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Quantum transport through a Coulomb blockaded quantum emitter coupled to a
plasmonic dimer

A. Goker and H. Aksu
Department of Physics,

Bilecik University,
11210, Gülümbe, Bilecik, Turkey

(Dated: December 7, 2015)

We study the electron transmission through a Coulomb blockaded quantum emitter coupled to
metal nanoparticles possessing plasmon resonances by employing the time-dependent non-crossing
approximation. We find that the coupling of the nanoparticle plasmons with the excitons results
in a significant enhancement of the conductance through the discrete state with the higher energy
beyond the unitarity limit while the other discrete state with the lower energy remains Coulomb
blockaded. We show that boosting plasmon-exciton coupling well below the Kondo temperature
increases the enhancement adding another quantum of counductance upon saturation. Finite bias
and increasing emitter resonance energy tends to reduce this enhancement. We attribute these
observations to the opening of an additional transport channel via the plasmon-exciton coupling.

PACS numbers: 72.20.Pa, 73.21.La, 71.15.Mb

I. INTRODUCTION

Concentrating optical energy like a lens into spatial re-
gions much smaller than the wavelength of the light has
been in high demand for a long time to be able to keep up
with the ever shrinking size of the state-of-the-art elec-
tronic devices and design high performance miniature op-
toelectronic components. Realization of tunable plasmon
resonances in metal nanoparticles via optical excitations1

provided a major breakthrough towards this end. These
plasmon resonances generate tremendeous field enhance-
ments around the metal nanoparticles.2 This feature
opens a new avenue by enabling coupling between the
metal nanoparticles and nearby quantum impurities like
dots or molecules.

An entangled two level quantum emitter located be-
tween two plasmonic nanoparticles can be considered as
a prototype for a two qubit quantum computer.3 There-
fore, it is of great interest to understand how a direct
coupling of nanoparticle plasmons with the excitons in
the quantum emitter influences the spin dependent elec-
tron transport through this device. The term plexcitonics
has been coined for the hybrid light-matter states involv-
ing plasmon-exciton couplings4 and it is thought to be
the first stride towards future tunable molecular systems5

and plasmonic switches.6

Observation of the Fano resonance in plexcitonic
systems7 necessitated the development of a full quan-
tum theory for electron transport across such a junc-
tion by taking into account the electron spin and the
Coulomb interaction explicitly. Initial attempts utilized
time-dependent density functional theory8 and a semi-
classical model involving incorporation of quantum co-
herent electron tunnelling into a classical electromag-
netic framework9 by completely ignoring the plasmon-
exciton coupling and spin effects. Subsequent stud-
ies employed more intricate Green function methods to
demonstrate that only the dipolar plasmon mode is rel-

evant in the strong coupling regime.10 Same method has
been used to investigate the exciton transfer through a
collection11 and a chain12 of quantum emitters near a
metallic nanoparticle.

Despite all these efforts, incorporation of strong elec-
tron correlations into plexcitonics by accounting for the
electron spin remains missing to this day. We recently de-
veloped a many-body Green function theory for this sys-
tem and showed that the Fano resonance arising due to
the plasmon-exciton coupling is quenched for a Coulomb
blockaded quantum emitter above the Kondo tempera-
ture of the discrete state with the higher energy.13 In this
paper, we will extend this formalism and investigate for
the first time how strong electron correlations alter the
electron transport for a Coulomb blockaded plexcitonic
junction. It has already been shown that the plasmon-
induced oscillating field within a single-molecule junction
can boost the conductance outside the Coulomb blockade
regime.14 Here, we will demonstrate for the first time that
the conductance can also be significantly enhanced with
a finite plasmon-exciton coupling at sufficiently low tem-
peratures where the Coulomb blockade can be lifted with
an exquisite many-body phenomenon called the Kondo
effect.

II. THEORY

We consider a system comprised of a quantum emitter
which can be represented by two discrete states located
between two metal nanoparticles possessing plasmon res-
onances. This quantum emitter corresponds to a parallel-
coupled double quantum dot in reality. A schematic il-
lustration of this physical system is shown in Fig. 1. We
can describe this system with the Hamiltonian given by

H = HN +HEN +
∑

α∈{E,rad}

(Hα + Vα). (1)
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2

Here, HN models the metal nanoparticles as

HN =
∑

K∈{L,R},σ

εKσc
†
KσcKσ +

∑
K∈{L,R}

εpKb†KbK (2)

and HEN corresponds to the plasmon-exciton coupling

HEN =
∑

K∈{L,R},σ

(
∆Kx†

σbK + h.c.
)
. (3)

HE describes the quantum emitter as

HE =
∑

s∈{g,e},σ

εsc
†
sσcsσ + J

∑
σ

(xσ + h.c.)

+
U

2

∑
s∈{g,e}

nsσnsσ′ , (4)

whereas VE describes the electron tunneling between the
quantum emitter and the metal nanoparticles

VE =
∑

K∈{L,R},σ

(
VK,g(e)c

†
Kσcg(e)σ + h.c.

)
. (5)

The radiation field is introduced via

Hrad =
∑
α

εαa
†
αaα (6)

and the coupling between the radiation field and the
dipolar plasmons of each nanoparticle is given by

Vrad =
∑

K∈{L,R},α

(
Wα,Ka†αbK + h.c.

)
. (7)

In these expressions, c†Kσ(cKσ) is the cre-
ation(annihilation) operator for free electrons with
spin σ in the metal nanoparticles while c†sσ(csσ) is the
electron creation(annihilation) operator in each spin
degenerate discrete state within the quantum emitter.
These spin degenerate states are denoted with | g > and
| e > whose energy difference is | εe − εg |. εα is the
energy of the radiation field with mode α and εpK is
the plasmon energy in the left(K=L) and right(K=R)
metal nanoparticle. The amplitudes appearing in the
fourth and sixth term J and VK,g(e) are the electron
tunneling (electron transfer) between the states | g >
and | e > and between the metal nanoparticles and
the state | s ∈ {g, e} > respectively. Besides, Wα,K

and ∆K denote the amplitudes of coupling between the
radiation field with mode α and the dipolar plasmons
of each nanoparticle and between the exciton and the
same dipolar plasmon modes. To simplify the equations
above we denote the exciton annihilation and creation
operators by xσ and x†

σ respectively,

xσ = c†gσceσ

x†
σ = c†eσcgσ. (8)

FIG. 1: This figure shows a schematic illustration of a plas-
monic dimer consisting of two metal nanoparticles coupled to
an excitonic quantum emitter.

Finally, the Coulomb repulsion energy within the discrete
states | g > and | e > is denoted as U term while the
number operator is denoted as nsσ.

