtained from EPIWEB 

4.1.115 

  The solubilities of the amino acid side chain analogs in 1-octanol were calculated from 

their measured vapor pressures and their solvation free energies in 1-octanol. The experimental 

values for the logarithms of the air-water partition coefficients (log�����) were obtained from 

Abraham et al.116 and also independently calculated from the experimental solvation free 

energies using the eqn. (5). Both of these methods agree, on average, to within 0.02 log unit.  

Similarly, the logarithm of octanol-water partition coefficients (log�����) were obtained from 
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Meylan and Howard14, and also independently calculated from experimental solvation free 

energies using eqn. (5) for p-cresol. Both of these agree within 0.01 log unit. 

III. RESULTS 

A. Solvation free energies 

The average unsigned errors (AUE) compared to the experimental data for the physicochemical 

properties of the 6 AASCAs computed here using the CGenFF/ParamChem (charge), 

GAFF/AM1-BCC (charge), and OPLS-AA force field parameters are summarized in Table 1, 

and detailed predictions for each of the compounds appear in the Supplementary Information 

(Supplementary Tables 2-10). The self-solvation free energies for the AASCAs are collected in 

Supplementary Tables 2a and 2b, and the average errors are summarized in Table 1. 

 The GAFF/AM1-BCC (charge) force fields reproduced the self-solvation free energy of 

1-octanol within its standard deviations and the OPLS-AA force fields with their default charges 

led to self-solvation energy predictions to within twice of their standard deviations 

(Supplementary Table 2a). The predictions using the CGenFF/ParamChem (charge) force field 

were noticeably less accurate. The self-solvation free energies for ala (methane) and val 

(propane) were not calculated since they are gases at room temperature. For tyr (p-cresol), which 

is solid at room temperature, its subcooled self-solvation free energies were calculated as 

mentioned earlier. 

  Supplementary Table 3 displays the hydration free energies for the AASCAs computed 

here using CGenFF/ParamChem (charge) force field and the TIP3P water model. However, in 

computing physicochemical properties using the GAFF/AM1-BCC (charge) and OPLS-AA force 

fields, the hydration free energies were collected from the simulation data obtained from 

literature55,62 where the water model was also TIP3P.  The average errors of the predictions are 
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summarized in Table 1, where we see that the OPLS-AA and CGenFF force fields, in that order, 

lead to the most accurate predictions. 

 The average errors in the predicted solvation free energies for the AASCAs in 1-octanol 

modeled by GAFF/AM1-BCC (charge), CGenFF/ParamChem (charge) and OPLS-AA force 

fields are presented in Table 1, and detailed predictions for each of the compounds appear in the 

Supplementary Table 4. Overall, the CGenFF force field with ParamChem98-100 assigned charges 

led to better predictions than the other force fields; predictions using the OPLS-AA force field 

being the second most accurate. Note that all methods led to predicted solvation free energies 

that were slightly less negative than the experimental data, so that a lower solubility is predicted.  

 

B. Vapor Pressures from Self-Solvation Free Energies 

The predicted (logarithms of) the vapor pressures (log���������/
��
) for each of 1-octanol 

and the amino acid side chain analogs calculated from the self-solvation free energies obtained 

from EE simulations using eqn. (1) are given in Supplementary Tables 5a and 5b, respectively. A 

summary of the statistical averages is given in Table 1, but does not include 1-octanol and p-

cresol. For 1-octanol the GAFF/AM1-BCC (charges) FF led to a predicted logarithm vapor 

pressure with unsigned error of only 0.07 (in Pa units) compared to the experimental datum. The 

predictions based on the OPLS-AA and CGenFF led to decreasing in accuracy in that order. The 

use of CGenFF led to underestimates of the 1-octanol vapor pressure, while the use of the OPLS-

AA FF led to an over estimate. 

For the amino acid side chain analogs (excluding ala and tyr), use of the OPLS-AA force 

field led to the best predictions, though it overestimated the vapor pressure in all cases. 

Predictions using the CGenFF and GAFF force fields were, on average, comparable in 
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reproducing experimental vapor pressures, though both led to overestimates the vapor pressures, 

and were less accurate than the OPLS-AA force field.  

C. Solubilities 

Supplementary Table 6 gives the predicted logarithms of the aqueous solubilities (mol/l) 

of the amino acid side chain analogs (excluding tyr) compared with experiment, and Table 1 

contains the summary of relevant statistics. The OPLS-AA and CGenFF force fields led to 

predictions of comparable accuracy in reproducing the experimental aqueous solubilities; 

followed by the GAFF with AM1-BCC charges.    

