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Freezing and melting line invariants of the Lennard-
Jones system†

Lorenzo Costigliola,⇤ Thomas B. Schrøder, and Jeppe C. Dyre

The invariance of several structural and dynamical properties of the Lennard-Jones (LJ) system
along the freezing and melting lines is interpreted in terms of the isomorph theory. First the
freezing/melting lines for LJ system are shown to be accurately approximated by isomorphs. Then
we show that the invariants observed along the freezing and melting isomorphs are also observed
on other isomorphs in the liquid and crystalline phase. Structure is probed by the radial distribution
function and the structure factor and dynamics is probed by the mean-square displacement, the
intermediate scattering function, and the shear viscosity. Studying these properties by reference
to the isomorph theory explains why known single-phase melting criteria holds, e.g., the Hansen-
Verlet and the Lindemann criterion, and why the Andrade equation for the viscosity at freezing
applies, e.g., for most liquid metals. Our conclusion is that these empirical rules and invariants
can all be understood from the isomorph theory and that the invariants are not peculiar to the
freezing and melting lines, but hold along all isomorphs.
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1 Introduction
In this work several freezing line and melting line invariants, both
structural and dynamical, of the Lennard-Jones (LJ) system1 are
derived from the isomorph theory2 and validated in computer
simulations. The existence of invariances along isomorphs is used
to explain the Hansen-Verlet and Lindemann freezing/melting cri-
teria as well as the Andrade equation for the freezing viscosity for
the LJ system.

The phase transition from liquid to crystal and vice versa is not
yet completely understood3–5. Reasons for searching for a bet-
ter understanding of freezing/melting invariants are many. One
is the possibility of using freezing/melting invariance to evalu-
ate specific system properties under conditions not easily acces-
sible by experiments. An example could be the estimation of liq-
uid iron’s viscosity at Earth-core pressure and temperature con-
ditions, a quantity that is necessary for developing reliable geo-
physical models for the core6–8.

Many theories have been proposed to explain freezing and
melting9,10 and why certain quantities are often invariant along
the freezing and melting lines. Examples of such invariants are
the excess entropy, the constant-volume entropy difference be-
tween liquid and solid on melting11–13, the height of the first peak
of the static structure factor on freezing (the Hansen-Verlet freez-
ing criterion14,15), and the viscosity of liquid metals on freezing
when made properly dimensionless16–18. The Lindemann19,20

melting criterion states that a crystal melts when the mean vibra-
tional displacement of atoms from their lattice position exceeds
0.1 of the mean inter-atomic distance, independent of the pres-
sure. This is equivalent to invariance of < u

2 > /r

2
m

along the
melting line20, where < u

2 > is the atomic root-mean-squared vi-
brational amplitude and r

m

is the nearest neighbor distance. The
most common approaches for explaining such invariants attempt
to connect them to the kinetics of the freezing/melting process.
For instance, going back to Born it has been suggested that a
crystal becomes mechanically unstable when < u

2 > /r

2
m

exceeds
a certain number9. From this perspective, it is not easy to un-
derstand why these invariants do not hold for all systems. It is
also difficult to understand why related invariants hold on specific
curves in the liquid state. Thus, in an extension of what happens
along the melting line of, e.g., the Lennard-Jones system, the ra-
dial distribution function is invariant along the curves at which
the excess entropy S

ex

is equal to the two-body entropy S2
21. Dif-

fusivity is also constant, in appropriate units, along constant S

ex

curves22, implying (from the Stokes-Einstein relation) invariance
of the viscosity in appropriate units along these curves. This rela-
tion between viscosity and excess entropy was recently confirmed
by high-pressure measurements23.

A possible explanation of the invariants along the freezing and
melting lines, as well as along other well-defined curves in the
thermodynamic phase diagram, is given by the isomorph the-
ory2,24–26. According to it27 a large class of liquids exists for
which structure and dynamics are invariant to a good approxi-
mation along the constant-excess-entropy curves. These curves
are termed isomorphs, and the liquids which conform to the iso-
morph theory are now called Roskilde-simple (R) liquids27–32

(the original name “strongly correlating” caused confusion due
to the existence of strongly correlated quantum systems). Liq-
uids belonging to this class are easily identified in computer sim-
ulations because they exhibit strong correlations between their
thermal-equilibrium fluctuations of virial and potential energy in
the NV T ensemble24,33. The isomorph theory offers not only the
possibility of explaining the freezing/melting invariants without
reference to the actual mechanisms of the freezing/melting pro-
cess itself; by evaluating the virial potential-energy correlation
coefficient it also provides a way to predict whether these invari-
ants hold for a given liquid.

The main features of the isomorph theory are summarized in
Sec. 2 where it is also shown how to identify the isomorphs of
the LJ system. This is followed by a short section describing tech-
nical details of the simulations performed. The isomorph equa-
tions are used in Sec. 4 to show that the freezing line can be ap-
proximated by an isomorph, termed the freezing isomorph, with-
out need of any fitting. Sec. 5 deals with freezing invariants,
the Hansen-Verlet criterion14,15, and Andrade’s freezing viscosity
equation16–18; Sec. 6 focuses on melting line invariants of FCC
LJ crystal and their connection with the Lindemann criterion19.
The last section discusses the differences between isomorph the-
ory and other approaches used to describe liquid invariances in
the past years and summarizes the main results of this work.

2 Isomorphs
An R system is characterized by strong correlations between virial
and potential energy equilibrium fluctuations in the NVT ensem-
ble24,33, i.e., by a virial potential-energy equilibrium correlation
coefficient R(r,T ) greater than 0.9:

R(r,T ) = hDWDUip
h(DW )2ih(DU)2i

> 0.9 . (1)

Here D denotes the instantaneous deviations from the equilibrium
mean value and the brackets denote NV T ensemble averages,
W the virial, U the internal energy and (r,T ) the density and
temperature of the system. When such strong correlations are
present, the theory predicts the existence of curves in the thermo-
dynamic phase diagram along which several structural, dynami-
cal, and thermodynamical properties are invariant2,24,33–35 when
expressed in reduced units; these curves are termed isomorphs2.

