Catalysis Science & Technology

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/catalysis

Cat. Sci. Technol.

ARTICLE

Cite this: DOI: 10.1039/xoxxooooox

Received ooth January 2012, Accepted ooth January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Desulfitative Pd-catalysed coupling reaction using benzenesulfonyl chlorides and enones as the coupling partners

Kedong Yuan, Rui Sang, Jean-François Soulé and Henri Doucet*

The reaction of benzenesulfonyl chlorides with enones was investigated. β -Ionone and benzalacetone in the presence of a palladium catalyst were found to afford the conjugate addition products instead of the expected Heck type products. The reaction tolerates a wide variety of substituents on the benzenesulfonyl chloride. It should be noted that no cleavage of the C-Br and C-I bonds was observed in the course of the reactions with 4-bromo- or 4-iodo-benzenesulfonyl chlorides, allowing further transformations. For example, using 4-bromobenzenesulfonyl chloride as the central unit, consecutive conjugate addition followed arylations allowed the access to substituted bi(hetero)aryls.

Introduction

Mizoroki-Heck reaction is certainly one of the most powerful method for the preparation of styrene derivatives and proceeds with a variety of alkenes including enones.^{1,2} For such reactions a variety of coupling partners such as aryl halides or aryl triflates can be employed, and in recent years the reactivity of benzenesulfonyl derivatives was also studied. For example, Miura and co-workers reported the coupling of acrylates with benzenesulfonyl chlorides for access to 3-aryl-2-propenoates (Scheme 1, top).^{3a,3b} Then, Vogel extended the reaction to styrene and substituted acrylates.^{3c,3d} Jafarpour et al. also reported recently that the reaction of benzenesulfonyl chloride with methylacrylate in the presence of PdCl₂ and Cu(OAc)₂ as catalytic system also affords the Heck type product (Scheme 1, middle).^{3e} On the other hand, the Pdcatalysed conjugate addition of aryl halides with enones has attracted less attention. Cacchi and more recently de Vries and Minnaard reported conditions allowing such conjugate addition using aryl halides as the coupling partners (Scheme 1, middle).^{4,5} The palladium-catalysed desulfitative conjugate addition of phenylazo sulfones,^{6a} sodium sulfinates^{6b} or arylsulfonyl hydrazides^{6c} with α,β -unsaturated carbonyl compounds has also been described (Scheme 1, bottom). On the other hand, to our knowledge, the conjugate addition using enones and benzenesulfonyl chlorides as reaction

partners has not been described (Scheme 1, bottom). Advantages of benzenesulfonyl chlorides as reactants are that many of them are commercially available at an affordable cost, and they can be easily prepared from sulfonic acids or sulfur substrates by chlorination. Moreover, for some desulfitative Pd-catalysed reactions, the use of halo-substituted ArSO₂R derivatives affords coupling products without cleavage of the Ar-Br or Ar-I bonds allowing further transformations.⁷⁻⁹ Therefore, the reaction outcome using such coupling partners in the presence of palladium catalysts needed to be investigated.

Herein, we describe the selectivity of the reactions using benzenesulfonyl chlorides and enones as the coupling partners in the presence of a palladium catalyst (Scheme 1, bottom). The influence of functional groups on the benzenesulfonyl chloride and sequential C-C bonds formation are also reported.

RSCPublishing

Scheme 1

Results and discussion

Based on our previous results on the Pd-catalysed desulfitative coupling with heteroarene derivatives,^{7a,7b} We first examined the influence of several reaction conditions, using 5 mol% PdCl₂(MeCN)₂ catalyst and Li₂CO₃ as the base, on the product formation (Scheme 2, Table 1). Unexpectedly, the reaction of 1 equiv. of β -ionone and 1.2 equiv. of 4-methylbenzenesulfonyl chloride at 140 °C during 24 h, without addition of reductant, led regioselectively to the conjugate addition product **1a** with complete selectivity and in 72% yield (Table 1, entry 1). No formation of the expected Mizoroki-Heck reaction type product **1b** was observed. A lower reaction temperature of 130 °C also gave selectively **1a**, but in lower yield (Table 1, entry 2). Then, we -

investigated the influence of the nature of the solvent. DMF, ethylbenzene, diethylcarbonate and pentan-1-ol were completely ineffective, as in all cases with these solvents no formation of products 1a or 1b was observed. The reaction performed in CPME gave 1a as trace amount (Table 1, entries 3-7). A mixture of 1,4-dioxane and H₂O afforded 1a in a lower yield of 27% and a mixture 1,4-dioxane/TFA without base was ineffective (Table 1, entries 8 and 9). The use of 5 mol% $Pd(OAc)_2$, $PdCl_2$ or $Pd(TFA)_2$ also afforded product 1a, although in low yields of 21-35%; whereas, a reaction performed in absence of catalyst gave no product (Table 1, entries 10-13). Then, the influence of several additives was investigated (Table 1, entries 14-19). Bu₄NCl, NEt₃ and DABCO gave no coupling products; whereas both CuBr and Cu(OAc)₂ had no significant influence on the selectivity and yields as 1a was isolated in 69% and 67% yields, respectively.

Table 1. Influence of the conditions on the Pd-catalysed reaction of β -ionone and 4-methylbenzenesulfonyl chloride (Scheme 2)

Entry	Catalyst	Solvent	Temp (°C)	Yield in 1a (%)
1	PdCl ₂ (CH ₃ CN) ₂	1,4-dioxane	140	77 (72)
2	PdCl ₂ (CH ₃ CN) ₂	1,4-dioxane	130	40
3	PdCl ₂ (CH ₃ CN) ₂	DMF	150	0
4	PdCl ₂ (CH ₃ CN) ₂	Ethylbenze ne	150	0
5	PdCl ₂ (CH ₃ CN) ₂	CPME ^a	150	trace
6	PdCl ₂ (CH ₃ CN) ₂	Diethylcarb onate	150	0
7	PdCl ₂ (CH ₃ CN) ₂	Pentan-1-ol	150	0
8	PdCl ₂ (CH ₃ CN) ₂	1,4-dioxane / H ₂ O (9:1)	140	27
9	PdCl ₂ (CH ₃ CN) ₂	1,4-dioxane / TFA (9:1)	140	<5 ^b
10	Pd(OAc) ₂	1,4-dioxane	140	21
11	PdCl ₂	1,4-dioxane	140	35
12	Pd(TFA) ₂	1,4-dioxane	140	23
13	-	1,4-dioxane	140	0

Catalysis Science & Technology

14	PdCl ₂ (CH ₃ CN) ₂	1,4-dioxane	140	69 ^c
15	PdCl ₂ (CH ₃ CN) ₂	1,4-dioxane	140	67 ^d
16	PdCl ₂ (CH ₃ CN) ₂	1,4-dioxane	140	<5 ^e
17	PdCl ₂ (CH ₃ CN) ₂	1,4-dioxane	140	$<5^{\mathrm{f}}$
18	PdCl ₂ (CH ₃ CN) ₂	1,4-dioxane	140	<5 ^g
19	PdCl ₂ (CH ₂ CN) ₂	1.4-dioxane	140	33 ^h

Condition: [Pd] 5 mol%, 4-methylbenzenesulfonyl chloride (1.5 equiv.), β -ionone (1 equiv.), Li₂CO₃ (3 equiv.), yield determined by GC and crude ¹H NMR, 24 h, yield in parenthesis is isolated. ^a CPME: cyclopentyl methyl ether. ^b No base. ^c CuBr as additive (2 equiv.). ^d Cu(OAc)₂ as additive (2 equiv.). ^e Bu₄NCl as additive (2 equiv.). ^f NEt₃ as additive (2 equiv.). ^g DABCO as additive (2 equiv.). ^h MS4Å as additive.