 Supplementary Table 7 gives the predicted logarithms of the solubilities (in mol/L) of the 

amino acid side chain analogs (excluding tyr) in 1-octanol together with the experimental data, 

and Table 1 contains the summary of relevant statistics. In this case predictions based on the 

CGenFF force field are the most accurate followed by the GAFF and OPLS-AA force fields in 

that order. 

D. Sub-Cooled Versus Solid Phase Vapor Pressures and Solubilities of p-Cresol 

The sub-cooled vapor pressure obtained from the self-solvation free energy of p-cresol and 

the solubility predictions are summarized in Table 2. The difference in vapor pressures of the 

subcooled and solid phases is within 0.1 log unit, and the difference in solubilities is within 0.07 

log unit. These differences are due to the small free energy changes on the solid-to-subcooled 

liquid phase transitions since the melting point of p-cresol (35.5oC) is only slightly above room 

temperature. 

E. Octanol-Water, Air-Water and Air-Octanol Partition Coefficients 
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 Supplementary Table 8 displays the logarithms of the octanol-water partition coefficients 

(log�����) for each of the compounds calculated from the solvation free energies in 

Supplementary Tables 3 and 4 using eqn. (4) together with the experimental data for comparison. 

The average errors are summarized in Table 1. CGenFF/ParamChem (charge) force field leads to 

the most accurate predictions, and OPLS-AA is the next most accurate. 

The logarithms of the air-water partition coefficients of the amino acid side chain analogs 

calculated from the aqueous solvation free energies obtained from simulation together with the 

experimental data are given in Supplementary Table 9, and the average errors are given in Table 

1. Predictions for this property based on the OPLS-AA FF best reproduced the experimental air-

water partition, followed by the predictions based on the CGenFF force field. 

Supplementary Table 10 contains the air-octanol partition coefficients calculated from the 

solvation free energies in 1-octanol obtained from the simulations here. For the air-octanol 

partition coefficients, the property predictions of the CGenFF were most accurate followed by 

the OPLS-AA, and GAFF force fields, respectively.  

IV. DISCUSSION  

The self-solvation free energy predictions from molecular simulation for the molecules of 

interest here have not been reported previously. However, Winget et al.91 reported vapor 

pressures calculated the using the SM5.4, SM5.2R, and SM5.0R solvation models,117 from which 

self-solvation free energies can be calculated. Their results were found to vary with the level of 

quantum theory and basis sets used in obtaining the optimized minimum energy geometry. We 

have compared our self-solvation predictions for the liquid solutes with those obtained from the 

calculated vapor pressures of Winget et al.91 (Supplementary Table 11a), and the self-solvation 

free energy of solid p-cresol at room temperature with the data of Thompson et al.93 
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(Supplementary Table 11b). For the liquid amino acid side chain analogs the results from using 

the OPLS-AA/(default charge) force field are of comparable accuracy to that obtained with the 

best of the solvation models, and better than the predictions of many of them, though the 

SM5.4/AM1 and SM5.4/PM3 predictions are the most accurate. For solid tyr (p-cresol) the 

results from simulation with the OPLS-AA force field are more accurate than those obtained 

from any of the solvation models mentioned above, and from using other force fields. A possible 

cause of error in the solvation models is that the macroscopic surface tension of liquid m-cresol 

is used for p-cresol, which affects the surface tension-based semi-empirical component of the 

self-solvation free energy.  

The difference between the self-solvation free energies of p-cresol calculated from the 

experimental vapor pressures in the solid phase and the subcooled phase is only 0.15 kcal/mol, 

which is smaller than the uncertainties in most of the solvation free energies calculated here, and 

of the variation in the reported experimental values. This suggests that eqn. (3) can be used for 

computing solubilities rather than using the solid vapor pressure correction of eqn. (2) provided 

that, as here, the melting temperature of the solid is not very different from room temperature. If 

there is a large temperature difference, the use of eqn. (3) directly without the vapor pressure 

correction may lead to substantial errors. 

Supplementary Table 12a shows the comparison of vapor pressures predicted from the self-

solvation free energies computed using simulations here and the Minnesota solvation models.117 

Different combinations of quantum theory level and basis sets were used in the solvation models 

for the calculation of self-solvation free energies and then the vapor pressures. The comparison 

was made for the amino acid side chain analogs common to this study and ref. 91, namely 

toluene, ethanol, and methanol. Though the best results are obtained with the SM5.4/AM1 and 

SM5.4/PM3 solvation models, the predictions using the OPLS-AA force field are quite good, 

Page 16 of 28Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



17 

 

and is better than many of the other solvation model calculations. Supplementary Table 12b 

compares the predictions of the vapor pressure of p-cresol, a solid solute at room temperature, 

from the different methods, and there we see that the prediction from simulation using any of the 

three force fields considered here is somewhat more accurate than the solvation model 

predictions. 