Reduced quantities (marked by a tilde) are defined as follows.
Distances are measured in units of r�1/3, energies in units of k

B

T ,
and time in units of m

1/2(k
B

T )�1/2r�1/3, where m is the aver-
age particle mass (for Brownian dynamic a different time unit
applies2). These reduced units should not be confused with the
so-called Lennard-Jones (LJ) units. We use the latter units below
for reporting quantities like the temperature and density.

By definition an isomorph has the following property: for any
two configurations R1 ⌘ (r(1)1 , ...,r(1)

N

) and R2 ⌘ (r(2)1 , ...,r(2)
N

)

r1/3
1 R1 = r1/3

2 R2 ) P(R1) = P(R2) (2)

where r
i

is the position vector of the particle i, N is the number
of particles and P(R

i

) is the Boltzmann statistical weight of con-
figuration R

i

at the relevant thermodynamic state point on the
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isomorph24. In other words, configurations that are identical in
reduced units (R̃ ⌘ r1/3R) have proportional Boltzmann factors.

The isomorph theory is exact only for systems with an Euler-
homogeneous potential energy function, for instance inverse-
power-law (IPL) pair-potential systems24,33. However, the the-
ory can be used as a good approximation for the wide class of
systems. Examples of models that are R liquids27 in part of
their thermodynamic phase diagram, in liquid and solid state26,
are the standard and generalized Lennard-Jones systems (single-
component as well as multi-component)2,35,36, systems inter-
acting via the exponential pair potential37, systems interacting
via the Yukawa potential28,38. R systems include also some
molecular systems like, e.g., the asymmetric dumbbell models39,
the Lewis-Wahnström’s three-site model of OTP39, the seven-site
united-atom model of toluene24, the EMT model of liquid Cu24

and the rigid-bond Lennard-Jones chain model40. Predictions of
the isomorph theory have been shown to hold in experiments on
glass-forming van der Waals liquids by Gundermann et al

41, by
Roed et al

42, and by Xiao et al

43. Power-law density scaling44,
which is often observed in experiments on viscous liquids, can be
explained by the isomorph theory36.

Isomorphic scaling, i.e., the invariance along isomorphs of
many reduced quantities deriving from the identical statistical
weight of scaled configurations2, does not hold for all reduced
quantities. For example, the reduced-unit free energy and pres-
sure are not invariant, whereas the excess entropy, reduced struc-
ture, and reduced dynamics are all isomorph invariant2. These
invariances follow from the invariance along isomorphs of New-
tonian and Brownian equations of motion in reduced units for R
liquids2.

For an R the system at a given reference state point (r0,T0), it is
possible to build an isomorph starting from that point2. For R sys-
tems, a function h(r) exists which relates the state point (r0,T0)

to any other state point (r,T ) along the same isomorph25,36 by
the identity:

h(r)
T

=
h(r0)

T0
. (3)

The functional form of h(r) depends on the interaction potential,
and only for simple systems is it possible to find an analytical
expression. As shown by Ingebrigtsen et al

25 and Bøhling et al

36,
if the pair potential is a sum of inverse-power laws involving the
exponents n

i

(i = 1, ...,N), h(r) can be expressed in the following
way:

h(r) =
N

Â
i=1

a
i

✓
r
r0

◆
n

i

/3
. (4)

For a LJ system the pair potential is the well-known

v(r) = 4e
⇣
(r/s)�12 � (r/s)�6

⌘
(5)

so only two IPL exponents, 12 and 6, are involved. It is not diffi-
cult to show that25,36 for the LJ system, h(r) is given by

h(r) =
⇣ g0

2
�1

⌘✓ r
r0

◆4
�
⇣ g0

2
�2

⌘✓ r
r0

◆2
(6)

where g0 is the so-called density-scaling exponent at the reference

state point defined by the canonical averages

g0(r0,T0) =
hDWDUi
h(DU)2i (r0,T0)

. (7)

Equation (6) is easily derived from applying g = d lnh/d lnr 25 at
the reference state point to Eq. (4), adopting the normalization
h(r) = 1. The correlation coefficient R of the LJ system increases
with increasing temperature and with increasing density24; this
means that if the LJ system is an R liquid at the reference state
point (r0,T0), it will be strongly correlating also at higher densi-
ties on the isomorph through (r0,T0).

Recently isomorph theory have been reformulated starting
from the assumption that for any couple of configurations of a
R systems, the potential energies obeys the relation

U(R1)<U(R2) =) U(lR1)<U(lR2) (8)

when the configurations are scaled to a different density29. All
the results described in this section can be derived from this sim-
ple scaling rule.

3 Simulation details
This work presents results of molecular dynamics simulations
of single-component LJ system performed using the GPU code
RUMD45. For each liquid state point an NVT simulation was used
to obtain structure and dynamics, while a SLLOD simulation46–48

was used to find the viscosity. The simulations were carried out
using a shifted-potential cutoff at 2.5s . In the simulations the
LJ parameters were set to unity, i.e., s = 1.0 and e = 1.0. The
time step was adjusted with increasing temperature along an iso-
morph to keep the reduced time step constant, equal to 0.001 for
all simulations. For instance, the time step is 0.001 in LJ units
for a simulation at r = 1.0 and T = 1.0. At every state point the
system was simulated for 5 · 108 timesteps, which takes about 20
hours (in the case of SLLOD simulations) on a modern GPU card
(Nvidia GTX 780 Ti). The NVT simulations used to calculate g
and R at the starting state point for any isomorph ran for 1010

time steps in order to get good statistics for g. In the NVT simula-
tions of the FCC LJ crystal, the thermostat time constant was kept
constant in reduced units. The value for the reduced thermostat
constant is 0.4. Details on how to obtain viscosity from SLLOD
simulations can be found in the Appendix. In the liquid phase
and along the freezing line, 1000 LJ particles were simulated; for
the FCC LJ crystal 4000 LJ particles were simulated.