Typically, U term in the Hamiltonian overwhelms the
other energy scales in this model owing to the confine-
ment of the electrons within each state. This condition
leads to U → ∞ which forbids double occupancy on both
discrete states. We will deal with this situation by writ-
ing the electron operators acting on the states | g > and
| e > in terms of a pseudofermion and a massless boson
as

cg(e)σ = b†g(e)fg(e)σ

c†g(e)σ = f†
g(e)σbg(e), (9)

subject to the condition

QB,g(e) = b†g(e)bg(e) +
∑
σ

f†
g(e)σfg(e)σ = 1. (10)

Now we can also write x†
mσ (xmσ) exciton cre-

ation(annihilation) operators in terms of the slave-boson
representation as

xσ = f†
gσbgb

†
efeσ

x†
σ = f†

eσbeb
†
gfgσ, (11)

This restriction ensures that the occupancy of | g > and
| e > is unity. This allows us to remove the U term from
HE and we end up with

HE =
∑

s∈{g,e},σ

εsf
†
sσfsσ + J

∑
σ

(xσ + h.c.) . (12)

Moreover, the electron tunneling between the quantum
emitter and the metal nanoparticles becomes

VE =
∑

K∈{L,R},σ

(
VK,g(e)c

†
Kσb

†
g(e)fg(e)σ + h.c.

)
(13)
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Following previous work13,15, we assume that the in-
cident laser is perpendicular to the axis connecting the
metal nanoparticles. In this case, the metal nanoparti-
cles absorb the photons of the incident laser in the same
phase. Furthermore, we assume that the incident laser is
not directly coupled to the quantum emitter and the sole
pumping of the system occurs via a single laser mode ε0
which only excites the dipolar plasmon mode of the metal
nanoparticles. Hence, the role of the plasmonic dimer is
to store the energy delivered by the radiation field and
transfer it to the quantum emitter via plasmon-exciton
coupling. J term in HE will be dropped in this situation
since the quantum emitter is not allowed to absorb en-
ergy directly from the laser. These assumptions enable us
to take the dipolar plasmon energy of each nanoparticle
equal as εpL=εpL=εp. Similarly, symmetrical plasmon-
exciton and plasmon-laser couplings will be considered
such that ∆L=∆R=∆ and W0,L=W0,R=W0.
In order to investigate the nonequilibrium dynamics

of this system, we invoke the time-ordered double-time
Green functions defined as

iGg(e)(t, t
′) = < Tcfg(e)σ(t)f

†
g(e)σ(t

′) >

iBg(e)(t, t
′) = < Tcbg(e)(t)b

†
g(e)(t

′) >, (14)

where the time ordering operator Tc acts along the
Kadanoff-Baym contour. The analytic pieces of these
Green functions are given

iGg(e)(t, t
′) = θ(t− t′)G>

g(e)(t, t
′)− θ(t′ − t)G<

g(e)(t, t
′)

iBg(e)(t, t
′) = θ(t− t′)B>

g(e)(t, t
′) + θ(t′ − t)B<

g(e)(t, t
′).(15)

In these expressions, the lesser Green functions can be
written in terms of the pseudofermion and slave bo-

son operators as G<
g(e)(t, t

′) =< f†
g(e)σ(t

′)fg(e)σ(t) >

and B<
g(e)(t, t

′) =< b†g(e)(t
′)bg(e)(t) > whereas the

greater ones are G>
g(e)(t, t

′) =< fg(e)σ(t)f
†
g(e)σ(t

′) > and

B>
g(e)(t, t

′) =< bg(e)(t)b
†
g(e)(t

′) >. We can also write the

retarded Green functions by combining these analytic
pieces as

Gr
g(e)(t, t

′) = −iθ(t− t′)[G>
g(e)(t, t

′) +G<
g(e)(t, t

′)]

Br
g(e)(t, t

′) = −iθ(t− t′)[B>
g(e)(t, t

′)−B<
g(e)(t, t

′)](16)

Since the plasmon-exciton coupling strength is typi-
cally two orders of magnitude smaller than the electron-
electron interactions within the quantum emitter, it
is possible to approach this problem by treating the
plasmon-exciton coupling perturbatively. This can be
accomplished by setting up Dyson equations for Br

g(e),

Gr
g(e) and B<

g(e), G
<
g(e). These equations can be explicitly

written as(
i
∂

∂t
− εg(e)

)
Gr

g(e)(t, t
′) = δ(t− t′) +∫ ∞

−∞
dt1Σ

r
g(e)(t, t1)G

r
g(e)(t1, t

′) (17)

i
∂

∂t
Br

g(e)(t, t
′) = δ(t− t′) +∫ ∞

−∞
dt1Π

r
g(e)(t, t1)B

r
g(e)(t1, t

′) (18)

(
i
∂

∂t
− εg(e)

)
G<

g(e)(t, t
′) =∫ ∞

−∞
dt1Σ

r
g(e)(t, t1)G

<
g(e)(t1, t

′) +∫ ∞

−∞
dt1Σ

<
g(e)(t, t1)G

a
g(e)(t1, t

′) (19)

i
∂

∂t
B<

g(e)(t, t
′) =

∫ ∞

−∞
dt1Π

r
g(e)(t, t1)B

<
g(e)(t1, t

′) +∫ ∞

−∞
dt1Π

<
g(e)(t, t1)B

a
g(e)(t1, t

′) (20)

The pseudofermion and slave-boson self energies are
required to solve these integro-differential equations. We
invoke the non-crossing approximation (NCA) to express
the self-energies and project them into QB,g(e) = 1 sub-
space. Dynamical quantities can be obtained quite ac-
curately via NCA with the exception of very low tem-
peratures and finite magnetic field. The details of our
self-energy calculations are presented in appendix A ex-
tensively. Upon introducing16,17

Br
g(e)(t, t

′) = −iθ(t− t′)
[
B>

g(e)(t, t
′)−B<

g(e)(t, t
′)
]

:= −iθ(t− t′)bg(e)(t, t
′) (21)

and

Gr
g(e)(t, t

′) = −iθ(t− t′)
[
G>

g(e)(t, t
′) +G<

g(e)(t, t
′)
]

:= −iθ(t− t′)gg(e)(t, t
′), (22)

the Dyson equations for pseudofermion Green functions
expressed in terms of the projected self-energies turn out
to be (

∂

∂t
+ iεg

)
gg(t, t

′) =

−
∫ t

t′
dt1K

>(t, t1)b̃g(t, t1)gg(t1, t
′)

−
∫ t

t′
dt1 | ∆ |2 g̃e(t, t1)b̃g(t, t1)B̃

<
e (t1, t)

×P<(t1, t)gg(t1, t
′) (23)

and (
∂

∂t
+ iεe

)
ge(t, t

′) =

−
∫ t

t′
dt1K

>(t, t1)b̃e(t, t1)ge(t1, t
′)

−
∫ t

t′
dt1 | ∆ |2 g̃g(t, t1)b̃e(t, t1)B̃

<
g (t1, t)