Under the same reactions conditions, but using 4bromotoluene and β -ionone as the coupling partners, no formation of products 1a and 1b was detected (Scheme 3, top). А similar result was obtained using 4bromobenzonitrile as arylation partner. On the other hand, a mixture of methyl cinnamate and benzenesulfonyl chloride in the presence of 5 mol% PdCl₂(MeCN)₂ catalyst affords exclusively the Heck type product **2b**. This selectivity is similar to the one observed by Miura and Vogel using K₂CO₃, R_4NCl , xylene as the reaction conditions.³ Then, the selectivity of the coupling of a mixture of (E)-2,2dimethylhex-4-en-3-one and benzenesulfonyl chloride was examined. The Heck type product 3b was obtained in 80% selectivity together with 20% of conjugate addition product **3a**. The reaction of 1 equiv. of but-1-en-3-one with 0.4 or 1.2 equiv. of benzenesulfonyl chloride under the same reaction conditions also affords a mixture of conjugate addition product 4a and Heck type product 4b in a similar ratio of 23:77. The use of cyclopent-2-enone and chalcone also led to mixtures of conjugate addition and Heck type products 5a and 5b in 27:73 ratio and 6a and 6b in 13:87 ratio, respectively.

Then, the reaction using benzalacetone as partner was investigated. Minnaard and de Vries have recently reported that the Pd-catalysed reaction of benzalacetone with aryl iodides using an amine as base affords the conjugate addition product; whereas, CsOPiv base led to Heck type product.^{4g} From both 4-methyl- and 4-bromo-benzenesulfonyl chlorides and benzalacetone as reaction partners using again 5 mol% PdCl₂(MeCN)₂ catalyst and Li₂CO₃ as base in dioxane, the conjugate addition products **7** and **8** were selectively obtained (Scheme 3, bottom). No formation of Heck type products was detected, and the C-Br bond of **8** was not cleaved.

Scheme 3

The scope of the reaction of β -ionone using a variety of benzenesulfonyl chlorides was investigated (Scheme 4). 4fluorobenzenesulfonyl chloride afforded the reductive addition products 9 in only 23% yield. Higher yields were obtained for the coupling of 4-chloro-, 4-bromo and 4-iodobenzenesulfonyl chlorides, as the desired products 10-12 were isolated in 65-77%. It should be noted that for these reactions, no cleavage of the C-Halo bonds was observed allowing further transformations. The reaction also tolerates 4-trifluoromethyl substituents 4-cyano and on the benzenesulfonyl chloride, as 13 and 14 were formed in 87%

Ph

22 53%

23 56%

and 4-tert-butylbenzene sulfonylchloride. A poor yield of 22% in 17 was obtained in the presence of electron-rich 4-PdCl₂(MeCN)₂ 5 moĺ% Li₂CO₃, dioxane, 140 °C, 24 h Ph-SO₂CI PdCb(MeCN); 5 mol% Li₂CO_{3,} dioxane, 140 °C, 24 h Scheme 5

Although the mechanism is not yet elucidated, we assume that in the first step an oxidative addition of ArSO₂Cl to Pd(II) affords a Pd(IV) species (Figure 1). Such oxidative addition on Pd(II) have been found to proceed even at room temperature.¹⁰ Then, after elimination of SO₂, the coordination of the enone might afford a Pd-O intermediate with transfer of the Ar group at the α -position to R substituent of the enone. However, the nature of the reductant in this process remains unclear.

Figure 1 Suggested mechanism

In recent years, palladium-catalysed direct arylation of heteroaromatics with aryl halides via a C-H bond activation has become a popular method for generating carbon-carbon bonds.¹¹⁻¹³ As the desulfitative conjugate addition tolerates C-Br bonds to afford 8 and 11 in good yields, consecutive couplings using 4-bromobenzenesulfonyl chloride as the central unit was also studied (Scheme 6). Using 2 mol% $PdCl(C_3H_5)_2(dppb)^{14}$ catalyst in the presence of KOAc in DMA, 11 was coupled with a variety of heteroarenes to afford 24-27 in 74-94% yields. It should be mentioned that the reaction in the presence of methyl 1-methylpyrrole-2carboxylate proceed without decarboxylation to afford 27 in 87% yield. From 4-(4-bromophenyl)-4-phenylbutan-2-one 8 and 2-ethyl-4-methylthiazole, under the same conditions, the desired product 28 was also obtained in a yield of 88%. In all cases, a regioselective arylation at carbon C5 on the heteroarene was observed.

Catalysis Science & Technology Accepted Manus

CI

20 78%

ÓMe

17 22%

18 26%

19 46%

B

21 56%

and 64% yields. Similar yields of 57% and 56% in 15 and 16 were obtained in the presence of benzene sulfonylchloride

Scheme 4

The reactivity of two enones substituted by an heteroarene was also investigated (Scheme 5). Is is known that the arylation of furans and thiophene via palladium-catalysed desulfitative arylation proceeds nicely.^{11r} However, from both (E)-4-(furan-2-yl)but-3-en-2-one and (E)-3-(thiophen-2yl)-1-(p-tolyl)prop-2-en-1-one the selective formation of 22 and 23 from conjugate addition was observed. No arylation on the heteroarene rings was observed on the ¹H NMR analysis of the crude mixture.

Conclusion

In summary, we report here the first palladium-catalysed conjugate addition using benzenesulfonyl chlorides and enones as the coupling partners. The selectivity of the reaction depends on the enone derivative. Benzalacetone and β -ionone only affords conjugate addition products; whereas, (E)-2,2-dimethylhex-4-en-3-one or but-3-en-2-one afforded mixtures of Heck and conjugate addition products. The reaction was found to proceeds with easily accessible ligandfree Pd(MeCN)₂Cl₂ catalyst and Li₂CO₃ as base. Moreover. this procedure tolerates a variety of substituents on the benzenesulfonyl chloride. It should be noted that even bromo- and iodo-benzenesulfonyl chlorides were successfully coupled without cleavage of the C-Br or C-I bonds, allowing further transformations. At present, it remains unclear why a conjugate addition via reduction takes place instead of the expected Heck type reaction. However, due to the wide availability of diversely functionalized benzenesulfonyl chlorides at an affordable cost, such simple reaction conditions (no expensive base and ligand) should be very attractive to synthetic chemists for access to 4-arylbutanones. Finally, from a 4-(4-bromophenyl)butanone, a palladiumcatalysed C-H bond functionalization using heteroarenes as

coupling partners allows the synthesis of a variety of heteroarylated 4-arylbutanones.