Supplementary Table 13 shows the comparison of the predicted solubilities for phe 

(toluene) and tyr (p-cresol) from our calculations using different force fields and the results 

obtained by Thompson et al.93 using the Minnesota solvation models.117 The logarithms of 

aqueous solubilities (in mol/L) and the unsigned errors for phe (toluene), liquid at room 

temperature, and p-cresol, solid at room temperature, are shown in that table. For phe (toluene) 

the predictions using OPLS-AA force field is the most accurate among the different force fields 

and solvation models, while the best results for p-cresol are obtained with the CGenFF that leads 

to more accurate results than any of the solvation models. Considering both compounds together, 

using the OPLS-AA force field in EE simulation leads to the best predictions of aqueous 

solubilities, and better than those of the solvation models.  

Egan4 discussed the limited accuracy of solubility measurements and modeling118-121 due 

to polymorphism, pH-dependent ionization, crystal melting point, salt forms, and formulation 

solvents (organic solvents, water, methylcellulose, polyethylene glycol, water and the others). 

Nonetheless, the approach presented here can be to compute the subcooled solubility from first 

principles atomistic simulations without any supporting measured data.  

V. CONCLUSIONS 

  In this communication the solvation free energies of amino acid side chain analogs in 

water, 1-octanol and their own pure liquids (for species liquid at room temperature) were 

calculated using the expanded ensemble method with three different force fields. These results 
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were then used to compute the vapor pressures at room temperature, the octanol-water, air-water 

and air-octanol partition coefficients, and the solubilities in water and 1-octanol. By comparing 

with measured values of these properties, we find that over all the use of the OPLS-AA force 

field leads to the most accurate predictions. The CGenFF force field also led to good, but 

generally slightly less accurate, predictions. We also find the using that using expanded 

ensemble simulations and the OPLS-AA or GCenFF force fields lead to predictions that are, in 

general, as good as those obtained from the semi-empirical SM5.X class of solvation models. 

Although the method we have described is computationally expensive, it has the advantage of 

not relying on somewhat arbitrarily defined functional groups or the availability of descriptors 

and their parameters as is the case in semi-empirical methods. 

  The protocol presented here can be used at the prescreening stage of drug development or 

for environmentally important properties of compounds for which only their geometrical 

structure are known.  
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Figure 1 Schematics of  solvation mechanism of liquid solute (top) and solid or subcooled liquid 
(bottom) . 
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Figure 2 Amino acid side chain analogs. 

 

 

 

 

 

 

 

 

Table 1: Average unsigned errors of the  physicochemical properties of amino acid side chain 
analogs. 
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Physicochemical Property GAFF/AMI-
BCC (charge) 

CGenFF/ParamChem 
(charge) OPLS-AA ∆R���  (kcal/mol) 0.90 0.54 0.71 ∆R���  (kcal/mol) 0.85 0.83 0.61 ∆R
��P  (kcal/mol) 0.90 0.45 0.33 WXY������ (����  in Pa) 0.43 0.27 0.24 WXY������ (Z���  in mol/L) 0.97 0.28 0.28 WXY������ (Z���  in mol/L) 0.30 0.20 0.40 WXY�����  (log unit) 0.37 0.33 0.27 WXY�����  (log unit) 0.63 0.62 0.46 WXY�����  (log unit) 0.67 0.41 0.45 

 

 

Table 2:   Logarithm of vapor pressures in Pa unit (WXY���������/
��
) and logarithms of solubilities 

in mol/L units (WXY��Z���) of Tyr (p-cresol) in water and 1-octanol. 

Force Fields Sub-cooled vapor pressure and solubilities 
 

Solid phase vapor pressure and solubilities 

 WXY���������
 WXY������ WXY������ WXY������
��  WXY������ WXY������ 

 Expt. Sim. Expt. Sim. Expt. Sim. Expt. Sim. Expt. Sim. Expt. Sim. 
CGenFF 1.27 1.60 --- -1.85 --- 1.12 1.17 1.52 -0.70 -1.92 1.26 1.05 
GAFF 1.73 -0.74 0.79 1.65 -0.81 0.71 
OPLS-AA 1.59 -0.96 1.19 1.51 -1.03 1.11 
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