×P>(t, t1)ge(t1, t
′) (24)
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Similarly, slave-boson Green functions can be deter-
mined by solving the Dyson equations which are written
employing the projected self-energies as

∂

∂t
bg(t, t

′) = −
∫ t

t′
dt1K

<(t1, t)g̃g(t, t1)bg(t1, t
′)

−
∫ t

t′
dt1 | ∆ |2 g̃g(t, t1)b̃e(t, t1)G̃

<
e (t1, t)

×P>(t, t1)bg(t1, t
′)

+

∫ t

t′
dt1 | ∆ |2 g̃g(t, t1)B̃

<
e (t, t1)g̃e(t1, t)

×P<(t, t1)bg(t1, t
′)

−
∫ t

t′
dt1 | ∆ |2 g̃g(t, t1)B̃

<
e (t, t1)g̃e(t1, t)

×P>(t, t1)bg(t1, t
′)

+

∫ t

t′
dt1 | ∆ |2 g̃g(t, t1)B̃

<
e (t, t1)g̃e(t1, t)

×P (t, t1)bg(t1, t
′). (25)

and

∂

∂t
be(t, t

′) = −
∫ t

t′
dt1K

<(t1, t)g̃e(t, t1)be(t1, t
′)

−
∫ t

t′
dt1 | ∆ |2 g̃e(t, t1)b̃g(t, t1)G̃

<
g (t1, t)

×P<(t1, t)be(t1, t
′)

+

∫ t

t′
dt1 | ∆ |2 g̃e(t, t1)B̃

<
g (t, t1)g̃g(t1, t)

×P>(t1, t)be(t1, t
′)

−
∫ t

t′
dt1 | ∆ |2 g̃e(t, t1)B̃

<
g (t, t1)g̃g(t1, t)

×P<(t1, t)be(t1, t
′)

−
∫ t

t′
dt1 | ∆ |2 g̃e(t, t1)B̃

<
g (t, t1)g̃g(t1, t)

×P (t1, t)be(t1, t
′). (26)

In these equations, the Green functions with a tilde on
top are part of the self-energy terms and are calculated in
the absence of any coupling between the discrete states
| g > and | e >. We want to emphasize that this decou-
pling scheme is required by the projection procedure in
appendix A which closely follows the earlier NCA treat-
ment of two impurity Kondo problem.17 In essence, the
only coupling mechanism between the states | g > and
| e > consists of the plasmon-exciton interaction in our
model. Therefore, inserting the Green functions that
are calculated in the presence of the plasmon-exciton
coupling into the self-energy terms would cause double
counting problem because the plasmon-exciton coupling
is already accounted for in Dyson equations.
After solving the above mentioned Dyson equations for

the pseudofermion and slave-boson reterdad Green func-
tions, we need to solve the related lesser Green functions

for the pseudofermion and slave-boson propagator using
the Dyson equations given by

(
∂

∂t
+ iεg

)
G<

g (t, t
′) =

−
∫ t

−∞
dt1K

>(t, t1)b̃g(t, t1)G
<
g (t1, t

′)

−
∫ t

−∞
dt1 | ∆ |2 g̃e(t, t1)b̃g(t, t1)B̃

<
e (t1, t)

×P<(t1, t)G
<
g (t1, t

′)

+

∫ t′

−∞
dt1K

<
L (t, t1)B̃

<
g (t, t1)gg(t1, t

′)

+

∫ t′

−∞
dt1 | ∆ |2 G<

e (t, t1)B̃
<
g (t, t1)b̃e(t1, t)

×P>(t1, t)gg(t1, t
′) (27)

(
∂

∂t
+ iεe

)
G<

e (t, t
′) =

−
∫ t

−∞
dt1K

>(t, t1)b̃e(t, t1)G
<
e (t1, t

′)

−
∫ t

−∞
dt1 | ∆ |2 g̃g(t, t1)b̃e(t, t1)B̃

<
g (t1, t)

×P>(t, t1)G
<
e (t1, t

′)

+

∫ t′

−∞
dt1K

<
R (t, t1)B̃

<
e (t, t1)ge(t1, t

′)

+

∫ t′

−∞
dt1 | ∆ |2 G̃<

g (t, t1)B̃
<
e (t, t1)b̃g(t1, t)

×P<(t, t1)ge(t1, t
′)

(28)
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and

∂

∂t
B<

g (t, t′) = −
∫ t

−∞
dt1K

<(t1, t)g̃g(t, t1)B
<
g (t1, t

′)

−
∫ t

−∞
dt1 | ∆ |2 g̃g(t, t1)b̃e(t, t1)G̃

<
e (t1, t)

×P>(t, t1)B
<
g (t1, t

′)

+

∫ t

−∞
dt1 | ∆ |2 g̃g(t, t1)B̃

<
e (t, t1)g̃e(t1, t)

×P<(t, t1)B
<
g (t1, t

′)

−
∫ t

−∞
dt1 | ∆ |2 g̃g(t, t1)B̃

<
e (t, t1)g̃e(t1, t)

×P>(t, t1)B
<
g (t1, t

′)

+

∫ t

−∞
dt1 | ∆ |2 g̃g(t, t1)B̃

<
e (t, t1)g̃e(t1, t)

×P (t, t1)B
<
g (t1, t

′)

+

∫ t′

−∞
dt1K

>
L (t1, t)G̃

<
g (t, t1)bg(t1, t

′)

+

∫ t′

−∞
dt1 | ∆ |2 B̃<

e (t, t1)G̃
<
g (t, t1)g̃e(t1, t)

×P<(t, t1)bg(t1, t
′) (29)

∂

∂t
B<

e (t, t′) = −
∫ t

−∞
dt1K

<(t1, t)g̃e(t, t1)B
<
e (t1, t

′)

−
∫ t

−∞
dt1 | ∆ |2 g̃e(t, t1)b̃g(t, t1)G̃

<
g (t1, t)

×P<(t1, t)B
<
e (t1, t

′)

+

∫ t

−∞
dt1 | ∆ |2 g̃e(t, t1)B̃

<
g (t, t1)g̃g(t1, t)

×P>(t1, t)B
<
e (t1, t

′)

−
∫ t

−∞
dt1 | ∆ |2 g̃e(t, t1)B̃

<
g (t, t1)g̃g(t1, t)

×P<(t1, t)B
<
e (t1, t

′)

−
∫ t

−∞
dt1 | ∆ |2 g̃e(t, t1)B̃

<
g (t, t1)g̃g(t1, t)

×P (t1, t)B
<
e (t1, t

′)

+

∫ t′

−∞
dt1K

>
R (t1, t)G̃

<
e (t, t1)be(t1, t

′)

+

∫ t′

−∞
dt1 | ∆ |2 B̃<

g (t, t1)G̃
<
e (t, t1)g̃g(t1, t)