Acknowledgements

We thank the ministère de la recherche for a fellowship to K. Y. and the Centre National de la Recherche Scientifique and "Rennes Metropole" for providing financial support.

Experimental section

General Remarks

All reactions were run under argon in Schlenk tubes using vacuum lines. Dioxane analytical grade was not distilled before use. Li_2CO_3 (>99%) was used. Commercial enones and benzenesulfonyl chlorides were used without purification. The reactions were followed by GC and NMR. ¹H and ¹³C spectra were recorded with a Bruker 400 MHz spectrometer in CDCl₃ solutions. Chemical shifts are reported in ppm relative to CDCl₃ (7.26 for ¹H NMR and 77.0 for ¹³C NMR). Flash chromatography was performed on silica gel (230–400 mesh).

General procedure

In a typical experiment, the enone or acrylate derivative (1 mmol), benzenesulfonyl chloride derivative (1.5 mmol), Li_2CO_3 (0.222 g, 3 mmol) and $PdCl_2(MeCN)_2$ (12.9 mg, 0.05 mmol), were dissolved in 1,4-dioxane (2 mL) under an argon atmosphere. The reaction mixture was stirred at 140°C for 24 h. After evaporation of the solvent, the product was purified by silica gel column chromatography.

4-*p*-Tolyl-4-(2,6,6-trimethylcyclohex-1-enyl)butan-2-one (1a)¹⁵

From β -ionone (0.192 g, 1 mmol) and 4methylbenzenesulfonyl chloride (0.285 g, 1.5 mmol), product **1a** was obtained in 72% (0.204 g) yield.

¹H NMR (400 MHz, CDCl₃) δ 7.03 (d, J = 8.4 Hz, 2H), 6.97 (d, J = 8.4 Hz, 2H), 4.33 (d, J = 8.3 Hz, 1H), 3.30 (dd, J = 17.1, 8.4 Hz, 1H), 2.80 (d, J = 17.1 Hz, 1H), 2.29 (s, 3H), 2.24 (s, 3H), 1.98-1.90 (m, 2H), 1.65-1.55 (m, 4H), 1.30 (s, 3H), 1.06 (s, 3H), 1.03 (s, 3H).

Methyl 3,3-diphenylacrylate (2b)¹⁶

From methyl cinnamate (0.162 g, 1 mmol) and benzenesulfonyl chloride (0.264 g, 1.5 mmol), product **2b** was obtained in 30% (0.072 g) yield.

¹H NMR (400 MHz, CDCl₃) δ 7.44-7.17 (m, 10H), 6.38 (s, 1H), 3.65 (s, 3H).

2,2-Dimethyl-5-phenylhexan-3-one $(3a)^{17}$ and (E)-2,2-Dimethyl-5-phenylhex-4-en-3-one $(3b)^{18}$

From (*E*)-2,2-dimethylhex-4-en-3-one (0.126 g, 1 mmol) and benzenesulfonyl chloride (0.264 g, 1.5 mmol), a mixture of products **3a** and **3b** was obtained in a 20:80 ratio and product **3b** was isolated in 28% (0.056 g) yield.

3b: ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 8.2 Hz, 2H), 7.29-7.25 (m, 3H), 6.74 (s, 1H), 2.50 (s, 3H), 1.21 (s, 9H).

4-Phenylbutan-2-one (4a) and (E)-4-phenylbut-3-en-2-one (4b)¹⁹

From but-3-en-2-one (0.070 g, 1 mmol) and benzenesulfonyl chloride (0.211 g, 1.2 mmol), a mixture of products **4a** and **4b** was obtained in a 23:77 ratio and in 60% yield (0.088 g) yield.

4a: ¹H NMR (400 MHz, CDCl₃) δ7.40-7.20 (m, 5H), 2.90 (t, *J* = 7.5 Hz, 2H), 2.80 (t, *J* = 7.5 Hz, 2H), 2.15 (s, 3H).

4b: ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.49 (m, 3H), 7.42-7.35 (m, 3H), 6.72 (d, J = 16.4 Hz, 1H), 2.39 (s, 3H).

3-Phenylcyclopentanone (5a)^{20a} and 3-phenylcyclopent-2enone (5b)^{20b}

From cyclopent-2-enone (0.082 g, 1 mmol) and benzenesulfonyl chloride (0.211 g, 1.2 mmol), a mixture of products **5a** and **5b** was obtained in a 27:73 ratio and product **5b** was isolated 51% yield (0.080 g) yield.

5a: ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.17 (m, 5H), 3.43-3.32 (m, 1H), 2.65 (dd, J = 7.0, 8.0 Hz, 1H), 2.50-2.20 (m, 4H), 2.00-1.85(m, 1H).

5b: ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 8.2 Hz, 2H), 7.50-7.35 (m, 3H), 6.55 (d, J = 1.0 Hz, 1H), 3.05-2.95 (m, 2H), 2.63-2.50 (m, 2H).

1,3,3-Triphenylpropan-1-one (6a)^{21a} and **1,3,3**triphenylprop-2-en-1-one (6b)^{21b}

From (*E*)-chalcone (0.208 g, 1 mmol) and benzenesulfonyl chloride (0.264 g, 1.5 mmol), a mixture of products **6a** and **6b** was obtained in a 13:87 ratio and product **6b** was isolated in 52% (0.147 g) yield.

6a: ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 3.0 Hz, 2H), 7.60-7.12 (m, 13H), 4.85 (t, J = 7.4 Hz, 1H), 3.75 (d, J = 7.5 Hz, 2H).

6b: ¹H NMR (400 MHz, CDCl₃) δ 7.90 (dd, J = 1.5, 7.0 Hz, 2H), 7.52–7.44 (m, 1H), 7.42–7.34 (m, 7H), 7.30–7.22 (m, 3H), 7.20–7.16 (m, 2H), 7.11 (s, 1H).

4-Phenyl-4-*p*-tolylbutan-2-one (7)²²

From (*E*)-4-phenylbut-3-en-2-one (0.146 g, 1 mmol) and 4-methylbenzenesulfonyl chloride (0.285 g, 1.5 mmol), product 7 was obtained in 72% (0.171 g) yield.

¹H NMR (400 MHz, CDCl₃) δ 7.27-7.12 (m, 5H), 7.08 (d, J = 8.2 Hz, 2H), 7.05 (d, J = 8.2 Hz, 2H), 4.52 (t, J = 7.6 Hz, 1H), 3.13 (d, J = 7.6 Hz, 2H), 2.26 (s, 3H), 2.04 (s, 3H).

4-(4-Bromophenyl)-4-phenylbutan-2-one (8)^{4g}

From (*E*)-4-phenylbut-3-en-2-one (0.146 g, 1 mmol) and 4bromobenzenesulfonyl chloride (0.382 g, 1.5 mmol), product **8** was obtained in 68% (0.206 g) yield.