4 The Freezing line
As mentioned in section 2, along an isomorph scaled configu-
rations have the same statistical weight. This implies that the
freezing and melting lines of an R liquid are isomorphs: con-
sider a state point of the fluid state in which, therefore, the disor-
dered configurations are the most likely, and another state point
in which the system is in a crystalline phase. Since in the latter
case the ordered configurations are most likely, these two state
points cannot be on the same isomorph. It follows that the freez-
ing and melting lines cannot be crossed by an isomorph (in the
region where the system is a R system), i.e., in both the liquid
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Fig. 1 Freezing line of the LJ system. In (a) the isomorph approximation
to the freezing line is marked by the red line and the Khrapak and Morfill
approximation 55 by the black line; freezing state points obtained in the
past years using various techniques are shown by symbols 49–51,56. Both
approximations reproduce the data points well; the inset focuses on low
densities. In (b) the relative difference between Agrawal and Kofke
freezing-temperature data 56 and the two approximations is shown. The
isomorph approximation gives smaller deviations from the simulation
data. The main advantage of approximating the freezing line by an
isomorph lies, however, in the possibility of predicting the full freezing
line from knowledge of a single freezing state point.

and crystalline regions isomorphs must be parallel to the freezing
and melting lines, respectively. In particular, these lines are them-
selves isomorphs. This statement follows from assuming that the
physically relevant states obey the isomorph scaling condition2.

The LJ system is an R liquid so its freezing line is approximately
an isomorph. This was first confirmed by Schrøder et al

35 us-
ing data from computer simulations by Ahmed and Sadus49 and
Mastny and de Pablo50, and subsequently by Pedersen51 with
data obtained by his interface-pinning method52. Recently, the
approximate isomorph nature of the freezing line has been docu-
mented in detail by Heyes et al

53,54. The quoted papers all focus
on densities fairly close to unity (in LJ units). From the fact that
the freezing line is an isomorph it is possible to understand the in-
variance along the freezing line of several properties, as recently
was shown by Heyes et al

53, who studied the invariance of the
reduced-unit radial distribution function, mean force, Einstein
frequency, self-diffusion coefficient, and linear viscoelasticity of

an LJ liquid along the freezing line, for densities around unity.
All these quantities were found to be approximately invariant, as
predicted by the isomorph theory.

In this section the validity of an equation for the freezing line
of the LJ system obtained from isomorph theory is checked over
a considerably wider range of temperatures and densities than
previously studied. In section 5, the results of Heyes et al

53 on
structural and dynamic invariants are extended to a wide range
of densities along the freezing line.

In Fig. 1 the agreement between the freezing isomorph and the
freezing line is shown to hold in the whole range of temperatures
and densities studied by Agrawal and Kofke56. The red line in
figure 1 is the prediction from the isomorph theory; this line is
built by starting from the freezing point T0 = 2.0 and r0 = 1.063,
obtained by Pedersen51. The correlation coefficient R and the
scaling parameter g at the state point (r0,T0) are:

R0 = 0.995 , g0 = 4.907 . (9)

Using Eqs. (3) and (6) and this value for g0, it is possible to
build the freezing isomorph from

T

F

(r) = A

F

r4 �B

F

r2 (10)

where T

F

is the freezing temperature and A

F

= 2.27, B

F

= 0.80
is found from the reference state-point information given Eqs.
(6) and (9). The same power-law dependence for the LJ freez-
ing line was obtained in 2009 by Khrapak and Morfill55 and, in
fact, long ago by Rosenfeld from his “additivity of melting tem-
peratures” (derived by reference to the hard-sphere system)57,58.
This is consistent with isomorph theory because Rosenfeld’s rule
can be derived from the quasi-universality of single-component R
liquids31,32.

Fitting to the same simulation for the freezing line as refer-
enced above49,50,56, Khrapak and Morfill55 found the following
values for the coefficients: A = 2.29 and B = 0.71. The line ob-
tained inserting these values of A and B into Eq. (10) is shown
in Fig. 1 (a) (black dots). There is a significant difference in
the second coefficient between the two equations. The second
coefficient of Khrapak and Morfill is obtained using data for the
triple point which may explain the difference; in that region the
isomorph theory does not provide a good approximation for the
freezing line of the LJ system, as Pedersen recently showed51.
Nevertheless, the two curves are close to each other. The freezing
isomorph provides a slightly better prediction of freezing temper-
atures at any density when compared to the Khrapak and Morfill
fit (inset in Fig. 1 (a) and Fig. 1 (b)).

The main result of this section is that isomorph theory provides
a technique for approximating the freezing line of an R liquid
from simulations at a single state point, i.e., without any fitting,
and that this approximation is valid over a wide range of densi-
ties. The relative difference between the predicted freezing tem-
perature and the one obtained from computer simulations56 is
about 6% for density change of more than a factor 3 and temper-
ature change of more that a factor 100, as shown in Fig. 1. The
isomorph theory allows therefore to estimate the freezing temper-
atures with small relative uncertainties, and it may be useful for
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estimating the freezing temperatures in the high density regimes,
where is difficult to perform direct experiments, for real liquids
which are R liquids in the relevant part of the phase diagram.