×P>(t1, t)be(t1, t
′), (30)

where we again used the projected self-energies obtained
in appendix A. Plasmon Green functions are obtained
by solving the Dyson equation for the plasmon Green
function using the method described previously13 and
plugged into the above Dyson equations. The values of all

Green functions are kept in a square matrix whose size
is gradually increased until the values converge. Con-
sequently, it is imperative that the matrix size of the
plasmon Green functions is equal to the matrix size
of the pseudofermion and slave boson Green functions.
The explicit discretization and solution algorithm of the
Dyson equations have been discussed in a detailed way
previously.18

The influence of the ambient temperature is encoded in
the Dyson equations explicitly through the Kernels given
by Eq. A15 and implicitly through the pseudofermion and
slave boson Green functions with a tilde on top which are
calculated by utilizing the same Kernels. Moreover, the
ambient temperature is also implicitly built into the plas-
mon Green functions which are determined by employing
the same pseudofermion and slave boson Green functions
with a tilde on top.13

Kondo effect is a quite subtle many-body effect that
emerges when the discrete energy levels | g > and | e >
lie below the Fermi level of the metal nanoparticles εf .
It manifests itself in the density of states of each discrete
level at sufficiently low temperatures as a very sharp res-
onance located slightly above the Fermi level of the metal
nanoparticles εf with a linewidth on the order of

TK,g(e) ∝
(
DΓ

4

) 1
2

exp

(
−
π | εg(e) |

Γ

)
, (31)

where D is the half bandwidth of the electrode density
of states. The linewidth of the Kondo resonance is an
energy scale called the Kondo temperature. The under-
lying mechanism behind the Kondo resonance is the oc-
currence of the cotunneling processes at ambient temper-
atures below TK,g(e). Simultaneous tunneling of two elec-
trons with different spins results in an effective spin flip
at the discrete levels.19 This enables to lift the Coulomb
blockade and generates a current flow between the two
metal nanoparticles.

Once the Dyson equations are solved properly, the last
step is to obtain the electrical current flowing through the
discrete states within the quantum emitter. Following
the earlier general formalism20, the current flowing from
the left or right nanoparticle to either | g > or | e > is
given by21

ILg(e) = −2Γ̄Re

∫ t

−∞
dt1G

<
g(e)(t, t1)bg(e)(t1, t)h(t− t1)

+2Γ̄Re

∫ t

−∞
dt1(gg(e)(t, t1)B

<
g(e)(t1, t) +G<

g(e)(t, t1)

bg(e)(t1, t))fL(t− t1) (32)

and

IRg(e) = −2Γ̄Re

∫ t

−∞
dt1G

<
g(e)(t, t1)bg(e)(t1, t)h(t− t1)

+2Γ̄Re

∫ t

−∞
dt1(gg(e)(t, t1)B

<
g(e)(t1, t) +G<

g(e)(t, t1)

bg(e)(t1, t))fR(t− t1). (33)
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6

In these expressions,

h(t− t1) =

∫ D

−D

dε

2π
ρ(ε)eiε(t−t1) (34)

fL(t− t1) =

∫ D

−D

dε

2π
ρ(ε)

eiε(t−t1)

1 + eβ(ε−V/2)
(35)

fR(t− t1) =

∫ D

−D

dε

2π
ρ(ε)

eiε(t−t1)

1 + eβ(ε+V/2)
(36)

The net current through each level is equal to the dif-
ference between the left and right currents and can be
written for a symmetrically coupled system as

Ig(e)(t) = 2Γ̄Re

∫ t

−∞
dt1(gg(e)(t, t1)B

<
g(e)(t1, t) +

G<
g(e)(t, t1)bg(e)(t1, t))(fL(t− t1)− fR(t− t1)). (37)

III. RESULTS AND DISCUSSION

We start by investigating the electrical current through
a quantum emitter whose singly occupied discrete states
lie at εg=-4.8 eV and εe=-1.6 eV with respect to the
Fermi level of the metal nanoparticles. We refer to these
set of parameters as system 1. This choice yields an
emitter resonance energy of 3.2 eV which amounts to the
energy gap between the two discrete states. During our
calculations for the plasmon Green functions, we take the
dipolar plasmon energy εp=3.49 eV, the laser bandwidth
δ=1 meV and coupling of the dipolar plasmon to the laser
γ = 2π | W0 |2=86 meV for the sake of consistency with
the earlier optical absorption studies.13,15

We also assume that the left and right metal nanopar-
ticles are identical and use parabolic density of states
with D=9Γ in our calculations for simplicity. Further-
more, the coupling of the electrons in the discrete states
to the metal nanoparticles are taken constant as Γ̄=0.2
eV and Γ=0.8 eV. We want to note that we have the abil-
ity to incorporate the realistic band structure of the metal
nanoparticles into our calculations21–23. Since this com-
plexity significantly increases the computational cost, we
leave it to the future studies.
We only explore the electrical current through | e >

because the electrical current flowing through | g > re-
mains zero for any attainable ambient temperature as
long as the emitter resonance energy is around the dipo-
lar plasmon energy since the Kondo temperature of | g >
is essentially zero in this case. Therefore, the only elec-
trical current flowing in the circuit goes through | e >.
The conductance of system 1 is depicted in Fig. 2 as a
function of the ambient temperature for various values
of the plasmon-exciton coupling ∆ which is taken to be
equal for the left and right metal nanoparticles due to
the symmetry. We estimate that the Kondo temperature
of | e > is around 23 K for this system.

0.5 1.0 5.0 10.0 50.0 100.0
0.0

0.5

1.0

1.5

2.0

T�TK

G
�G

0

FIG. 2: This figure shows the electrical conductance through
| e > as a function of the ambient temperature for a plasmon-
exciton coupling strength ∆=0 (empty circles), ∆=20 meV
(empty triangles), ∆=40 meV (empty squares) and ∆=60
meV (empty inverted triangles) for system 1 at infinitesimal
bias.

0.5 1.0 5.0 10.0 50.0 100.0
0.0

0.5

1.0

1.5

2.0

T�TK

G
�G

0

FIG. 3: This figure shows the electrical conductance through
| e > as a function of the ambient temperature for a plasmon-
exciton coupling strength ∆=20 meV (empty triangles sys-
tem 1, filled triangles system 2), ∆=40 meV (empty squares
system 1, filled squares system 2) and ∆=60 meV (empty in-
verted triangles system 1, filled inverted triangles system 2)
at infinitesimal bias.