¹H NMR (400 MHz, CDCl₃) δ 7.45-7.20 (m, 7H), 7.13 (d, J = 8.2 Hz, 2H), 4.59 (t, J = 7.6 Hz, 1H), 3.18 (d, J = 7.6 Hz, 2H), 2.11 (s, 3H).

4-(4-Fluorophenyl)-4-(2,6,6-trimethylcyclohex-1enyl)butan-2-one (9)

From β -ionone (0.192 g, 1 mmol) and 4-flurobenzenesulfonyl chloride (0.292 g, 1.5 mmol), product **9** was obtained in 23% (0.066 g) yield.

¹H NMR (400 MHz, CDCl₃) δ 7.05-7.00 (m, 2H), 6.90 (t, J = 8.6 Hz, 2H), 4.30 (d, J = 8.3 Hz, 1H), 3.29 (dd, J = 17.1, 8.4 Hz, 1H), 2.82 (d, J = 17.1 Hz, 1H), 2.25 (s, 3H), 1.98-1.90 (m, 2H), 1.65-1.55 (m, 4H), 1.26 (s, 3H), 1.04 (s, 3H), 1.01 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 207.4, 160.7 (d, J = 243.2 Hz), 140.9, 140.8 (d, J = 3.2 Hz), 130.5, 128.3 (d, J = 7.9 Hz), 114.6 (d, J = 20.7 Hz), 51.8, 39.9, 36.1, 33.5, 30.1, 28.4, 28.1, 22.3, 19.4.

C₁₉H₂₅FO (288.40): Calcd C 79.13, H 8.74; Found C 79.00, H 8.89.

4-(4-Chlorophenyl)-4-(2,6,6-trimethylcyclohex-1enyl)butan-2-one (10)

From β -ionone (0.192 g, 1 mmol) and 4chlorobenzenesulfonyl chloride (0.316 g, 1.5 mmol), product **10** was obtained in 77% (0.234 g) yield.

¹H NMR (400 MHz, CDCl₃) δ 7.18 (d, J = 8.4 Hz, 2H), 7.00 (d, J = 8.4 Hz, 2H), 4.30 (d, J = 8.3 Hz, 1H), 3.27 (dd, J = 17.1, 8.4 Hz, 1H), 2.82 (d, J = 17.1 Hz, 1H), 2.24 (s, 3H), 1.98-1.90 (m, 2H), 1.65-1.55 (m, 4H), 1.26 (s, 3H), 1.04 (s, 3H), 1.01 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 207.2, 143.8, 140.7, 130.8, 130.7, 128.3, 128.1, 51.7, 39.9, 36.2, 36.1, 33.5, 30.0, 28.4, 28.1, 22.4, 19.4.

 $C_{19}H_{25}ClO$ (304.85): Calcd C 74.86, H 8.27; Found C 74.99, H 8.37.

4-(4-Bromophenyl)-4-(2,6,6-trimethylcyclohex-1enyl)butan-2-one (11)

From β -ionone (0.192 g, 1 mmol) and 4bromobenzenesulfonyl chloride (0.382 g, 1.5 mmol), product **11** was obtained in 65% (0.227 g) yield. Page 7 of 12

ARTICLE

¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, J = 8.4 Hz, 2H), 6.95 (d, J = 8.4 Hz, 2H), 4.28 (d, J = 8.3 Hz, 1H), 3.26 (dd, J = 17.1, 8.4 Hz, 1H), 2.80 (d, J = 17.1 Hz, 1H), 2.23 (s, 3H), 1.98-1.90 (m, 2H), 1.65-1.55 (m, 4H), 1.25 (s, 3H), 1.03 (s, 3H), 1.00 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 207.2, 144.4, 140.6, 131.0, 130.7, 128.8, 118.9, 51.6, 39.9, 36.3, 36.1, 33.5, 30.0, 28.4, 28.1, 22.4, 19.4.

 $C_{19}H_{25}BrO$ (349.31): Calcd C 65.33, H 7.21; Found C 65.24, H 7.01.

4-(4-Iodophenyl)-4-(2,6,6-trimethylcyclohex-1-enyl)butan-2-one (12)

From β -ionone (0.192 g, 1 mmol) and 4-iodobenzenesulfonyl chloride (0.454 g, 1.5 mmol), product **12** was obtained in 67% (0.265 g) yield.

¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 8.4 Hz, 2H), 6.82 (d, J = 8.4 Hz, 2H), 4.28 (d, J = 8.3 Hz, 1H), 3.27 (dd, J = 17.1, 8.4 Hz, 1H), 2.80 (d, J = 17.1 Hz, 1H), 2.23 (s, 3H), 1.98-1.90 (m, 2H), 1.65-1.55 (m, 4H), 1.25 (s, 3H), 1.03 (s, 3H), 1.00 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 207.1, 145.1, 140.5, 136.9, 130.7, 129.1, 90.2, 51.5, 39.8, 36.2, 36.0, 33.5, 30.0, 28.4, 28.0, 22.4, 19.3.

 $C_{19}H_{25}IO$ (396.31): Calcd C 57.58, H 6.36; Found C 57.77, H 6.20.

4-(3-Oxo-1-(2,6,6-trimethylcyclohex-1enyl)butyl)benzonitrile (13)

From β -ionone (0.192 g, 1 mmol) and 4cyanobenzenesulfonyl chloride (0.303 g, 1.5 mmol), product **13** was obtained in 87% (0.256 g) yield.

¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 4.35 (d, J = 8.3 Hz, 1H), 3.28 (dd, J = 17.1, 8.4 Hz, 1H), 2.84 (d, J = 17.1 Hz, 1H), 2.25 (s, 3H), 1.98-1.90 (m, 2H), 1.65-1.55 (m, 4H), 1.25 (s, 3H), 1.03 (s, 3H), 1.00 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 206.7, 151.2, 140.2, 131.8, 131.1, 127.6, 119.1, 108.9, 51.1, 39.6, 36.8, 36.0, 33.3, 29.9, 28.3, 27.9, 22.3, 19.2.

 $C_{20}H_{25}NO$ (295.42): Calcd C 81.31, H 8.53; Found C 81.73, H 8.29.

4-(4-(Trifluoromethyl)phenyl)-4-(2,6,6-trimethylcyclohex-1-enyl)butan-2-one (14)

From β -ionone (0.192 g, 1 mmol) and 4-(trifluoromethyl)benzenesulfonyl chloride (0.366 g, 1.5 mmol), product **14** was obtained in 64% (0.216 g) yield.

¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.4 Hz, 2H), 7.18 (d, J = 8.4 Hz, 2H), 4.38 (d, J = 8.3 Hz, 1H), 3.31 (dd, J =

17.1, 8.4 Hz, 1H), 2.85 (d, J = 17.1 Hz, 1H), 2.26 (s, 3H), 1.98-1.90 (m, 2H), 1.65-1.55 (m, 4H), 1.23 (s, 3H), 1.06 (s, 3H), 1.01 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 207.0, 149.5, 140.5, 130.9, 127.5 (q, J = 32.6 Hz), 127.2, 124.9 (q, J = 4.0 Hz), 124.4 (q, J = 271.0 Hz), 51.5, 39.8, 36.6, 36.1, 33.4, 30.0, 28.4, 28.0, 22.4, 19.3.