5 Invariants along the freezing line
In this section we discuss different invariants along the freezing
isomorph as well as another isomorph "parallel" to it in the liq-
uid state, generated from the state point (r,T ) = (1.063,4.0). It
is demonstrated that invariants originally proposed for the freez-
ing line are found also along the liquid isomorph. Along the two
isomorphs investigated, the excess pressure in reduced units is
also evaluated (Fig. 2(a)). This quantity is invariant for any IPL
system, but not for the LJ system. In the framework of isomorph
theory, it is well understood why some quantities are invariant,
e.g., the reduced viscosity, while others are not, e.g., the reduced
pressure2. This shows that the scaling properties studied in this
work are not simply the consequences of an effective IPL scaling.
Note also that it is necessary to go to quite high densities before
g ⇡ 4, as shown in Fig. 2(b). In the same figure, the correlation
coefficient R and the reduced viscosity are plotted as a function
of density along the freezing isomorph. The reduced viscosity is
predicted to be invariant2. For r > 1.1 the reduced viscosity is
invariant to a good approximation. At lower densities, the corre-
lation coefficient R decreases and the reduced viscosity begins to
vary.

5.1 Structure and the Hansen-Verlet freezing criterion

Figure 3 shows the radial distribution functions (RDF) g(r) at dif-
ferent state points along the freezing line (a, d), the approximate
freezing isomorph (b, e), and the liquid isomorph (c, f). In Figs.
3 (a), (b), and (c), g(r) is expressed as a function of the pair dis-
tance, while in Figs. 3 (e), (f), and (g), the g(r) is expressed as
a function of the reduced distance, r̃ = r1/3

r. When the RDFs
are plotted in reduced units, they collapse onto master curves,
as predicted by the isomorph theory. The results for the freezing
line confirm the recent findings of Heyes et al

? , who showed the
same collapse albeit for a smaller density range.

Starting from the invariance of g(r) it is easy to show that the
structure factor S(q) is invariant when considered as a function of
the reduced wave vector,

S(q)�1 = r
Z

V

dr e

�iq·r
g(r) =

=
Z

Ṽ

dr̃ e

�i(r�1/3q)·r̃
g(r̃) = S(q̃)�1 .

(11)

Structure factors S(q) along the freezing line, the approximate
freezing isomorph, and the liquid isomorph are shown in Fig. 4.
The invariance of the structure factor implies the Hansen-Verlet
freezing criterion14,15 stating that the LJ system freezes when the
height of the first peak of the structure factor reaches a definite
value close to 3 (equal to 2.85 in the original work14,15): if S(q)

is invariant along an isomorph, points which are on the same
isomorph have the same height of the first peak. And since the
freezing line for R liquids is well approximated by an isomorph,
the invariance of S(q) implies the validity of Hansen-Verlet freez-
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Fig. 2 (a) Excess pressure in reduced units, P̃

ex

=W/(Nk

B

T ) along two
different isomorphs, the freezing isomorph and a liquid isomorph. For
inverse power-law pair potentials this quantity is invariant, while for the
LJ system it clearly is not. This shows that isomorph scaling is not
simply a trivial IPL scaling. (b) In the top panel, the scaling coefficient g,
Eq. (7), is shown as a function of density along the freezing line and the
freezing isomorph. The green line is the predicted value from
g = d lnh(r)/d lnr 25,36. The middle and bottom panels show the virial
potential-energy correlation coefficient R and the reduced viscosity h̃
along the freezing line and the freezing isomorph. The blue symbols
mark data at freezing state points taken from Pedersen 51; the red
symbols are the same quantities calculated at freezing isomorph state
points.
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Fig. 3 Liquid results. Radial distribution function along the Pedersen freezing line (a,d) 51, along the approximating freezing isomorph (b,e) and along
an isomorph well within the liquid state (c,f); in (a), (b), and (c), the RDFs are plotted as a function of distance in Lennard-Jones units, in (d), (e), and
(f), the RDFs are plotted as a function of the reduced distance. It is worth noting that while in (a) and (d) the density change is only a few percent, in
the other figures density is changed of about a factor 3. The same holds for Figs. 4 - 6.

5 10 15 20 25
q

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
(q

)

ρ=0.88 T=0.80
ρ=0.90 T=0.90
ρ=0.92 T=1.00
ρ=0.96 T=1.20
ρ=0.99 T=1.40
ρ=1.02 T=1.60
ρ=1.04 T=1.80
ρ=1.06 T=2.00
ρ=1.09 T=2.20
ρ=1.11 T=2.40
ρ=1.13 T=2.60

(a)

5 10 15 20 25
q

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
(q

)

ρ=1.13 T=2.65
ρ=1.43 T=7.80
ρ=1.57 T=11.86
ρ=1.71 T=17.28
ρ=1.87 T=25.04
ρ=2.01 T=34.18
ρ=2.16 T=45.57
ρ=2.30 T=59.54
ρ=2.46 T=78.16
ρ=2.60 T=98.73
ρ=2.76 T=125.49
ρ=2.90 T=154.44
ρ=3.05 T=188.10
ρ=3.19 T=226.94
ρ=3.35 T=275.81

(b)

5 10 15 20 25
q

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
(q

)

ρ=1.06 T=4.00
ρ=1.26 T=8.79
ρ=1.46 T=16.73
ρ=1.66 T=28.92
ρ=1.86 T=46.59
ρ=2.05 T=71.19
ρ=2.25 T=104.27
ρ=2.45 T=147.59
ρ=2.65 T=203.02
ρ=2.85 T=272.63
ρ=3.05 T=358.64

(c)

5 10 15 20 25
~q= ρ

−1/3
q

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
(~ q

)

ρ=0.88 T=0.80
ρ=0.90 T=0.90
ρ=0.92 T=1.00
ρ=0.96 T=1.20
ρ=0.99 T=1.40
ρ=1.02 T=1.60
ρ=1.04 T=1.80
ρ=1.06 T=2.00
ρ=1.09 T=2.20
ρ=1.11 T=2.40
ρ=1.13 T=2.60

(d)

5 10 15 20 25
~q= ρ

−1/3
q

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
(~ q

)