Fig. 2 clearly shows that our conductance results in
the absence of any plasmon-exciton coupling perfectly
match the earlier results calculated for a single quan-
tum dot in the Kondo regime.24 This serves as a veri-
fication of the veracity of our approach. We then be-
gin increasing the plasmon-exciton coupling gradually
starting with ∆=20 meV used previously for optical ab-
sorption investigation.15 It is obvious from Fig. 2 that
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7

the finite plasmon-exciton coupling causes enhancement
of the conductance at almost any ambient temperature
with respect to the zero plasmon-exciton coupling case
but the enhancement becomes particularly pronounced
when the ambient temperature is around or falls below
the Kondo temperature. We also boost the plasmon-
exciton coupling to test the generality of the conductance
enhancement. It can be easily seen from Fig. 2 that the
conductance enhancement tends to increase with higher
plasmon-exciton coupling values at any given ambient
temperature. The most remarkable feature here is that
the conductance saturates at twice the unitarity limit
when the ambient temperature falls well below the Kondo
temperature.

0.5 1.0 5.0 10.0 50.0 100.0
0.0

0.5

1.0

1.5

2.0

T�TK

G
�G

0

FIG. 4: This figure shows the electrical conductance through
| e > as a function of the ambient temperature for a plasmon-
exciton coupling strength ∆=20 meV (empty triangles sys-
tem 1, filled triangles system 3), ∆=40 meV (empty squares
system 1, filled squares system 3) and ∆=60 meV (empty in-
verted triangles system 1, filled inverted triangles system 3)
at infinitesimal bias.

We then study how the position of the discrete state
| e > with respect to the Fermi level of the metal
nanoparticles alters the conductance results. Towards
this end, we choose an emitter whose singly occupied
discrete states are located at εg=-5.0 eV and εe=-1.8 eV.
We refer to this configuration as system 2 which has the
same emitter resonance energy with system 1. All other
parameters for system 1 and 2 are kept identical and we
carry out the conductance calculations for system 2 as a
function of the ambient temperature. The results of this
calculation are shown in Fig. 3 where we also superim-
pose the results from Fig. 2 for system 1. The Kondo
temperature of εe in system 2 is estimated to be around
11 K. Therefore, we scale each system’s results with re-
spect to the Kondo temperature of εe in order to facilitate
a direct comparison. One can quickly see from Fig. 3 the
almost perfect scaling between the conductance results
of system 1 and 2.

It is interesting to test whether changing the emitter
resonance energy results in a deviation from the scaling
we observe above. We choose an emitter with εg=-4.95
eV and εe=-1.6 eV for this purpose. We refer to this con-
figuration as system 3 which has a slightly higher emitter
resonance energy than system 1. We perform the conduc-
tance calculations through system 3 by keeping its other
parameters the same as system 1. The results are shown
in Fig. 4, where we also plot the data from system 1 as
well for comparison. It is quite remarkable that an in-
crease in the emitter resonance energy results in a drop in
the conductance at temperatures below the Kondo tem-
perature despite the fact that the Kondo temperature of
| e > is equal for both systems. On the other hand, the
conductance difference between system 1 and 3 tends to
decrease as the ambient temperature is increased and di-
minishes at temperatures much higher than the Kondo
temperature.

0.5 1.0 5.0 10.0 50.0 100.0
0.0

0.5

1.0

1.5

2.0

V�TK

G
�G

0

FIG. 5: This figure shows the electrical conductance through
| e > as a function of the voltage bias at T=0.7 TK (empty
triangles), T=2.4 TK (empty circles) and T=6.2 TK (empty
squares) assuming a plasmon-exciton coupling strength ∆=20
meV for system 1.

So far, all our calculations pertain to the infinitesi-
mal voltage bias between the metal nanoparticles. One
may wonder how applying finite bias effects the conduc-
tance enhancement we observe due to the finite plasmon-
exciton coupling. Fig. 5 shows the results of our conduc-
tance calculations as a function of the voltage bias for
system 1 at three different ambient temperatures assum-
ing a finite plasmon-exciton coupling. It is clear from
this figure that increasing the voltage bias reduces the
conductance at all ambient temperatures but this effect
is much more dramatic at temperatures below the Kondo
temperature since the finite bias inhibits the Kondo res-
onance by splitting it into two distinct peaks located at
each nanoparticle’s Fermi level.24 Consequently, we can
conclude that the finite bias tends to curb the conduc-
tance enhancement caused by the finite plasmon-exciton
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coupling to an extent that depends on the ambient tem-
perature.
We repeat the conductance calculations of Fig. 5 for

system 1 by using the same ambient temperatures and
assuming a higher plasmon-exciton coupling in order to
test the robustness of the reduction in the conductance
enhancement. Our results are displayed in Fig. 6, which
clearly demonstrates that the reduction in the conduc-
tance enhancement upon increasing the voltage bias is
applicable to elevated values of plasmon-exciton coupling
as well. In fact, one can easily see that the enhance-
ment in the conductance gets quenched more rapidly at
temperatures below the Kondo temperature when the
plasmon-exciton coupling increases.

0.5 1.0 5.0 10.0 50.0 100.0
0.0

0.5

1.0

1.5

2.0

V�TK

G
�G

0

FIG. 6: This figure shows the electrical conductance through
| e > as a function of the voltage bias at T=0.7 TK (empty
triangles), T=2.4 TK (empty circles) and T=6.2 TK (empty
squares) assuming a plasmon-exciton coupling strength ∆=40
meV for system 1.

All these observations suggest that the conductance
enhancement due to the finite plasmon-exciton coupling
is somehow intrinsically related to the existence of the
Kondo resonance in the density of states of | e > because
the enhancement starts to dwindle once the Kondo reso-
nance gets inhibited gradually. Therefore, it is important
to put forward a microscopic scenario to elucidate our
conductance calculations. The electron transport mech-
anism is relatively straightforward in the absence of any
plasmon-exciton coupling. In this case, the flow of elec-
trons occurs solely through | e > via spin flips in the
cotunneling regime. Since | g > lies too far away from
the Fermi level of the metal nanoparticles, it remains
firmly Coulomb blockaded. Consequently, it cannot con-
tribute to the electron transport at all. This is identical
to the case where a single quantum dot is attached to two
metallic leads.24 There is only one channel available for
the electron transport and the conductance saturates at
one quantum of conductance G0 when the ambient tem-
perature falls well below the Kondo temperature. Unsur-

prisingly, we recover those results precisely ignoring any
plasmon-exciton coupling as one can see in Fig. 2.

6,1
e

8,4
e

System 1

8,1
e

0,5
e

System 2

eV 

eV 

eV 

eV 

6,1
e

95,4
e

System 3

eV 

eV 

FIG. 7: This figure schematically shows the three systems 1,2
and 3 discussed in the text and illustrates the mechanism of
Kondo resonance formed at | e > via the spin flips mediated
through the plasmon-exciton coupling.

