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Pentaammine dioxido uranium(VI) dibromide ammonia (1/1), [UO2(NH3)5]Br2 · NH3, was 
synthesized in the form of yellow crystals by the reaction of uranyl bromide, UO2Br2, with dry 
liquid ammonia. The compound crystallizes orthorhombic in space group Cmcm and is isotypic to 10 

[UO2(NH3)5]Cl2 · NH3 with a = 13.2499(2), b = 10.5536(1), c = 8.9126(1) Å, V = 1246.29(3) Å3 
and Z = 4 at 123 K. The UO2

2+ cation is coordinated by five ammine ligands and the coordination 
polyhedron can be best described as pentagonal bipyramid. Car-Parrinello molecular dynamics 
simulations are reported for [UO2(NH3)5]2+ in the gas phase and in liquid NH3 solution (using the 
BLYP density functional). According to free-energy simulations, solvation by ammonia has only a 15 

small effect on the uranyl-NH3 bond strength. 

 

1 Introduction 

Fueled by continued industrial use and driven by advances in 
synthetic techniques, uranium chemistry has been blossoming 20 

of late.1 One of the key elements in this development is the 
move from water to organic solvents, which has given access 
to a plethora of new uranium compounds with unusual 
oxidation states and new bonding motifs. However, one 
solvent that is quite common in inorganic synthesis has 25 

received relatively little attention so far in uranium chemistry, 
namely liquid ammonia. We have explored its use for 
preparative purposes and have added a number of uranium-
ammonia compounds to the growing portfolio of uranyl(VI) 
and uranium(IV) complexes.2,3 We now report on a new 30 

compound that was isolated during our speciation studies, 
[UO2(NH3)5]Br2 · NH3. 
 
Liquid anhydrous ammonia is widely used in industry, mainly 
for refrigeration purposes. It has some attractive properties for 35 

use as a solvent, such as the possibility to work at low 
temperatures. Its polarity is between that of water, the 
traditional medium for uranyl(VI) chemistry, and that of inert 
organic solvents, which have led to the "renaissance" of 
uranium chemistry. It is thus conceivable that working in 40 

liquid ammonia can open up new avenues in uranium 
chemistry. 
 
To understand the chemistry of uranium compounds in 
ammonia at an atomistic level and to help design new species 45 

and processes, e.g. for selective complexation and separation, 
first-principles modelling will be instrumental. For actinoid 
compounds in general, and uranyl complexes in particular, ab 

initio and density functional theory (DFT) calculations have a 
long history and are now well established.4 The vast majority 50 

of these studies attempt to model an aqueous environment, 
either by way of static optimisations and implicit solvation 
through polarisable continuum models (PCMs), or by explicit 
inclusion of the solvent in a dynamic ensemble. In the latter 
spirit, we have been using Car-Parrinello molecular dynamics 55 

(CPMD) simulations to model a number of uranyl complexes 
in aqueous solution.5,6,7 Using this method, together with a 
special numerical technique (pointwise thermodynamic 
integration, PTI), several thermodynamic and kinetic 
parameters of uranyl hydrate, [UO2(H2O)5]2+, have been 60 

reproduced with an accuracy of ca. ±2.5 kcal/mol. We have 
also reported the first CPMD simulations of uranyl complexes 
in a non-aqueous solvent (acetonitrile).8 We now apply this 
approach to the prototypical uranyl complex in ammonia, 
[UO2(NH3)5]2+. Special attention is called to the effect of the 65 

ammonia medium on the uranyl-NH3 bond strength, as 
compared to that of an aqueous environment on the 
corresponding uranyl-water affinity in uranyl hydrate. 

2 Experimental and Computational details 

All experiments were carried out excluding humidity and air 70 

in an atmosphere of dried and purified argon (Westfalen AG) 
using a high-vacuum glass line or a glove box (MBraun). 
Liquid ammonia (Westfalen AG) was dried and stored over 
sodium (VWR) in a special high-vacuum glass line. All 
vessels used for reactions with liquid ammonia were made of 75 

borosilicate glass and flame-dried before use. 
 
Synthesis and crystallization 
UBr4 was oxidized in anhydrous ammonia by bubbling O2 
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similar for water and ammonia (both ca. 9 kcal/mol). The 
relative solvation effects (with respect to the gas phase) are 
predicted to be quantitatively different, however: the higher 
coordination number is favoured in solution by ca. 11 
kcal/mol and by ca. 4 kcal/mol for water and ammonia, 5 

respectively (compare Figure 4a and 4b). The apparent 
reduction of solvation effects on uranyl-ligand bond strengths 
in ammonia may be good news for continuum solvation 
models, because the accuracy of these models tends to 
deteriorate with increasing strength of specific solute-solvent 10 

interactions. Detailed performance studies of such PCM 
methods are beyond the scope of the present investigation, 
however. 
 
According to natural population analysis, the bonding between 15 

U and N in [UO2(NH3)5]2+ is largely ionic, but with 
significant covalent character: the Wiberg bond index 
(WBI),31 which approaches values close to 1 for fully covalent 
single bonds, is 0.44 between U and N (BLYP(PCM) level), 
and a natural bond orbital (NBO) analysis finds five localised 20 

U-N NBOs, which are however highly polarised toward N 
(12% contribution from U with comparable shares from s, p, 
d, and f orbitals). These bonds provide a means for charge 
transfer to the metal, as reflected in a natural charge of +0.69 
for the UO2 moiety, as opposed to +2 for bare [UO2]2+. The U-25 

OH2 bond in [UO2(H2O)5]2+  is computed to have a slightly 
higher ionic character (U-O WBI of 0.43 and natural charge of 
+0.81 on UO2 at the same level). 
 
The NH3 dissociation in Figure 4b is a possible mechanism 30 

for ligand/solvent exchange in [UO2(NH3)5]2+ ; an alternative 
associative path via a six-coordinate intermediate or transition 
state needs to be studied (in analogy with the aquo complex, 
where such an associative interchange is preferred).5,32 

4 Conclusions 35 

In summary, we have structurally characterised a new member 
of the family of pentaammine uranyl complexes, 
[UO2(NH3)5]Br2 · NH3, which can be readily prepared in 
liquid ammonia. We have further characterised the structure 
of the pristine cation, [UO2(NH3)5]2+, in the same solvent 40 

through the first DFT/BLYP-based CPMD simulations of this 
system. According to free-energy simulations the uranyl-NH3 
bond strength in ammonia is similar to that of the uranyl-
water bond in aqueous [UO2(H2O)5]2+, ca. 9 kcal/mol. 
However, the effect of the solvent on this property is 45 

markedly weaker for ammonia than for water. This effect is 
still noticeable in ammonia, though (reinforcement of the 
bond strength by 4 kcal/mol with respect to the gas phase). 
Thus, uranyl chemistry in this solvent may indeed be different 
from that in water or in truly inert organic solvents. 50 

 
Our findings open up numerous opportunities for joint 
experimental and computational studies to explore and design 
new uranium chemistry. The renaissance of this chemistry 
may not be approaching its end just yet. 55 
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