ρ=1.13 T=2.65
ρ=1.43 T=7.80
ρ=1.57 T=11.86
ρ=1.71 T=17.28
ρ=1.87 T=25.04
ρ=2.01 T=34.18
ρ=2.16 T=45.57
ρ=2.30 T=59.54
ρ=2.46 T=78.16
ρ=2.60 T=98.73
ρ=2.76 T=125.49
ρ=2.90 T=154.44
ρ=3.05 T=188.10
ρ=3.19 T=226.94
ρ=3.35 T=275.81

(e)

5 10 15 20 25
~q= ρ

−1/3
q

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
(~ q

)

ρ=1.06 T=4.00
ρ=1.26 T=8.79
ρ=1.46 T=16.73
ρ=1.66 T=28.92
ρ=1.86 T=46.59
ρ=2.05 T=71.19
ρ=2.25 T=104.27
ρ=2.45 T=147.59
ρ=2.65 T=203.02
ρ=2.85 T=272.63
ρ=3.05 T=358.64

(f)

Fig. 4 Liquid results. Structure factor the along the Pedersen freezing line (a,d) 51, along the approximate freezing isomorph (b,e), and along an
isomorph well within the liquid state (c,f); in (a), (b), and (c), S(q) is plotted as a function of wave vector in Lennard-Jones units, in (d), (e), and (f), S(q)
is plotted as a function of reduced wave vector.
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ing criterion. Figure 4 confirms this.

5.2 Dynamic invariants: mean-squared displacement, inter-
mediate scattering function

The dynamical behavior of the system is described by the mean-
squared displacement (MSD) and the self-intermediate scattering
function (ISF). In Figs. 5 and 6, the MSDs and ISFs are shown,
respectively, as functions of non-reduced and reduced quantities.
As for the structure, the curves collapse onto master curves.

5.3 Viscosity along the freezing line and the Andrade equa-
tion

In order to evaluate the viscosity the system was simulated using
the SLLOD algorithm48 (details are given in the Appendix). Stud-
ies of the viscosity of the LJ system were done in the past, e.g., by
Ashurst and Hoover59 and more recently by Galliero et al

60 and
Delage-Santacreu et al

61, in all cases for densities fairly close to
unity.

The isomorph theory predicts the reduced viscosity to be con-
stant to a good approximation along an isomorph (and therefore
along the freezing line),

h̃ ⌘ h
r2/3p

mk

B

T

= Const. (12)

From this equation it is clear that if we know the value of h at
a given state point we can calculate the expected viscosity at any
state point on the same isomorph. Along the freezing line (F) this
equation can be written as

h
F

(r) = h̃0 ·r2/3p
mk

B

T

F

(r) (13)

where the subscript F stands for freezing, T

F

(r) is the freezing
temperature at density r and h̃0 = 5.2 is the reduced value of h
at the reference state point (r0,T0) = (1.063,2.0). Equation (13)
is identical to the Andrade equation for the freezing viscosity17,18

from 1934:
h(r

F

,T
F

) = b ·r2/3
F

p
T

F

(14)

where r
F

is the density at freezing. This is well known to apply
for most metals to a good approximation62. The parameter b in
Eq. (14) depends on the system, just as the value of h̃0 in Eq.
(13) depends on the chosen potential.

In Fig. 7 viscosity results are compared to the values of the
viscosity predicted from isomorph theory using Eq. (13).

The green line in Fig. 7 (b) is obtained by solving Eq. (10) with
respect to r2 and using the solution to remove the r dependence
from Eq. (13). This results in

h(T
F

) = h̃0
p

mk

B

T

F

0

@
B

F

+
q

B

2
F

+4A

F

·T
F

2A

F

1

A

1/3

(15)

in which A

F

= 2.27 and B

F

= 0.80 are the freezing isomorph co-
efficients identified in Sec. 4 using Eqs. (6) and (9), i.e., based
exclusively on simulations at the reference state point (r,T ) =
(1.063,2.0) (the units of A

F

and B

F

are s12 · e/k

B

and s6 · e/k

B

,
with e and s being the LJ parameters). The red dot in Fig. 7

1.0 1.5 2.0 2.5 3.0 3.5
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SLLOD results
Isomorph prediction
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SLLOD results
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Fig. 7 Viscosity along the approximate freezing isomorph, Eq. 10, as a
function of density (a) and of temperature (b). The black dots represent
results for the viscosity obtained from our SLLOD simulations
(Appendix). The green line is the predicted viscosity assuming the
invariance of reduced viscosity along an isomorph (Eq. (13)). The red
dot is the viscosity of the state point from which the freezing isomorph is
built and the constant of Eq. (13) determined, (r,T ) = (1.063,2.0). The
reduced viscosity at this state point is h̃0 = 5.2
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Fig. 5 Liquid results. Mean-squared displacement along the Pedersen freezing line (a,d) 51, along the approximating freezing isomorph (b,e) and
along another isomorph in the liquid state (c,f); in (a), (b), and (c), the MSDs are plotted as a function of time in LJ units, in (d), (e), and (f), the reduced
MSDs are plotted as a function of reduced time.
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Fig. 6 Liquid results. Self-intermediate scattering function along the Pedersen freezing line (a,d) 51, along the approximating freezing isomorph (b,e),
and along another isomorph in the liquid state (c,f); in (a), (b), and (c), the ISFs are plotted as a function of time in Lennard-Jones units, in (d), (e), and
(f), the ISFs are plotted as a function of reduced time. All the ISFs correspond to the q value of the first peak of S(q), q

max

. The quantity q̃

max

is
invariant along an isomorph due to the invariance of S̃(q̃), Eq. (11).
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Fig. 8 Reduced viscosity along the freezing isomorph and along an
isomorph well within the liquid state.

marks the reference state point.
In Fig. 8 we show the reduced viscosity along the freezing iso-

morph as well as along the liquid isomorph with reference state
point (r0,T0) = (1.063,4.0). The figure demonstrates that invari-
ance of the reduced viscosity along the freezing line is not a spe-
cific property of the freezing line, but a consequence of the more
general isomorph invariance.