The situation becomes more complicated when the
plasmon-exciton coupling is turned on. An electron oc-
cupying | g > must be able to jump to | e > when the
plasmon is annihilated in one of the metal nanoparti-
cles or vice versa for this mechanism to be active. Since
the double occupancy is forbidden in each discrete level,
this process is not possible in the sequential tunneling
regime. Consequently, the plasmon-exciton coupling is
unable to contribute to the electron transport unless the
Kondo effect starts to play a role. On the other hand,
the spin flip processes taking place at | e > becomes pos-
sible when the ambient temperature approaches or falls
below the Kondo temperature of | e >. In this cotun-
neling regime, annihilation of the plasmon in one of the
metal nanoparticles can trigger the tunneling of an elec-
tron from | g > to | e > if an electron with the oppo-
site spin vacates | e > momentarily by tunneling to one
of the metal nanoparticles. Fig. 7 depicts the spin flip
mechanism and the ensuing Kondo resonance at | e >
due to the plasmon-exciton coupling alongside with the
configurations of the quantum emitter corresponding to
systems 1,2 and 3. This process arising purely due to the
plasmon-exciton coupling generates additional electron
flow across the metal nanoparticles by opening up a new
transport channel. This is why we see the saturation of
the conductance at twice the quantum of conductance at
temperatures well below the Kondo temperature of | e >.

The solution of the Dyson equations rely on the self-
energy terms which involve the plasmon Green functions
as well as the pseudofermion and slave boson Green func-
tions. The electron transport mechanism which is gov-
erned by the solution of the Dyson equations depends on
the formation and existence of the Kondo resonance in
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the density of states of | e > as well as the emitter res-
onance energy crucially because the emitter resonance
energy influences the position and shape of the Fano res-
onance in the optical absorption spectrum.15 This is re-
flected in the plasmon Green functions which come into
play in our electron transport calculations by appearing
in the self-energy terms of each Dyson equation. Sys-
tems 1 and 2 both have the same emitter resonance en-
ergy pinning their Fano resonance to the same spot in
the optical absorption spectrum.15 Consequently their
optical absorption spectrums which involve the convo-
lution of the Fourier transform of the plasmon Green
function with the laser induced mode population show
universal scaling with respect to the Kondo temperature
of | e >.13 The slave-boson and pseudofermion Green
functions which originate from the solutions of separate
single quantum dot problems are the only other factors
appearing in the self-energy terms of Dyson equations
and the electron transport has also been shown to exhibit
universal scaling with respect to the Kondo temperature
for a single quantum dot problem previously.18,24 There-
fore, it should be expected that the conductance curves
of system 1 and 2 also overlap after scaling with respect
to the Kondo temperature of | e > and this is indeed
precisely what we observe in Fig. 3. This universal scal-
ing of quantum transport in the Kondo regime has also
been observed experimentally for various single molecule
devices utilizing C60 and Cu-containing transition metal
complex as the active element25 albeit in the absence of
any plasmon-exciton coupling.
On the other hand, the conductance curves for systems

1 and 3 differ slightly at temperatures around or below
the Kondo temperature of | e > but start overlapping
at high temperatures. This is again due to the differ-
ence in the position and shape of the Fano resonance
in the optical absorption spectrum of the two systems.
However, once the Kondo resonance starts to diminish
at high temperatures so does the Fano resonance in the
optical absorption spectrum13 and the optical absorption
spectrum of both systems consists of nothing but a plas-
mon resonance at elevated temperatures. This makes
the plasmon Green functions identical for systems 1 and
3 and the overlap in the conductance curves is recovered
in this limit.
The advantage of having low temperature samples is

to be able to investigate the influence of the spin flip dy-
namics associated with the formation of the Kondo reso-
nance at or below the Kondo temperature on the electron
transmission. The low ambient temperatures below the

Kondo temperature reported in this paper can be ac-
cessed in an experiment by immersing the whole system
in a cryostat.25 Bringing the discrete states of the quan-
tum emitter closer to the Fermi level of the nanoparticles
via a gate voltage constitutes a possible remedy for this
difficulty since it increases the Kondo temperature. All
the reported ambient temperatures also increase in this
situation due to the scaling and this can reduce the re-
liance on a cryostat somewhat. Moreover, the formation
of plasmons in metal nanoparticles requires illumination
by a laser. This naturally leads to heating and may also
be a serious impediment to reduce the ambient temper-
atures to the desired level experimentally. It has previ-
ously been shown that this inherent problem can be cir-
cumvented by using a laser whose pulse duration is much
longer than 100 ps.26 This helps to diffuse the heat to
the environment, thereby curtailing the temperature rise
in the molecule-metal nanoparticle dimer system consid-
erably.

IV. CONCLUSION

In this paper, we investigated the electrical current
flowing through a Coulomb blockaded quantum emitter
coupled to plasmonic metal nanoparticles by developing a
novel many body theory for the first time. We found that
the plasmon-exciton coupling can serve as an enhance-
ment for the conductance through this device by open-
ing up a new transport channel at temperatures around
or below the Kondo temperature of the discrete state ly-
ing closer to the Fermi level of the metal nanoparticles.
It turned out the application of finite bias between the
metal nanoparticles and increasing the emitter resonance
energy tends to suppress this enhancement. We proposed
a detailed microscopic scheme to account for these pecu-
liarities based on the spin flip processes which give rise
to an intricate many body state called the Kondo effect.
We hope that our pioneering work will provide further
excitement and motivation to carry out experiments at
cryogenic temperatures which will hopefully provide a
better understanding of plexcitonic systems.
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APPENDIX A: SELF-ENERGIES AND THEIR
PROJECTION

The self energy of a pseudofermion within the quantum
emitter due to the plasmon-exciton coupling is shown in
Fig. 8. On the other hand, the self-energy of a pseud-
ofermion due to emitter-nanoparticle coupling is shown
in panel a of Fig. 10. Based on these diagrams, the un-
projected lesser and greater pseudofermion self-energies
for a pseudofermion residing in | g > can be written as a
sum of contributions from panels a of Fig. 8 and Fig. 10,
yielding

Σ<
g (t, t

′) = K<
g (t, t′)B<

g (t, t′)+ | ∆ |2 G<
e (t, t

′)B<
g (t, t′)

×B>
e (t′, t)P>(t′, t), (A1)

Σ>
g (t, t

′) = K>
g (t, t′)B>

g (t, t′)+ | ∆ |2 G>
e (t, t

′)B>
g (t, t′)

×B<
e (t′, t)P<(t′, t). (A2)

e 

b 

g e g 

g 

e 

p 

e g 

e 

g 

p 

a 

FIG. 8: This figure illustrates the self energy of the pseud-
ofermion propagator arising due to the plasmon-exciton cou-
pling. Red (dotted) lines represent the plasmon propagator,
whereas orange (dot-dashed) and green (dashed) lines denote
the slave boson and the pseudofermion propagators. Panel a
and b depict the self-energy of a pseudofermion residing in
| g > and | e > respectively.