 $C_{20}H_{25}F_{3}O$ (338.41): Calcd C 70.98, H 7.45; Found C 71.24, H 7.25.

4-Phenyl-4-(2,6,6-trimethylcyclohex-1-enyl)butan-2-one (15)²³

From β -ionone (0.192 g, 1 mmol) and benzenesulfonyl chloride (0.264 g, 1.5 mmol), product **15** was obtained in 57% (0.154 g) yield.

¹H NMR (400 MHz, CDCl₃) δ 7.22 (t, J = 7.6 Hz, 2H), 7.12 (d, J = 8.4 Hz, 1H), 7.07 (d, J = 8.4 Hz, 2H), 4.36 (d, J = 8.3 Hz, 1H), 3.30 (dd, J = 17.1, 8.4 Hz, 1H), 2.80 (d, J = 17.1 Hz, 1H), 2.25 (s, 3H), 1.98-1.90 (m, 2H), 1.65-1.55 (m, 4H), 1.25 (s, 3H), 1.03 (s, 3H), 1.00 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 207.4, 145.2, 140.8, 130.3, 128.0, 126.8, 125.1, 51.7, 39.9, 36.7, 36.1, 33.6, 30.0, 28.5, 28.1, 22.3, 19.4.

4-(4-*tert*-Butylphenyl)-4-(2,6,6-trimethylcyclohex-1enyl)butan-2-one (16)

From β -ionone (0.192 g, 1 mmol) and 4-*tert*butylbenzenesulfonyl chloride (0.349 g, 1.5 mmol), product **16** was obtained in 56% (0.182 g) yield.

¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, J = 8.4 Hz, 2H), 7.00 (d, J = 8.4 Hz, 2H), 4.32 (d, J = 8.3 Hz, 1H), 3.33 (dd, J = 18.7, 8.8 Hz, 1H), 2.80 (d, J = 18.7 Hz, 1H), 2.25 (s, 3H), 1.98-1.90 (m, 2H), 1.70-1.55 (m, 4H), 1.29 (s, 9H), 1.28 (s, 3H), 1.09 (s, 3H), 1.03 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 207.5, 147.7, 141.9, 140.9, 130.2, 126.5, 124.8, 51.6, 40.0, 36.4, 36.1, 34.2, 33.6, 31.4, 30.1, 28.5, 28.2, 22.4, 19.5.

 $C_{23}H_{34}O$ (326.52): Calcd C 84.60, H 10.50; Found C 84.79, H 10.22.

4-(4-Methoxyphenyl)-4-(2,6,6-trimethylcyclohex-1enyl)butan-2-one (17)²⁴

From β -ionone (0.192 g, 1 mmol) and 4methoxybenzenesulfonyl chloride (0.311 g, 1.5 mmol), product **17** was obtained in 22% (0.066 g) yield.

¹H NMR (400 MHz, CDCl₃) δ 6.99 (d, J = 8.4 Hz, 2H), 6.76 (d, J = 8.4 Hz, 2H), 4.29 (d, J = 8.3 Hz, 1H), 3.76 (s, 3H), 3.27 (dd, J = 17.1, 8.4 Hz, 1H), 2.80 (d, J = 17.1 Hz, 1H), 2.23 (s, 3H), 1.98-1.90 (m, 2H), 1.65-1.55 (m, 4H), 1.25 (s, 3H), 1.03 (s, 3H), 1.00 (s, 3H).

4-(3,5-Dichlorophenyl)-4-(2,6,6-trimethylcyclohex-1enyl)butan-2-one (18)

From β -ionone (0.192 g, 1 mmol) and 3,5dichlorobenzenesulfonyl chloride (0.367 g, 1.5 mmol), product **18** was obtained in 26% (0.088 g) yield.

¹H NMR (400 MHz, CDCl₃) δ 7.12 (s, 1H), 6.93 (s, 2H), 4.28 (d, J = 8.3 Hz, 1H), 3.27 (dd, J = 17.1, 8.4 Hz, 1H), 2.82 (d, J = 17.1 Hz, 1H), 2.25 (s, 3H), 1.98-1.90 (m, 2H), 1.65-1.55 (m, 4H), 1.25 (s, 3H), 1.03 (s, 3H), 1.00 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 206.7, 149.1, 140.1, 134.5, 131.3, 125.6, 125.5, 51.4, 39.7, 36.3, 36.0, 33.4, 30.0, 28.3, 28.0, 22.4, 19.3.

 $C_{19}H_{24}Cl_{2}O$ (339.30): Calcd C 67.26, H 7.13; Found C 67.04, H 7.34.

4-(Naphthalen-1-yl)-4-(2,6,6-trimethylcyclohex-1enyl)butan-2-one (19)

From β -ionone (0.192 g, 1 mmol) and 1-naphthylsulfonyl chloride (0.340 g, 1.5 mmol), product **19** was obtained in 46% (0.147 g) yield.

¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.2 Hz, 1H), 7.76 (d, J = 8.2 Hz, 1H), 7.60 (d, J = 8.2 Hz, 1H), 7.43 (t, J = 7.8 Hz, 1H), 7.39-7.23 (m, 3H), 4.98-4.92 (m, 1H), 3.20 (dd, J = 17.1, 8.4 Hz, 1H), 2.84 (d, J = 17.1 Hz, 1H), 2.10-1.90 (m, 2H), 2.06 (s, 3H), 1.74 (s, 3H), 1.65-1.25 (m, 4H), 0.95 (s, 3H), 0.55 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 207.7, 139.6, 139.5, 134.3, 131.5, 130.6, 129.0, 126.9, 126.1, 125.4, 125.2, 125.0, 123.6, 50.4, 40.6, 36.6, 36.1, 34.3, 30.6, 28.8, 27.7, 23.9, 19.2.

 $C_{23}H_{28}O$ (320.47): Calcd C 86.20, H 8.81; Found C 86.43, H 8.99.

4-(2-Bromophenyl)-4-(2,6,6-trimethylcyclohex-1enyl)butan-2-one (20)

From β -ionone (0.192 g, 1 mmol) and 2bromobenzenesulfonyl chloride (0.382 g, 1.5 mmol), product **20** was obtained in 78% (0.272 g) yield.

¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.4 Hz, 1H), 7.24 (d, J = 8.4 Hz, 1H), 7.13 (t, J = 7.8 Hz, 1H), 6.94 (t, J = 7.8 Hz, 1H), 4.37 (d, J = 8.3 Hz, 1H), 3.01 (dd, J = 17.1, 8.4 Hz, 1H), 2.87 (d, J = 17.1 Hz, 1H), 2.08 (s, 3H), 2.05-1.90 (m, 2H), 1.69 (s, 3H), 1.65-1.20 (m, 4H), 1.03 (s, 3H), 0.57 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) *δ* 206.4, 143.1, 137.6, 133.4, 131.1, 129.7, 127.6, 127.0, 124.8, 49.1, 40.9, 40.6, 36.2, 34.5, 29.9, 29.1, 27.6, 23.5, 19.1.