Andrade’s equation for the freezing viscosity, which is ex-
plained by the isomorph theory, was also discussed recently by
Fragiadakis and Roland63. It is interesting to compare the tem-
perature range accessible to experiments with that of the present
work. Fragiadakis and Roland63 reported data on liquid Argon in
a range of temperatures corresponding to [0.75,4.17] in LJ units.
This is impressive, but simulations allow one to cover an even
wider range of freezing temperatures.

6 Invariants along the melting line
Following the same argument as for the freezing line (Sec. 4),
the melting line is also an approximate isomorph. A study simi-
lar to that of Sec. 5 was performed, evaluating the structure and
MSD, for an FCC LJ crystal along the melting line as well as an-
other isomorph in the crystalline phase. The starting point for the
melting isomorph is taken from Pedersen51; this is the state point
(r,T ) = (1.132,2.0). The starting point for the crystal isomorph
is (r,T ) = (1.132,1.0), which is well within the crystalline phase.
The melting isomorph equation for the LJ system is

T

M

(r) = A

M

r4 �B

M

r2 (16)

where A

M

= 1.76 and B

M

= 0.69. The equation has the same math-
ematical form as the freezing equation, Eq. 10, (but different co-
efficients) because the shape of isomorphs reflects the pair poten-
tial, not the phase. The existence of isomorphs in the crystalline
phase was demonstrated in a recent publication by Albrechtsen
et al

26; this paper showed that the isomorph theory, in fact, is
more accurate in the crystalline phase than for liquids. In Table 1
the predicted melting temperature at density 3.509 from Eq. (16)
is compared to the results for the melting line obtained in the
present work using Pedersen’s interface pinning method51,52. As

Table 1 Comparison between the melting temperature at a given
density, predicted using Eq. (16), and that calculated for the same
density using interface pinning method 52. The freezing and melting
state temperatures at r = 3.509 have been calculated in this work while
the other data are from Pedersen 51. The parameters in Eq. (16) were
calculated at the reference state point (r ,T ) = (1.132,2.0)

r
M

T

M

T

pinning

DT/T

M

0.973 0.800 0.921 �0.132
0.989 0.900 1.006 �0.106
1.005 1.000 1.095 �0.086
1.034 1.200 1.270 �0.055
1.061 1.400 1.453 �0.036
1.087 1.600 1.636 �0.022
1.109 1.800 1.812 �0.007
1.132 2.000 2.000 +0.000
1.153 2.200 2.191 +0.004
1.172 2.400 2.371 +0.012
1.191 2.600 2.561 +0.015
3.509 258.44 275.81 +0.067

for the liquid-state isomorphs and the freezing line, the RDF is in-
variant both along the melting isomorph and along the crystal iso-
morph when expressed as a function of the reduced pair distance
(Fig. 9). The MSD is shown in Fig. 10. The plateau of the MSD
at melting confirms pressure invariance of the Lindemann melt-
ing criterion19,20,64. The approximate invariance of reduced-unit
MSD in the crystal implies that the value of the plateau for the
mean atomic displacement is constant in reduced units along an
isomorph (and consequently along the melting line), is consistent
with the Lindemann criterion. At low densities the invariance of
the MSD plateau is violated. This is the region where the melt-
ing isomorph provides a worse approximation to the LJ melting
line, Fig. 10(d), as also shown by Pedersen51. The Lindemann
constant increases slightly with increasing density along melting,
as reported by Luo et al

65. For temperatures above 1.8, the Lin-
demann criterion is accurately satisfied, i.e., the reduced vibra-
tional mean-square displacement becomes density independent,
Figs. 10 (d) and 10 (e).

7 Discussion
We have studied several properties of the LJ model along its freez-
ing and melting lines, as well as along isomorphs well within
the liquid and the crystalline phases. In Table 2 the coefficients
describing the four isomorphs studied in this work are given to-
gether with the relative reference state points. The aim was not

Table 2 This table gives the coefficient A and B of the isomorph equation
(10) for the four isomorphs studied in this work. The first two columns
contain the coefficients and the latter four columns contain
temperatures, densities, density scaling coefficient g, and correlation
coefficient R of the state points the isomorphs studied in this work start
from. A pure n = 12 IPL pair potential leads to g = 4.

A B T r g R

liquid isomorph 4.32 1.34 4.0 1.063 4.7589 0.9966
freezing isomorph 2.27 0.80 2.0 1.063 4.9079 0.9955
melting isomorph 1,76 0.69 2.0 1.132 4.8877 0.9985
crystal isomorph 0.91 0.39 1.0 1.132 4.9979 0.9986

primarily to report that these invariances hold, which is already
well known9,14,16,66,67 albeit over smaller melting temperature
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Fig. 9 Crystal results. Radial distribution function along the Pedersen melting line (a,d) 51, along the approximating melting isomorph (b,e), and along
an isomorph well within the crystalline state (c,f); in (a), (b), and (c), the RDFs are plotted as a function of distance in Lennard-Jones units, in (d), (e),
and (f), the RDFs are plotted as a function of reduced distance. It is worth noting that while in (a) and (d) the density change is only a few percent, in
the other figures density is changed of about a factor 3. The same holds for Figs. 10.
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Fig. 10 Crystal results. Mean-squared displacement along the Pedersen melting line (a,d) 51, along the approximate melting isomorph (b,e), and
along an isomorph well within the crystalline state (c, f); in (a), (b), (c), the MSDs are plotted as a function of time in LJ units, in (d), (e), (f), the reduced
MSDs are plotted as a function of reduced time. The invariance of the plateau of MSD along the melting line implies the Lindemann melting criterion
for R liquids because the invariance of the reduced-unit vibrational mean-square displacement in equivalent to the invariance of Lindemann constant
(Sec. 6). Along the melting isomorph defects’ diffusion is observed. Defect formation is a stochastic phenomenon, as shown by the not-monotonicity
of its appearance with respect to T or r. In order to study the isomorphic invariance of defects’ formation, it’s necessary to average over many
simulations at every state point and it could be object of future studies. The diffusion of defect in crystal, when properly averaged, have been shown to
be isomorphic invariant by Albrechtsen et al 26.
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/ density ranges than studied here, but to relate these invari-
ances to the isomorph theory. With this goal in mind we investi-
gated whether the invariants, thought to be peculiar to the freez-
ing/melting process, hold also along other isomorphs in the liq-
uid and crystalline phase. The results show that this is indeed the
case. This means that these invariants are consequences of the
LJ system being an R liquid in the relevant part of its phase dia-
gram, not a specific property of freezing or melting. Nevertheless
it should be stressed that invariances of reduced units quantities,
which would be exact if the freezing/melting lines were perfect
isomorphs, are violated somewhat close to the triple point.