Similarly, the summation of contributions from panel
b of Fig. 8 and panel a of Fig. 10 yield the unprojected
lesser and greater self energies for a pseudofermion resid-
ing in | e > as

Σ<
e (t, t

′) = K<
e (t, t′)B<

e (t, t′)+ | ∆ |2 G<
g (t, t

′)B<
e (t, t′)

×B>
g (t′, t)P<(t, t′), (A3)
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Σ>
e (t, t

′) = K>
e (t, t′)B>

e (t, t′)+ | ∆ |2 G>
g (t, t

′)B>
e (t, t′)

×B<
g (t′, t)P>(t, t′). (A4)

Since the retarded pseudo-fermion self-energy is de-
fined as

Σr
g(e)(t, t

′) := −iΘ(t−t′)(Σ>
g(e)(t, t

′)+Σ<
g(e)(t, t

′)), (A5)

a few algebraic manipulations give the unprojected re-
tarded pseudo-fermion self-energies as

Σr
g(t, t

′) = K>
g (t, t′)Br

g(t, t
′) +Kr

g (t, t
′)B<

g (t, t′)

+ | ∆ |2 [G>
e (t, t

′)Br
g(t, t

′)B<
e (t′, t)P<(t′, t)

+Gr
e(t, t

′)B<
g (t, t′)B>

e (t′, t)P>(t′, t)

+G>
e (t, t

′)B<
g (t, t′)B<

e (t′, t)P a(t′, t)

+G>
e (t, t

′)B<
g (t, t′)Ba

e (t
′, t)P>(t′, t)] (A6)

and

Σr
e(t, t

′) = K>
e (t, t′)Br

e(t, t
′) +Kr

e (t, t
′)B<

e (t, t′)

+ | ∆ |2 [G>
g (t, t

′)Br
e(t, t

′)B<
g (t′, t)P>(t, t′)

+Gr
g(t, t

′)B<
e (t, t′)B>

g (t′, t)P<(t, t′)

+G>
g (t, t

′)B<
e (t, t′)Ba

g (t
′, t)P>(t, t′)

+G>
g (t, t

′)B<
e (t, t′)B>

g (t′, t)P r(t, t′)]. (A7)
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FIG. 9: This figure illustrates the self energy of the slave bo-
son propagator arising due to the plasmon-exciton coupling.
Red (dotted) lines represent the plasmon propagator, whereas
orange (dot-dashed) and green (dashed) lines denote the slave
boson and the pseudofermion propagators. Panel a and b de-
pict the self-energy of a slave boson residing in | g > and | e >
respectively.

The self energy of a slave-boson within the emitter
due to the plasmon-exciton coupling is shown in Fig. 9.

Moreover, the self-energy of a slave-boson due to emitter-
nanoparticle coupling is shown in panel b of Fig. 10.
Hence, the unprojected lesser and greater slave-boson
self-energies for a slave-boson residing in | g > can be
written as a sum of contributions from panel a of Fig. 9
and panel b of Fig. 10, yielding

Π<
g (t, t

′) = K>
g (t′, t)G<

g (t, t
′)+ | ∆ |2 B<

e (t, t′)P<(t, t′)

×G<
g (t, t

′)G>
e (t

′, t). (A8)

Π>
g (t, t

′) = K<
g (t′, t)G>

g (t, t
′)+ | ∆ |2 B>

e (t, t′)P>(t, t′)

×G>
g (t, t

′)G<
e (t

′, t). (A9)

In a similar fashion, the summation of contributions
from panel b of Fig. 9 and panel b of Fig. 10 yield the
unprojected lesser and greater self energies for a slave-
boson in | e > as

Π<
e (t, t

′) = K>
e (t′, t)G<

e (t, t
′)+ | ∆ |2 B<

g (t, t′)P>(t′, t)

×G<
e (t, t

′)G>
g (t

′, t). (A10)

Π>
e (t, t

′) = K<
e (t′, t)G>

e (t, t
′)+ | ∆ |2 B>

g (t, t′)P<(t′, t)

×G>
e (t, t

′)G<
g (t

′, t). (A11)

g(e) g(e) g(e) 

g(e) 

g(e) g(e) 

a 

b 

FIG. 10: Panel a and b of this figure illustrate the self en-
ergy of each state’s pseudofermion and slave boson propa-
gator respectively due to the emitter-nanoparticle coupling.
Green (dashed) lines represent the pseudofermion propagator,
whereas orange (dot-dashed) and blue (solid) lines denote the
slave boson propagator for the same state and the electron
propagator in the nanoparticle to which the pseudofermion
tunnels respectively.

The retarded slave boson self-energy is defined as

Πr
g(e)(t, t

′) := −iΘ(t− t′)(Π>
g(e)(t, t

′)−Π<
g(e)(t, t

′)).

(A12)
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After some manipulations, we end up with the unpro-
jected retarded slave-boson self-energies as

Πr
g(t, t

′) = K<
g (t′, t)Gr

g(t, t
′) +Ka

g (t
′, t)G<

g (t, t
′)

+ | ∆ |2 [G>
g (t, t

′)Br
e(t, t

′)G<
e (t

′, t)P>(t, t′)

−Gr
g(t, t

′)B<
e (t, t′)G>

e (t
′, t)P<(t, t′)

−G>
g (t, t

′)B<
e (t, t′)Ga

e(t
′, t)P>(t, t′)

−G>
g (t, t

′)B<
e (t, t′)G>

e (t
′, t)P r(t, t′)] (A13)

and

Πr
e(t, t

′) = K<
e (t′, t)Gr

e(t, t
′) +Ka

e (t
′, t)G<

e (t, t
′)

+ | ∆ |2 [G>
e (t, t

′)Br
g(t, t

′)G<
g (t

′, t)P<(t′, t)

−Gr
e(t, t

′)B<
g (t, t′)G>

g (t
′, t)P>(t′, t)

−G>
e (t, t

′)B<
g (t, t′)Ga

g(t
′, t)P<(t′, t)

−G>
e (t, t

′)B<
g (t, t′)G>

g (t
′, t)P a(t′, t)]. (A14)

K>
g(e)(t, t

′) and K<
g(e)(t, t

′) appearing in these expres-

sions are defined in terms of the density of states of the
metal nanoparticles with a half bandwidth of D as

K<
g(e)(t, t

′) = Γ̄tot,g(e)

∫ D

−D

dε

2π
ρ(ε)

1

1 + eβε
eiε(t−t′)

K>
g(e)(t, t

′) = Γ̄tot,g(e)

∫ D

−D

dε

2π
ρ(ε)

eβε

1 + eβε
eiε(t−t′),(A15)

where β denotes the inverse of the ambient temperature
and we define

Γ̄tot,g(e) = Γ̄L,g(e) + Γ̄R,g(e)