 $C_{19}H_{25}BrO$ (349.31): Calcd C 65.33, H 7.21; Found C 65.35, H 7.42.

4-(5-Bromothiophen-2-yl)-4-(2,6,6-trimethylcyclohex-1enyl)butan-2-one (21)

From β -ionone (0.192 g, 1 mmol) and 5-bromothiophene-2-sulfonyl chloride (0.391 g, 1.5 mmol), product **21** was obtained in 56% (0.199 g) yield.

¹H NMR (400 MHz, CDCl₃) δ 6.77 (d, J = 3.7 Hz, 2H), 6.32 (d, J = 3.7 Hz, 2H), 4.33 (d, J = 8.3 Hz, 1H), 3.34 (dd, J = 17.1, 8.4 Hz, 1H), 2.72 (d, J = 17.1 Hz, 1H), 2.22 (s, 3H), 1.98-1.90 (m, 2H), 1.65-1.55 (m, 4H), 1.48 (s, 3H), 1.12 (s, 3H), 0.97 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 206.4, 152.2, 140.9, 132.2, 128.9, 123.3, 108.9, 51.4, 39.7, 36.0, 34.2, 33.6, 30.0, 28.1, 22.3, 19.2.

 $C_{17}H_{23}BrOS$ (355.33): Calcd C 57.46, H 6.52; Found C 57.69, H 6.31.

4-(Furan-2-yl)-4-phenylbutan-2-one (22)²⁵

From (*E*)-4-(furan-2-yl)but-3-en-2-one (0.136 g, 1 mmol) and benzenesulfonyl chloride (0.264 g, 1.5 mmol), product **22** was obtained in 56% (0.120 g) yield.

¹H NMR (400 MHz, CDCl₃) δ 7.32-7.17 (m, 6H), 6.26 (dd, J = 3.2, 2.0 Hz, 1H), 5.99 (d, J = 3.2 Hz, 1H), 4.60 (t, J = 7.4 Hz, 1H), 3.25 (dd, J = 16.8, 7.5 Hz, 1H), 3.00 (dd, J = 16.8, 7.3 Hz, 1H), 2.11 (s, 3H).

3-(4-Bromophenyl)-3-(thiophen-2-yl)-1*-p***-tolylpropan-1- one (23)**

From (*E*)-3-(thiophen-2-yl)-1-(*p*-tolyl)prop-2-en-1-one (0.228 g, 1 mmol) and 4-bromobenzenesulfonyl chloride (0.382 g, 1.5 mmol), product **23** was obtained in 53% (0.204 g) yield.

¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.3 Hz, 2H), 7.45 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 7.6 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H), 7.18 (d, J = 5.2 Hz, 1H), 6.94 (dd, J = 3.4, 5.2 Hz, 1H), 6.88-6.86 (m, 1H), 5.07 (t, J = 7.2 Hz, 1H), 3.80-3.70 (m, 2H), 2.44 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 196.5, 147.7, 144.1, 142.8, 134.2, 131.6, 129.4, 129.3, 128.1, 126.7, 124.2, 123.9, 120.5, 45.7, 41.0, 21.6.

 $C_{20}H_{17}BrOS$ (385.32): Calcd C 62.34, H 4.45; Found C 62.56, H 4.65.

Preparation of the PdCl(C₃H₅)(dppb) catalyst:¹⁴ An ovendried 40 mL Schlenk tube equipped with a magnetic stirring bar under argon atmosphere, was charged with $[Pd(C_3H_5)Cl]_2$ (182 mg, 0.5 mmol) and dppb (426 mg, 1 mmol). 10 mL of anhydrous dichloromethane were added, then, the solution was stirred at room temperature for twenty minutes. The solvent was removed in vacuum. The yellow powder was used without purification. ³¹P NMR (81 MHz, CDCl₃) δ = 19.3 (s).

General procedure for the synthesis of 24-28

In a typical experiment, 4-(4-bromophenyl)-4-(2,6,6-trimethylcyclohex-1-enyl)butan-2-one 7 (0.349 g, 1 mmol), heteroarene derivative (1.2 mmol), KOAc (0.196 g, 2 mmol) and PdCl(C_3H_5)(dppb) (12.2 mg, 0.02 mmol), were dissolved in DMA (4 mL) under an argon atmosphere. The reaction mixture was stirred at 130°C for 20 h. After evaporation of the solvent, the product was purified by silica gel column chromatography.

4-(4-(2-Ethyl-4-methylthiazol-5-yl)phenyl)-4-(2,6,6-

trimethylcyclohex-1-enyl)butan-2-one (24)

From 4-(4-bromophenyl)-4-(2,6,6-trimethylcyclohex-1enyl)butan-2-one **11** (0.349 g, 1 mmol) and 2-ethyl-4methylthiazole (0.152 g, 1.2 mmol), product **24** was obtained in 94% (0.371 g) yield.

¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, J = 8.4 Hz, 2H), 7.12 (d, J = 8.4 Hz, 2H), 4.38 (d, J = 8.3 Hz, 1H), 3.37 (dd, J = 17.1, 8.4 Hz, 1H), 3.00 (q, J = 7.8 Hz, 2H), 2.87 (d, J = 17.1 Hz, 1H), 2.46 (s, 3H), 2.28 (s, 3H), 1.98-1.90 (m, 2H), 1.65-1.55 (m, 4H), 1.40 (t, J = 7.8 Hz, 3H), 1.30 (s, 3H), 1.11 (s, 3H), 1.05 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 207.3, 169.7, 146.6, 144.8, 140.7, 130.9, 130.6, 129.2, 128.7, 127.1, 51.5, 39.9, 36.5, 36.1, 33.6, 30.0, 28.5, 28.2, 26.9, 22.4, 19.4, 16.1, 14.3.

 $C_{25}H_{33}NOS$ (395.60): Calcd C 75.90, H 8.41; Found C 76.14, H 8.33.

4-(4-(5-Methylthiophen-2-yl)phenyl)-4-(2,6,6trimethylcyclohex-1-enyl)butan-2-one (25)

From 4-(4-bromophenyl)-4-(2,6,6-trimethylcyclohex-1enyl)butan-2-one **11** (0.349 g, 1 mmol) and 2methylthiophene (0.118 g, 1.2 mmol), product **25** was obtained in 74% (0.271 g) yield.

¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.4 Hz, 2H), 7.09 (d, J = 8.4 Hz, 2H), 7.06 (d, J = 3.6 Hz, 1H), 6.71 (d, J = 3.6 Hz, 1H), 4.38 (d, J = 8.3 Hz, 1H), 3.35 (dd, J = 17.1, 8.4 Hz, 1H), 2.84 (d, J = 17.1 Hz, 1H), 2.52 (s, 3H), 2.28 (s, 3H), 1.98-1.90 (m, 2H), 1.65-1.55 (m, 4H), 1.33 (s, 3H), 1.12 (s, 3H), 1.07 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 207.4, 144.2, 142.0, 140.7, 138.8, 131.6, 130.5, 127.3, 126.0, 125.1, 122.3, 51.5, 39.9, 36.6, 36.1, 33.6, 30.0, 28.5, 28.2, 22.4, 19.4, 15.4.