Before discussing our results in detail, we want to point out
the differences between isomorph theory and other approaches
often used to describe the LJ system invariances. These other at-
tempts to describe LJ invariances are the well know hard sphere
(HS) paradigm and the WCA (Weeks, Chandler, Andersen) ap-
proximation. HS and isomorph theory are able to describe the
nature of the same invariances, but with some important differ-
ences. A first difference is in the possibility of determine when
the theory is expected to work and when not. In the case of
isomorph theory there is a simple prescription: if the system is
strongly correlating then it is possible to build isomorphs along
which many reduced quantities are invariant. In the framework
of hard spheres it is not possible to proceed in this way. It is
not even possible to know from one single state point if some in-
variances will hold in the region around that state point because
there is no equivalent of the correlation coefficient R defined in
Eq. (1). Another fundamental difference between the two ap-
proaches is the presence of an ad hoc defined hard sphere radius
that is in general state-point dependent. Isomorph theory works
without need of introducing any ad hoc parameters. A last differ-
ence, which is perhaps the most important, lies in the possibility
of predicting which invariances the system will have. According
to the HS paradigm, once the mapping from the studied system to
the HS system is done using the ad hoc defined HS radius, the in-
variances of the HS system are inherited from the studied system.
This means that structure, dynamics and thermodynamic quan-
tities should be invariant along constant-packing-fraction curves.
In Fig. 2 we showed that the reduced pressure of the LJ system
is not invariant along an isomorph (a) while reduced viscosity is
(b), as predicted from isomorph theory. Another possible compar-
ison is between the isomorph theory and the WCA approximation
for the LJ system. While in isomorph theory there is no reference
system, the WCA approximation is based on the idea that only the
repulsive part of the LJ potential is relevant in the description of
the system, providing a convenient reference system, and that LJ
invariances can be derived from HS invariances68.

In Fig. 11 (a) the viscosity is shown along the freezing line
data from Agrawal and Kofke56 for the LJ system and for the IPL
potential:

v

IPL

(r) = 4r

�12 (17)

which is the repulsive term of the LJ potential. The viscosity
calculated with the two different potentials along the freezing
line is very different. The difference is larger than 10% before
reaching considerably high densities and temperatures ((r,T ) =
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Fig. 11 (a) Viscosities (inset) of IPL12 system and of LJ system along
the freezing line (data from Agrawal and Kofke 56) and their ratio (main
figure). The viscosities are calculated using the SLLOD algorithm 46–48.
The viscosity of the IPL12 system is substantially different from that of
the LJ system for temperatures lower than T = 68.5 in LJ units. (b)
Diffusion constant for the LJ system and WCA system along the
Pedersen freezing line. It is well known that the WCA potential
reproduces with good accuracy the structure of the LJ system while this
is not the case for dynamics, as the figure shows.
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(2.417,68.5) in LJ units). This means that the effects of attraction
are not negligible up to really high densities. As Rosenfeld wrote
in 1976 "It is important here to emphasize that the r

�6
term of the

L-J potential gives appreciable contribution to the thermodynamic

properties of the system up to very high temperatures"

58 regarding
the difference between the freezing line of IPL12 and LJ.

In Fig. 11 (b) the diffusion constant D for the LJ system with
WCA approximation and with the 2.5 cutoff are shown. The
WCA approximation is well known to reproduce with good ac-
curacy the structure of the LJ system, but it fails in reproducing
the dynamics. Berthier and Tarjus69 already underlined that this
was the case for Kob-Andersen binary LJ system and Pedersen et

al

70 showed how isomorph theory provide a better description of
the LJ system dynamics while preserving the good description of
structure.

In Secs. 5 and 6 we discussed the relation between the iso-
morph theory and freezing/melting criteria. It was shown that the
invariance along the freezing line of the maximum of the static
structure factor S(q) (the Hansen-Verlet criterion) results from a
general invariance along isomorphs of the entire S(q) function.
The first peak of the structure factor along an isotherm decreases
gradually with decreasing density. This means that there will be
a specific value which corresponds to the freezing phase transi-
tion. The evidence that the value of this height is constant along
the freezing line is not a peculiarity of the freezing process it-
self, but a consequence of isomorph scaling. The reason why the
maximum height of S(q) is 2.8514,15 cannot be explained within
isomorph theory, but is a feature of the freezing process. In order
to explain the universality of the number 2.85, as well as the uni-
versality of the Lindemann melting criterion number, one must
refer to quasiuniversality, a further consequence of the isomorph
theory detailed, e.g., by Bacher et al

71. Note the compatibility of
the general isomorph theory with the results of Saija et al

72 on
the pair-potential dependence of the maximum height of S(q) at
freezing.