= 2π(| VL,g(e)(εf ) |2 + | VR,g(e)(εf ) |2)(A16)

with εf representing the Fermi level of the metal
nanoparticles. Tunneling matrix elements are assumed
to be time and energy independent yielding VK,g(e)(ε) =
VK,g(e)(εf ). We also assume that each discrete state is
symmetrically and equally coupled to metal nanoparti-
cles such that VK,g(e) = VK′,g(e) = VK′,e(g). This also

means that Γ̄L,g(e) = Γ̄R,g(e) = Γ̄. Consequently, we

will drop the subscripts from K>
g(e)(t, t

′) and K<
g(e)(t, t

′)

from now on and denote them simply as K>(t, t′) and
K<(t, t′). Moreover, we take Γ(ε) = Γ̄ρ(ε) and use Γ as
the value of Γ(ε) at εf .
We now need to project the lesser, greater and retarded

self energies into QB,g(e) = 1 subspace. In order to put
our equations in a compact form, we will introduce

Br
g(e)(t, t

′) = −iΘ(t− t′)
[
B>

g(e)(t, t
′)−B<

g(e)(t, t
′)
]

:= −iΘ(t− t′)bg(e)(t, t
′) (A17)

for the slave boson retarded Green functions. This im-
plies

B>
g(e)(t, t

′) = bg(e)(t, t
′) +B<

g(e)(t, t
′). (A18)

Identical representation for the pseudofermion retarded
Green functions gives

Gr
g(e)(t, t

′) = −iΘ(t− t′)
[
G>

g(e)(t, t
′) +G<

g(e)(t, t
′)
]

:= −iΘ(t− t′)gg(e)(t, t
′). (A19)

Consequently, we obtain

G>
g(e)(t, t

′) = gg(e)(t, t
′)−G<

g(e)(t, t
′). (A20)

The Green functions have to be calculated by plug-
ging the corresponding projected self-energies into the
relevant Dyson equation. To obtain these projected self-
energies, we need to maintain the same charge depen-
dency on both sides of the Dyson equations. Projections
have to be performed for each discrete energy level in-
dependently by taking into account Eq. (10). We want
to note that the retarded pseudofermion and and slave-
boson Green functions are of the order Q0

B,g(e) while the

less than ones are of the order Q1
B,g(e). When one of

the less than Green functions appears on the l.h.s. of a
Dyson equation for | g > or | e >, r.h.s. must be modified
such that it is also of the order Q1

B,g(e) by utilizing the

relations in Eq. (A17,A18,A19,A20).
We can consider the Dyson equation in Eq. (19) for

| g > to demonstrate explicitly how the projection pro-
cedure is applied. Since l.h.s. of this equation scales with
Q1

B,g we need to modify the r.h.s. accordingly where re-
tarded and less than self-energy expressions play a role.
After inserting Eq. (A6) into Eq. (19) we see that the less
than slave boson Green function for | g > whose charge
dependency is Q1

B,g appears in several terms. Conse-
quently, the related lines multiplying with this Green
function have to be removed. Meantime, the greater than
pseudofermion Green function for | e > in one of the re-
maning lines has to be transformed into zero charge de-
pendency by invoking Eq. (A20). In this arrangement,
the less than slave boson Green function for | e > multi-
plies the less than pseudofermion Green function for | e >
in this term. We have to drop the latter one in order to
reduce the charge dependency to Q1

B,e on the r.h.s. We
want to emphasize that this truncation is required and
is not an additional approximation.17 Similar treatment
is required for the second term on the r.h.s. of Eq. (19)
using the less than pseudofermion self-energy expression
for | g > given by Eq. (A1).

Moreover, the pseudo-fermion and slave boson Green
functions within the self-energy expressions have to be
calculated in the absence of any coupling between the
discrete states | g > and | e > following the previous
work.17 This implies that these Green functions have to
be calculated by solving the Dyson equations for two
independent impurities in the absence of any plasmon-
exciton coupling.17 This is required in order not to take
into account the plasmon-exciton coupling twice, namely
to avoid the double counting problem. From now on, we
denote these Green functions with a tilde on top to dif-
ferentiate them. These adjustments give us the projected
pseudofermion self-energies as
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Σ<
g (t, t

′) = K<(t, t′)B̃<
g (t, t′) +

| ∆ |2 G̃<
e (t, t

′)B̃<
g (t, t′)b̃e(t, t

′)P>(t′, t), (A21)

Σr
g(t, t

′) = K>(t, t′)B̃r
g(t, t

′) +

| ∆ |2 g̃e(t, t
′)B̃r

g(t, t
′)B̃<

e (t′, t)P<(t′, t). (A22)

Σ<
e (t, t

′) = K<(t, t′)B̃<
e (t, t′) +

| ∆ |2 G̃<
g (t, t

′)B̃<
e (t, t′)b̃g(t, t

′)P<(t, t′), (A23)

Σr
e(t, t

′) = K>(t, t′)B̃r
e(t, t

′) +

| ∆ |2 g̃g(t, t
′)B̃r

e(t, t
′)B̃<

g (t′, t)P>(t, t′). (A24)

Similarly the projected slave-boson self energies are
given by

Π<
g (t, t

′) = K>(t′, t)G̃<
g (t, t

′) +

| ∆ |2 B̃<
e (t, t′)G̃<

g (t, t
′)g̃e(t

′, t)P<(t, t′), (A25)

Πr
g(t, t

′) = K<(t′, t)G̃r
g(t, t

′)

+ | ∆ |2 [g̃g(t, t
′)B̃r

e(t, t
′)G̃<

e (t
′, t)P>(t, t′)

−G̃r
g(t, t

′)B̃<
e (t, t′)g̃e(t

′, t)P<(t, t′)

−g̃g(t, t
′)B̃<

e (t, t′)G̃a
e(t

′, t)P>(t, t′)

−g̃g(t, t
′)B̃<

e (t, t′)g̃e(t
′, t)P r(t, t′)]. (A26)

and

Π<
e (t, t

′) = K>(t′, t)G̃<
e (t, t

′)+ | ∆ |2 B̃<
g (t, t′)G̃<

e (t, t
′)

×g̃g(t
′, t)P>(t′, t), (A27)

Πr
e(t, t

′) = K<(t′, t)G̃r
e(t, t

′)

+ | ∆ |2 [g̃e(t, t
′)B̃r

g(t, t
′)G̃<

g (t
′, t)P<(t′, t)

−G̃r
e(t, t

′)B̃<
g (t, t′)g̃g(t

′, t)P>(t′, t)

−g̃e(t, t
′)B̃<

g (t, t′)G̃a
g(t

′, t)P<(t′, t)

−g̃e(t, t
′)B̃<

g (t, t′)g̃g(t
′, t)P a(t, t′)]. (A28)
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