 $C_{24}H_{30}OS$ (366.56): Calcd C 78.64, H 8.25; Found C 78.41, H 8.09.

4-(4-(5-*n*Butylfuran-2-yl)phenyl)-4-(2,6,6trimethylcyclohex-1-enyl)butan-2-one (26)

From 4-(4-bromophenyl)-4-(2,6,6-trimethylcyclohex-1enyl)butan-2-one **11** (0.349 g, 1 mmol) and 2-*n*-butylfuran (0.149 g, 1.2 mmol), product **26** was obtained in 79% (0.310 g) yield.

¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 8.4 Hz, 2H), 6.46 (d, J = 3.1 Hz, 1H), 6.02 (d, J = 3.1 Hz, 1H), 4.35 (d, J = 8.3 Hz, 1H), 3.33 (dd, J = 17.1, 8.4 Hz, 1H), 2.81 (d, J = 17.1 Hz, 1H), 2.66 (t, J = 7.8 Hz, 2H), 2.26 (s, 3H), 1.98-1.90 (m, 2H), 1.70-1.33 (m, 8H), 1.30 (s, 3H), 1.09 (s, 3H), 1.04 (s, 3H), 0.94 (t, J = 7.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) *δ* 207.4, 156.0, 152.2, 143.8, 140.7, 130.4, 128.3, 127.1, 123.1, 106.7, 104.9, 51.5, 40.0, 36.7, 36.1, 33.6, 30.2, 30.1, 28.5, 28.1, 27.8, 22.3, 22.2, 19.4, 13.8.

 $C_{27}H_{36}O_2$ (392.57): Calcd C 82.61, H 9.24; Found C 82.79, H 9.37.

Methyl 1-methyl-5-(4-(3-oxo-1-(2,6,6-trimethylcyclohex-1enyl)butyl)phenyl)-pyrrole-2-carboxylate (27)

From 4-(4-bromophenyl)-4-(2,6,6-trimethylcyclohex-1enyl)butan-2-one **11** (0.349 g, 1 mmol) and methyl 1methylpyrrole-2-carboxylate (0.167 g, 1.2 mmol), product **27** was obtained in 87% (0.354 g) yield.

¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 7.02 (d, J = 4.0 Hz, 1H), 6.19 (d, J = 4.0 Hz, 1H), 4.41 (d, J = 8.3 Hz, 1H), 3.89 (s, 3H), 3.85 (s, 3H), 3.39 (dd, J = 17.1, 8.4 Hz, 1H), 2.87 (d, J = 17.1 Hz, 1H), 2.30 (s, 3H), 2.00-1.95 (m, 2H), 1.70-1.50 (m, 4H), 1.31 (s, 3H), 1.13 (s, 3H), 1.07 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 207.3, 162.0, 145.4, 141.8, 140.8, 130.6, 129.0, 128.9, 127.0, 123.1, 117.7, 108.9, 51.5, 51.0, 39.9, 36.6, 36.1, 34.4, 33.6, 30.1, 28.5, 28.2, 22.4, 19.4. C₂₆H₃₃NO₃ (407.55): Calcd C 76.62, H 8.16; Found C 76.39, H 8.00.

4-(4-(2-Ethyl-4-methylthiazol-5-yl)phenyl)-4-phenylbutan-2-one (28)

From 4-(4-bromophenyl)-4-phenylbutan-2-one **8** (0.303 g, 1 mmol) and 2-ethyl-4-methylthiazole (0.152 g, 1.2 mmol), product **28** was obtained in 88% (0.307 g) yield.

¹H NMR (400 MHz, CDCl₃) δ 7.30-7.10 (m, 9H), 4.54 (t, J = 7.6 Hz, 1H), 3.13 (d, J = 7.6 Hz, 2H), 2.91 (q, J = 7.6 Hz, 2H), 2.36 (s, 3H), 2.03 (s, 3H), 1.31 (t, J = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 206.6, 170.3, 146.6, 143.5, 143.4, 130.6, 130.4, 129.3, 128.7, 128.0, 127.7, 126.6, 49.6, 45.7, 30.7, 26.8, 16.0, 14.3.

C₂₂H₂₃NOS (349.49): Calcd C 75.61, H 6.63; Found C 75.48, H 6.87.

Notes and references

^{*a*} Institut Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes "Organométalliques:

Page 10 of 12

Matériaux et Catalyse", Campus de Beaulieu, 35042 Rennes, France. Fax: +33-(0)2-23-23-69-39; Tel: +33-(0)2-23-23-63-84.

- 1 (a) M. Oestreich, The Mizoroki-Heck Reaction, Wiley, New York, 2009; (b) J. Le Bras and J. Muzart, *Chem. Rev.*, 2011, **111**, 1170-1214.
- For Heck type reactions with aryl sulfonyl hydrazides, aryl sulfinic acids or aryl sulfinates: (a) X. Zhou, J. Luo, J. Liu, S. Peng and G.-J. Deng, Org. Lett., 2011, 13, 1432-1435; (b) G.-W. Wang and T. Miao, Chem. Eur. J., 2011, 17, 5787-5790; (c) F.-L. Yang, X.-T. Ma and S.-K. Tian, Chem. Eur. J., 2012, 18, 1582-1585; (d) S. Hu, P. Xia, K. Cheng and C. Qi, Appl. Organomet. Chem., 2013, 27, 188-190.
- For Heck type reaction with benzenesulfonyl chlorides: (a) M. Miura, H. Hashimoto, K. Itoh and M. Nomura, *Tetrahedron Lett.*, 1989, 30, 975-976; (b) M. Miura, H. Hashimoto, K. Itoh and M. Nomura, J. Chem. Soc., Perkin Trans. 1, 1990, 2207-2211; (c) S. R. Dubbaka and P. Vogel, Chem. Eur. J., 2005, 11, 2633-2641; (d) S. R. Dubbaka, D. Zhao, Z. Fei, C. M. R. Volla, P. J. Dyson and P. Vogel, Synlett, 2006, 3155-3157; (e) F. Jafarpour, M. B. A. Olia, H. Hazrati, Adv. Synth. Catal., 2013, 355, 3407-3412.
- 4 (a) S. Cacchi and G. Palmieri, *Tetrahedron*, 1983, 39, 3373-3383; (b) S. Cacchi and A. Arcadi, J. Org. Chem., 1983, 48, 4236-4240; (c) S. Cacchi, F. Latorre and G. Palmieri, J. Organomet. Chem., 1984, 268, C48-C51; (d) A. Amorese, A. Arcadi, E. Bernocchi, S. Cacchi, S. Cerrini, W. Fedeli and G. Ortar, *Tetrahedron* 1989, 45, 813-828; (e) S. Cacchi, F. Gasparrini, P. Pace and C. Villani, *Synlett*, 2000, 650-652; (f) N. Miyaura, *Synlett*, 2009, 2039-2050; (g) A. L. Gottumukkala, J. G. de Vries and A. J. Minnaard, *Chem. Eur. J.*, 2011, 17, 3091-3095.
- 5 A. Gutnov, Eur. J. Org. Chem., 2008, 4547-4554.
- 6 (a) N. K. Kamigata, A. Satoh and M. Yoshida, *Phosphorus, Sulfur Silicon Relat. Elem.*, 1989, 46, 121-129; (b) W. Chen, X. Zhou, F. Xiao, J. Luo and G.-J. Deng *Tetrahedron Lett.*, 2012, 53, 4347-4350; (c) W. Chen, H. Chen, F. Xiao, G.-J. Deng, *Org. Biomol. Chem.*, 2013, 11, 4295-4298.
- 7 (a) K. Yuan and H. Doucet, *Chem. Sci.*, 2014, 5, 392-396; (b) L. Loukotova, K. Yuan, H. Doucet, *ChemCatChem*, 2014, 6, 1303-1309.
- For a review on metal-catalysed desulfitative coupling:
 K. Yuan, J. F. Soulé and H. Doucet, *ACS Catal.*, 2015, 5, 978-991.
- 9 For a review on transition-metal mediated C-S bond activation: L. Wang, W. He and Z. Yu, *Chem. Soc. Rev.*, 2013, 42, 599-921.
- 10 X. Zhao and V. M. Dong, Angew. Chem., Int. Ed. 2011, 50, 932-934.
- For reviews on Pd-catalysed C-H functionalization: (*a*)
 D. Alberico, M. E. Scott and M. Lautens, *Chem. Rev.*,
 2007, **107**, 174-238; (*b*) T. Satoh and M. Miura, *Chem. Lett.*, 2007, **36**, 200-205; (*c*) B.-J. Li, S.-D. Yang and