The study of the LJ structure factor along the freezing line al-
lows also to explain some properties of structure factors for liquid
metals observed in X-rays experiments. As shown by Waseda and
Sukuri in 197273, for some liquid metals the ratio of the position
of the first and second peak in the structure factor is the same
and others for which this does not hold, as for example Ga, Sn,
Bi. The first set of metallic liquids are the ones which are R liq-
uids (i.e., exhibit strong virial potential-energy correlations), and
therefore are similar to the LJ system studied in this work, while
those in the second do not, as shown very recently by Hummel et

al

74 from ab initio density functional theory calculations.
Along the melting line we studied the Lindemann criterion,

which has been widely discussed65,66,72,75 and also experimen-
tally tested76, and the same conclusion holds as for the Hansen-
Verlet criterion. Isomorphs’ existence implies that an R liq-
uid’s thermodynamic phase diagram becomes effectively one-
dimensional with respect to the isomorph-invariant quantities.
The reduction of the 2d phase diagram to an effectively 1d phase
diagram is crucial for understanding the connection between the
isomorph theory and the Lindemann criterion, because it removes
one of the main criticism against this criterion, i.e., it being a

single-phase criterion9. If the phase diagram is effectively one-
dimensional, there is a unique melting process and the Linde-
mann constant is the value associated with this phase transition;
the invariance of Lindemann constant along the melting line is, in
this view, a consequence of isomorph invariance. This argument
also explains why one can use a single-phase criterion to predict
where the melting process takes place for R liquids. According to
the Lindemann criterion, the crystal melts when the vibrational
MSD exceeds a threshold value, which in reduced units is con-
stant along the melting line. This condition is equivalent to the
invariance of the MSD along the melting line, an isomorph pre-
diction. Note that the isomorph theory can be used to predict
for which systems the Lindemann criterion (at least) must hold,
namely all R liquids. Recent comprehensive density-functional
theory (DFT) simulation data of Hummel et al

74 show that most
metals are R liquids and therefore the Lindemann criterion must
apply for them in the sense that the reduced-unit MSD is approx-
imately invariant along the melting line. On the other hand, sys-
tems that do not exhibit strong correlations between virial and
potential-energy do not necessarily obey the Lindemann crite-
rion. Thus as discussed by Stacey and Irvine already in 197767,
the Lindemann criterion applies for systems which “undergo no
dramatic changes in coordination on melting”. This is not the
case for hydrogen-bonding systems, which are not R liquids24,27.
The non-universal validity of the Lindemann criterion is also sup-
ported by Lawson66 and by Fragiadakis and Roland63. Another
interesting point is the connection between the Lindemann and
Born criteria, relating melting to the vanishing of the shear mod-
ulus in the crystal. Jin et al

77 showed that for a LJ system when
the Lindemann criterion is satisfied, the Born criterion78 holds
too to a good approximation. In view of the isomorph theory this
is not surprising, because the reduced shear modulus is invariant
along an isomorph and therefore constant on melting.

In Sec. 5 we discussed the relation between the isomorph the-
ory and Andrade’s viscosity equation from 1934 for the viscosity
of liquid metals at freezing. This equation is equivalent to stat-
ing invariance of the reduced viscosity along an isomorph, Eqs.
(13) and (14). As for the Lindemann criterion, the isomorph the-
ory provides the possibility to predict whether a liquid will obey
Andrade equation. The Hummel et al

74 DFT simulation data ex-
plain why this equation holds for liquid alkali metals (as well as
other invariances79); likewise one also expects this equation to
hold for many other metals, for example iron. This last point is
of significant interest because the estimation of viscosity of liq-
uid iron close to freezing in the Earth core is of crucial relevance
for the development of Earth-core models6–8, but still widely de-
bated80–82. Isomorph scaling predicts an increase of the real
(non-reduced) viscosity along the freezing line consistent with
the results of Fomin et al

81.

8 Conclusions
We have shown that the freezing and melting lines are approx-
imately isomorphs, how the isomorph theory can be used to ex-
plain why some liquids have simple behavior at freezing and melt-
ing, i.e., have several structural and dynamical approximate in-
variants along the freezing and melting lines. Thus this theory
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Fig. 12 Measured reduced viscosity from equation 18 at different
reduced strain rates. Two of the five state points (green and red dots)
are on the same isomorph (the freezing isomorph of Sec. 4) and their
behavior in reduced units is the same. As consequence, the reduced
strain rate at which reduced viscosity start to be strain rate dependent is
isomorphic invariant, consistently with results from Separdaret al 83. The
blue and violet dots are results of simulations at state points isochoric or
isothermic to the (r,T ) = (1.125,2.6). The behavior of reduced viscosity
as function of strain rate is strongly modified changing density or
temperature if the chosen state points are not isomorphic.

can be used for R liquids to determine melting and freezing phys-
ical quantities not easily accessible by experiments, ranging from
noble gasses like Argon over liquid metals to certain molecular
liquids.
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A Determining the zero-strain rate viscosity
from SLLOD simulations

A SLLOD simulation46–48 is a molecular dynamics simulation per-
formed by shearing the simulation box with constant speed. Be-
tween the bottom part of the box and the top part there is a rel-
ative shearing motion with strain rate ġ = ∂u

x

∂y

, where u

x

is the
streaming velocity at ordinate y when the box is sheared in the
x direction. Under low strain-rate conditions, this kind of simu-
lation reproduces an ordinary, linear Coulette flow and the lin-
ear, shear-rate-independent, viscosity can be calculated from the
stress tensor s

i j

through the equation

h =
s

xy

ġ (18)

Equation (18) holds only when the viscosity is independent of
strain rate, i.e., at a sufficiently small shear rate. As shown by
Separdar et al

83 the strain rate ġ for which the measured viscos-
ity starts to be strain-rate dependent is isomorph invariant when
given in reduced units.

The behavior of the reduced viscosity h̃ as a function of the
reduced strain rate ˜̇g is shown in Fig. 12. When the two con-
sidered state points are on the same isomorph, they exhibit the
same shear-thinning behavior in reduced units; this is not true
if we move along an isochore or along an isotherm. The dotted
green line in Fig. 12 marks the reduced strain rate used for the
simulations along the freezing line reported in the paper.
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