Z.-J. Shi, Synlett, 2008, 949-957; (d) F. Bellina and R. Rossi, Tetrahedron, 2009, 65, 10269-10310; (e) L. Ackermann, R. Vincente and A. R. Kapdi, Angew. Chem. Int. Ed., 2009, 48, 9792-9826; (f) X. Chen, K. M. Engle, D.-H. Wang and J.-Q. Yu, Angew. Chem. Int. Ed., 2009, 48, 5094-5115; (g) J. Roger, A. L. Gottumukkala and H. Doucet, ChemCatChem, 2010, 2, 20-40; (h) L. Joucla and L. Djakovitch, Adv. Synth. Catal., 2009, 351, 673-714; (i) X.-F. Wu, P. Anbarasan, H. Neumann and M. Beller Angew. Chem. Int. Ed., 2010, 49, 7316-7319; (j) L. Ackermann, Chem. Rev., 2011, 111, 1315-1345; (k) N. Kuhl, M. N. Hopkinson, J. Wencel-Delord and F. Glorius, Angew. Chem. Int. Ed., 2012, 51, 10236-10254; (l) J. Yamaguchi, A. D. Yamaguchi and K. Itami, Angew. Chem., Int. Ed., 2012, 51, 8960-9009; (m) S. R. Neufeldt and M. S. Sanford, Acc. Chem. Res., 2012, 45, 936-946; (n) J. Wencel-Delord and F. Glorius, Nature Chem. 2013, 5, 369-375; (o) S. I. Kuzhushkov, H. K. Potukuchi and L. Ackermann, Catal. Sci. Technol., 2013, 3, 562-571; (p) R. Rossi, F. Bellina, M. Lessi and C. Manzini, Adv. Synth. Catal., 2014, 356, 17-117; (q) M. He, J. F. Soulé and H. Doucet, ChemCatChem, 2014, 6, 1824-1859; (r) K. Yuan, J. F. Soulé and H. Doucet, ACS Catal., 2015, 5, 978-991.

- (a) Y. Akita, A. Inoue, K. Yamamoto, A. Ohta, T. Kurihara and M. Shimizu, *Heterocycles*, 1985, 23, 2327-2333; (b) A. Ohta, Y. Akita, T. Ohkuwa, M. Chiba, R. Fukunaga, A. Miyafuji, T. Nakata, N. Tani and Y. Aoyagi, *Heterocycles*, 1990, 31, 1951-1958; (c) Y. Aoyagi, A. Inoue, I. Koizumi, R. Hashimoto, A. Miyafuji, J. Kunoh, R. Honma, Y. Akita, A. Ohta, *Heterocycles*, 1992, 33, 257-272.
- For selected examples of Pd-catalysed direct arylations from our laboratory: (a) K. Beydoun, M. Zaarour, J. A. G. Williams, H. Doucet and V. Guerchais Chem. Commun., 2012, 48, 1260-1262; (b) H. Y. Fu, L. Chen and H. Doucet, J. Org. Chem., 2012, 77, 4473-4478; (c) L. Zhao, C. Bruneau and H. Doucet, Chem. Commun., 2013, 49, 5598-5600.
- 14 T. Cantat, E. Génin, C. Giroud, G. Meyer and A. Jutand, J. Organomet. Chem., 2003, 687, 365-376.
- 15 R. Itooka, Y. Iguchi and N. Miyaura, J. Org. Chem., 2003, 68, 6000-6004.
- 16 D. C. Reeves, S. Rodriguez, H. Lee, N. Haddad, D. Krishnamurthy and C. H. Senanayake, *Org. Lett.*, 2011, 13, 2495-2497.
- 17 T. Bach, K. Joedicke, K. Kather and R. Froehlich, J. Am. Chem. Soc. 1997, **119**, 2437-2445.
- 18 T. R. Barbee and K. F. Albizati, J. Org. Chem., 1991, 56, 6764-6773.
- 19 D. J. Fox, D. S. Pedersen and S. Warren, Org. Biomol. Chem. 2006, 4, 3102-3107.
- 20 (a) R. Lerebours and C. Wolf, Org. Lett. 2007, 9, 2737-2740; (b) M. Shibuya, S. Ito, M. Takahashi and Y. Iwabuchi, Org. Lett. 2004, 6, 4303-4306.

ARTICLE

- 21 (a) S. Biswas, S. Maiti and U. Jana, *Eur. J. Org. Chem.*, 2010, 2861-2866; (b) M. Uyanik, R. Fukatsu and K. Ishihara, *Org. Lett.*, 2009, 11, 3470-3473.
- 22 C. L. Stevens and W. Holland, J. Org. Chem., 1958, 23, 781-783.
- 23 W. Oroshnik, G. Karnas and R. A. Mallory, J. Am. Chem. Soc. 1954, **76**, 2325-2329.
- 24 A. Arcadi, F. Marinelli and S. Cacchi, J. Organomet. Chem., 1986, **312**, C27-C32.
- 25 X. Zhang, X. Yu, X. Feng and M. Bao, *Synlett*, 2012, 23, 1605-1608.

The reaction of benzenesulfonyl chlorides with some enones in the presence of a palladium catalyst affords the conjugate addition products instead of the expected Heck type products.

ABSTRACT

